

Prof. Dr. Andreas Podelski Dominik Klumpp Elisabeth Henkel Hand in until January 25th, 2023 23:59 via ILIAS Discussion: January 30th/31st, 2023

## Tutorial for Cyber-Physical Systems - Discrete Models Exercise Sheet 12

Exercise 1\*: Lecture Evaluation

1 Bonus Point

Complete the lecture evaluation.

## Exercise 2: LTL Properties

Given the following LTL properties over  $AP = \{a, b, c\}$ :

| $\varphi_1 = a \land \bigcirc b$ | $\varphi_3 = \neg(a \ U \ \square b)$   | $\varphi_5 = \Diamond \Box a$ |
|----------------------------------|-----------------------------------------|-------------------------------|
| $\varphi_2 = a \ U \ b$          | $\varphi_4 = (\Diamond c) \ U \ \Box a$ | $\varphi_6 = \Box \Diamond c$ |

For each of the LTL properties  $\varphi_i$  complete the following tasks:

- (a) Give a trace  $\tau \in (2^{AP})^{\omega}$  that satisfies  $\varphi_i$ .
- (b) Give a trace  $\tau \in (2^{AP})^{\omega}$  that violates  $\varphi_i$ .
- (c) State whether or not the transition system below satisfies  $\varphi_i$ .
- (d) Formalize  $Words(\varphi_i)$  (i.e. the set of all traces satisfying  $\varphi_i$ ) using set comprehension.

For example for  $\varphi = \Diamond a$  we can formalize  $Words(\varphi) = \{A_0A_1 \cdots \mid \exists i. a \in A_i\}.$ 



**Exercise 3: Stating properties in LTL** 3 Points + 2 Bonus Points Suppose we have two users, *Betsy* and *Peter*, and a single printer device. Both users perform several tasks, and every now and then they want to print their results on the printer. Since there is only a single printer, only one user can print a job at a time. Suppose we have the following atomic propositions for *Peter* at our disposal:

| Peter.request | indicates that <i>Peter</i> requests usage of the printer. |
|---------------|------------------------------------------------------------|
| Peter.use     | indicates that <i>Peter</i> uses the printer.              |
| Peter.release | indicates that <i>Peter</i> releases the printer.          |

12 Points

For *Betsy*, analogous predicates are defined. Specify in LTL the following properties:

- (a) Mutual exclusion, i.e., only one user at a time can use the printer.
- (b) Finite time of usage, i.e., a user can print only for a finite amount of time.
- (c) Absence of individual starvation, i.e., if a user wants to print something, the user is eventually able to do so.
- (d) **Bonus:** Absence of blocking, i.e., if a user requests access to the printer, the user does not request forever.
- (e) **Bonus:** Alternating access, i.e., users must strictly alternate in printing.

**Exercise 4: Equivalence of LTL formulas** 8 Points + 2 Bonus Points Consider the following claims about equivalences of LTL formulas.

Provide a counterexample (i.e. a transition system that satisfies one of the properties and violates the other) if an equivalence does not hold.

(a)  $\Box a \land \bigcirc \Diamond a \stackrel{?}{\equiv} \Box a$ 

(b) 
$$\Diamond a \land \bigcirc \Box a \stackrel{?}{\equiv} \Diamond a$$

- (c)  $\Box a \rightarrow \Diamond b \stackrel{?}{\equiv} a \ \mathsf{U} \ (b \lor \neg a)$
- (d)  $a \ \mathsf{U} \ false \stackrel{?}{\equiv} \Box a$

(e) 
$$\Box \bigcirc b \stackrel{?}{\equiv} \Box b$$

**Bonus:** If an equivalence holds, give a proof.