Tutorial for Cyber-Physical Systems - Discrete Models Exercise Sheet 13

Exercise 1: Fair Equivalence

6 Points
The goal of this exercise is to practice simple proofs about LTL semantics, and to understand a key property that makes logical equivalence (modulo fairness) such a useful relation.

We call a relation \sim between LTL formulas a logical congruence, if \sim is an equivalence relation (it is reflexive, symmetric and transitive), and it holds for all LTL formulas $\varphi_{1}, \varphi_{2}, \psi_{1}, \psi_{2}$ that
(C1) If $\varphi_{1} \sim \varphi_{2}$, then also $\left(\neg \varphi_{1}\right) \sim\left(\neg \varphi_{2}\right)$.
(C2) If $\varphi_{1} \sim \varphi_{2}$ and $\psi_{1} \sim \psi_{2}$, then also $\left(\varphi_{1} \vee \psi_{1}\right) \sim\left(\varphi_{2} \vee \psi_{2}\right)$.
(C3) If $\varphi_{1} \sim \varphi_{2}$, then also $\left(\bigcirc \varphi_{1}\right) \sim\left(\bigcirc \varphi_{2}\right)$.
(C4) If $\varphi_{1} \sim \varphi_{2}$ and $\psi_{1} \sim \psi_{2}$, then also $\left(\varphi_{1} \mathrm{U} \psi_{1}\right) \sim\left(\varphi_{2} \mathrm{U} \psi_{2}\right)$.
Example: Logical equivalence (\equiv) between formulas is a logical congruence. This allows us to "swap out" any sub-formula ψ of a given formula φ with an equivalent sub-formula ψ^{\prime}, and be sure that the result is still equivalent to φ. E.g., if we know that $\bigcirc \square a \equiv$ $\square \bigcirc a$, we can directly conclude that $\diamond(b \cup \bigcirc \square a) \equiv \diamond(b \cup \square \bigcirc a)$.
Let fair be any LTL fairness condition. In the lecture, we defined equivalence modulo the fairness condition fair, denoted $\equiv_{\text {fair }}$, and we discussed a proof showing that (C1) holds for $\equiv_{\text {fair }}$. In this exercise, we complete the proof that $\equiv_{\text {fair }}$ is a logical congruence. Prove the following statements:
(a) If $\varphi_{1} \equiv_{\text {fair }} \varphi_{2}$ and $\psi_{1} \equiv_{\text {fair }} \psi_{2}$, then also $\left(\varphi_{1} \vee \psi_{1}\right) \equiv_{\text {fair }}\left(\varphi_{2} \vee \psi_{2}\right)$.
(b) If $\varphi_{1} \equiv_{\text {fair }} \varphi_{2}$, then also $\left(\bigcirc \varphi_{1}\right) \equiv_{\text {fair }}\left(\bigcirc \varphi_{2}\right)$.
(c) If $\varphi_{1} \equiv_{\text {fair }} \varphi_{2}$ and $\psi_{1} \equiv_{\text {fair }} \psi_{2}$, then also $\left(\varphi_{1} \cup \psi_{1}\right) \equiv_{\text {fair }}\left(\varphi_{2} \cup \psi_{2}\right)$.

Hint: You may use the fact that any suffix $A_{i} A_{i+1} \ldots$ of a fair trace $A_{0} A_{1} \ldots$ is also fair.

Provide an NBA for each of the following LTL formulas:
(a) $\square(a \vee \neg \bigcirc b)$
(b) $\diamond a \vee$$\diamond(a \leftrightarrow b)$
(c) $\bigcirc \bigcirc(a \vee \diamond \square b)$ b)

Exercise 3: LTL and Set Notation

5 Points
The goal of this exercise is to practice converting between set notation and LTL formulas.
Let $A P=\{a, b\}$. For each of the following LTL formulas φ_{i}, describe $\operatorname{Words}\left(\varphi_{i}\right)$ using set notation (without the use of LTL formulas).
(a) $\varphi_{1}=\square(a \rightarrow \Delta b)$
(b) $\varphi_{2}=a U$

For each of the following properties P_{i}, give an equivalent LTL formula φ_{i} (if possible). For exactly one of the properties below, it is not possible to given an equivalent LTL formula. Identify this property.
(c) $P_{3}=\left\{A_{0} A_{1} \ldots \mid \exists i \in \mathbb{N}_{0} . a \in A_{i} \wedge b \in A_{i+1}\right\}$
(d) $P_{4}=\left\{A_{0} A_{1} \ldots \mid \forall i \in \mathbb{N}_{0} . a \in A_{2 i}\right\}$
(e) $P_{5}=\left\{A_{0} A_{1} \ldots \mid \forall i \in \mathbb{N}_{0} . A_{i}=A_{i+2}\right\}$

Exercise 4 ${ }^{\star}$: LTL Equivalence

3 Bonus Points
The goal of this exercise is to practice simple proofs involving the semantics of LTL, and to gain a better understanding of LTL equivalence.

Let φ, ψ be two LTL formulas. Prove the following statement from the lecture:

$$
\begin{gathered}
\qquad \operatorname{Words}(\varphi)=\operatorname{Words}(\psi) \\
\text { iff } \\
\text { for all transition systems } \mathcal{T}: \mathcal{T} \models \varphi \Longleftrightarrow \mathcal{T} \models \psi
\end{gathered}
$$

Hint: A transition system \mathcal{T} may have infinitely many states.

