Formal Methods for Java

Lecture 2: Operational Semantics

Jochen Hoenicke

g Software Engineering

-=Z- Albert-Ludwigs-University Freiburg

]
i

October 28, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011

1/13

Semantics for Java

The Java Language Specification (JLS) 3rd edition gives semantics for
Java

@ The document has 684 pages.
@ 118 pages to define semantics of expression.

@ 42 pages to define semantics of method invocation.

Semantics are only defined by prosa text.
How can we give the semantics formally?
Need a mathematical model for computations.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 2/13

Operational Semantics for Java

Idea: define transition system for Java

Definition (Transition System)

A transition system (TS) is a structure TS = (Q, Act, —), where
@ Q is a set of states,
@ Act a set of actions,

o —+C @ x Act x Q the transition relation.

Q reflects the current dynamic state (heap and local variables).
Act is the executed code.

Idea from: D. v. Oheimb, T. Nipkow, Machine-checking the Java
specification: Proving type-safety, 1999

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 3/13

Example: State of a Java Program

What is the state after executing this code?
List mylist = new LinkedList();
mylist.add(new Integer(1));

-

heap

X

7: LinkedList

Icl

\[—J
8: LinkedList.Entry

LN

[T

9]
J

4

9: LinkedList.Entry [10]8]8]

\10;(Integer

mylist:

J

Jochen Hoenicke (Software Engineering)

Formal Methods for Java

October 28, 2011

4/13

State of a Java Program

The state of a Java program gives valuations local and global (heap)
variables.

@ @ = Heap x Local
@ Heap = Address — Class x seq Value
o Local = Identifier — Value
o Value =7, Address C Z
A state is denoted as (heap, Icl), where heap : Heap and lcl : Local.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 5/13

Actions of a Java Program

An action of a Java Program is either
@ the evaluation of an expression e to a value v, denoted as e v, or
@ a Java statement, or
@ a Java code block.

Note that expressions with side-effects can modify the current state

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 6 /13

Example: Actions of a Java Program

Post-increment expression:

(heap, Icl U {x + 5}) =5, (heap, Ic/ U {x — 6})

Pre-increment expression:
(heap, Icl U {x + 5}) =25, (heap, Ic/ U {x — 6})
Assignment expression:

(heap, Icl U {x + 5}) X210, (heap jc/ U {x ~— 10})

Assignment statement:

(heap, Icl U {x + 5}) X2 (heap, Icl U {x + 10})
Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011

7/13

Rules

The last slide listed some examples for transitions.
Define rules when a transition is valid.

Definition (Inference Rules)

A rule of inference

Fi...F, where
c

is a decidable relation between formulae. The formulae F4,..., F, are
called the premises of the rule and G is called the conclusion.

If n =0 the rule is called an axiom schema. In this case the bar may be
omitted.

v

The intuition of a rule is that if all premises hold, the conclusion also holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 8 /13

Rules for Java expressions (1)

axiom for evaluating local variables:

(heap, Icl) 2=V (heap, Icl)

rule for field access:

(heap, Icl) _ebv, (heap', Icl') where ic_lx is the.index
e fids heap (v)(idx) — , of 'the fleld,fld in the
(heap, Icl) (heap’, Icl") object heap'(v)

rule for assignment to local:

(heap, Icl) -2 (heap/, Icl")

X=ebv

(heap, lcl) === (heap’, Icl' ® {x > v})

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011

9/13

Rules for Java expressions (2)

axiom for evaluating a constant expression c:
(heap, Icl) =< (heap, Icl)

rule for multiplication (similar for other binary operators)

(heapy, Ich) 221 (heapy, Ich)

(heapy, Ich) —22Y2 (heaps, Ick)

) erxexi>(vi-va) mod 232 . (

(heaps, Ich heaps, Ich)

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011

10 /13

A derivation for x = x x 2

(heap, Icl U {x + 5}) 222 (heap, Icl U {x — 5})
(heap, Icl U {x + 5}) 225 (heap, Ic/ U {x 5})

(heap, Icl U {x + 5}) =210, (heap, Il U {x + 5})
(heap, Icl U {x + 5}) =210, (heap fcl U {x + 10})

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 11 /13

Rules for Java Statements

expression statement (assignment or method call):

(heap, Icl) == (heap/, Icl")
(heap, Icl) —== (heap’, Icl")

sequence of statements:

(heapy, Ich) =L (heapy, Ich) (heapy, Ich) =2+ (heaps, Ick)

(heapy, Ich) -2 (heaps, Icl3)

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011

12 /13

Rules for Java Statements

if statement:

(heapy, Ich) 2% (heapy, Ich) (heaps, Ich) 2 (heaps, Ichs)

(heapa, Ich) _if(e) bhelsebl , (heaps, Ich)

,where v # 0

(heapy, Ich) %5 (heapy, Ich) (heaps, Ich) —225 (heaps, Ichs)

(heapa, Ich) _if(e) bhelsebly , (heaps, Ich)

,Where v =0

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 13 /13

