Formal Methods for Java
Lecture 3: Operational Semantics (Part 2)

Jochen Hoenicke

Software Engineering
- Albert-Ludwigs-University Freiburg

UNI
FREIBURG

November 2, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011

1/25

Operational Semantics for Java

Idea: define transition system for Java

Definition (Transition System)

A transition system (TS) is a structure TS = (Q, Act, —), where
@ Q is a set of states,
@ Act a set of actions,

o —+C @ x Act x Q the transition relation.

Q reflects the current dynamic state (heap and local variables).
Act is the executed code.

Idea from: D. v. Oheimb, T. Nipkow, Machine-checking the Java
specification: Proving type-safety, 1999

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 2/25

State of a Java Program

The state of a Java program gives valuations local and global (heap)
variables.

@ @ = Heap x Local
@ Heap = Address — Class x seq Value
o Local = Identifier — Value
o Value =7, Address C Z
A state is denoted as (heap, Icl), where heap : Heap and lcl : Local.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 3/25

Actions of a Java Program

An action of a Java Program is either
@ the evaluation of an expression e to a value v, denoted as e v, or
@ a Java statement, or
@ a Java code block.

Note that expressions with side-effects can modify the current state

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 4/25

Rules for Java Expressions

axiom for evaluating local variables:

(heap, Icl) xelel(x) (heap, Icl)

axiom for evaluating constants:

(heap, Icl) =< (heap, Icl)

rule for field access:

heap. Icl) —€Ys (heap'. Icl' where idx is the index
(heap, cl) = (heap', Icl') ,of the field fld in the

(heap, Icl) e.fld>heap’ (v)(idx) (heap', Icl") object heap'(v)

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011

5/ 25

Rules for Assignment Expressions

rule for assignment to local:

(heap, Icl) -2 (heap/, Icl")
(heap, Icl) === (heap/, IcI' & {x — v})

rule for assignment to field:

(heapy, Ich) 22 (heapy, Ich)

(heapy, Ich) 222 (heaps, Icl)

(heapy, lcly) —S:d=€2v2 5 (peap,, /c/3)’

where heaps = heapsz & {(v1, idx) — vo} and idx is the index of the field
fld in the object at heapsz(vi).

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 6 /25

Rules for Java Statements

expression statement (assignment or method call):

(heap, Icl) —=% (heap/, Icl")
(heap, Icl) —== (heap’, Icl")

sequence of statements:

(heapy, Ich) = (heapy, Ich) (heaps, Icl) =2+ (heaps, Icls)

(heapy, Ich) =122 (heaps, Icl3)

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011

7/25

Rules for Java Statements

if statement:

(heapy, Ich) —=% (heaps, Ich) (heaps, Ich) —%5 (heaps, Icl)

,Where v #£ 0

(heapy, Ich) fe) sielses, , (heaps, Ich)

(heapy, Ich) —=% (heaps, Ich) (heaps, Ich) 25 (heaps, Icl)

(heapy, Ich) fe) sielses, , (heaps, Ich)

,where v =10

while statement:

(heapy, Ich) if(e){s while(e) s} (heaps, Ich)

(heapa, Ich) _while(e)s (heapa, Ich)

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 8/25

Rule for Java Method Call

(heapy, Ich) == (heapz, Ich)
(heapa, Ich) —=* (heaps, Icl3)

(heaanrla IC/n+1) Sty (heapn+2a /C/n+2)

(heappy2, mlcl) 222 (heapp.3, micl)

e.m(ey,...,en)>mlcl’ (\ result)

(heapn+37 ICIn+2)

where body is the body of the method m in the object heapp2(v), and
mlcl = {this — v, paramy — v1,..., param, — v, } where
paramsy, ..., param, are the names of the parameters of m

(heapy, Ich)

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 9/25

Creating Objects

Creating an Object is always combined with the call of a constructor:

heap; = heap U {na — (Type, (0,...,0))
(heaps, Icl) na.<init>(er,.en)ov (heap’, Icl")

(heap, Icl) new Type(ei,....en)>na (heap', Icl")

, where na ¢ dom heap

Here <init> stands for the internal name of the constructor.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 10 / 25

Exceptions

To handle exceptions a few changes are necessary:

@ We extend the state by a flow component:
Q = Flow x Heap x Local

@ Flow ::= Norm|Ret|Exc{{Address))

We use the identifiers flow € Flow, heap € Heap and Icl € Local in the
rules. Also g € Q stands for an arbitrary state.

The following axioms state that in an abnormal state statements are not
executed:

(flow, heap, Icl) 2% (flow, heap, Icl), where flow # Norm

(flow, heap, Icl) = (flow, heap, Icl), where flow # Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 11 /25

Expressions With Exceptions

The previously defined rules are valid only if the left-hand-state is not an
exception state.

e1bvy D>Vvo /

q q q

61*62I>(V1-V2) mod 232 q/

(Norm, heap, Icl)

(Norm, heap, Icl)

(Norm, heap, Icl) =%+ q q -2+ ¢’

(Norm, heap, Icl) 2252 o/
(Norm, heap, Icl) =% q g -+ q'

(Norm, heap, lcl) ~(e)sielsesz , o

, where v # 0

Note that exceptions are propagated using the axiom from the last slide.

(flow, heap, Icl) —==% (flow, heap, Icl), where flow # Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 12 /25

Throwing Exceptions

(Norm, heap, Icl) =% (Norm, heap', Icl’)

(Norm, heap, lcl) W ety (Exc(v), heap!, Icl’)

What happens if in a field access the object is null?

(Norm, heap, Icl) <22 ¢
s throw new NullPointerException() .

o ,Where v is some arbitrary value
(Norm, heap, Icl) =Y g

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 13 /25

Complete Rules for throw

(Norm, heap, Icl) —=% (Norm, heap', Icl’)

throw e;

, where v # 0
(Norm, heap, lcl) == (Exc(v), heap’, Icl")

el>0

(Norm, heap, Icl) === ¢

; throw new NullPointerException() q//

7

(Norm, heap, lcl) —throwe:, o

(Norm, heap, lcl) =25 (flow’, heap', Icl”)

(Norm, heap, Icl) ey (flow!, heap', Icl’)

, where flow’ # Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011

14 /25

Catching Exceptions

Catching an exception:

(Norm, heap, Icl) =15 (Exc(v), heap', Icl")
(Norm, heap', Icl" U {ex — v}) -2 q"
(Norm, heap, /C/) try sicatch(Type ex)s, q//

, where v is an instance of Type

No exception catched:

where flow' is not
(Norm, h, 1) =% (flow’, h', I") Exc(v) or v is

(Norm, h, [) —rysicateh(Type e)s2, o,/ v /) * not an instance of

Type

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 15 / 25

Return Statement

Return statement stores the value and signals the Ret in flow component:

(Norm, heap, Icl) —=% (Norm, heap', Icl’)

return e

(Norm, heap, lcl) *2Y (Ret, heap’, Icl’ & {\result — v})

But evaluating e can also throw exception:

(Norm, heap, Icl) —=% (flow, heap’, Icl")
(Norm, heap, Icl) "™ (flow, heap', Icl")

, where flow # Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 16 / 25

Method Call (Normal Case)

(Norm, hy, i) =% @»

>

en>
qn+1 —nﬁ% (fn+27 hn+2a /n+2)

(fas2, Bngo, ml) 22 (Ret, hpis, ml')

(Norm, hy, /1) e.m(ey,...,en)>ml’(\result) (Norm, heapp3, /n+2)

)

where paramy, ..., param, are the names of the parameters and body is
the body of the method m in the object heap,i2(v), and
ml = {this — v, paramy — vi, ..., param, — v, }

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 17 / 25

Method Call With Exception

(Norm, hy, i) =% @»

>

en>
qn+1 —nﬁ% (fn+27 hn+2a /n+2)

(frs2, hnso, ml) =229 (Exc(ve), hnis, ml')

(Norm, h]_, ll) e.m(e1,4..,en)l>ml’(\result) (EXC(Ve), heapn+3, /n+2)’

where paramy, ..., param, are the names of the parameters and body is
the body of the method m in the object heap,i2(v), and
ml = {this — v, paramy — vi, ..., param, — v, }

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 18 / 25

Semantics of Specification

/*@ requires = >= 0;

@ ensures \result <= Math.sqrt(z) &9 Math.sqrt(z) < \result + 1;
o*/

public static int <sgrt(int z) {
body
}

Whenever the method is called with values that satisfy the requires-formula

and the method terminates normally then the ensures-formula holds.
For all executions of the method,

(Norm, heap, Icl) 229 (Ret, heap', Icl'),

if lc/(x) >= 0 then the formula

lel'(\result) <= Math.sqrt(lcl(x)) < lcI'(\result) + 1
holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 19 / 25

What About Exceptions?

/%@ requires true;
@ ensures \result <= Math.sqrt(z) &5 Math.sqrt(z) < \result + 1;
@ signals (IllegalArgumentEzception) = < 0;
@ signals_only IllegalArgumentException;
ox/
public static int isgrt(int z) {
body
¥

For all transitions
(Norm, heap, Icl) 229 (Exc(v), heap', Icl')

where Ic/ satisfies the precondition and v is an Exception, v must be of
type lllegalArgumentException. Furthermore, lc/ must satisfy x < 0.

The code is still allowed to throw an Error like a OutOfMemoryError or a
ClassNotFoundError.

If no signals_only clause is specified, JML assumes a sane default value:
The method may throw only exceptions it declares with the throws
keyword (in this case none).

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 20 / 25

Side-Effects

A method can change the heap in an unpredictable way.

The assignable clause restricts changes:
/*@ requires ¢ >= 0;
@ assignable \nothing;
@ ensures \result <= Math.sqrt(z) €& Math.sqrt(z) < \result + 1;
o*/
public static int <sgrt(int z) {
body
}

For all executions of the method,

(Norm, heap, Icl) —2°% (Ret, heap', Icl'),

if lc/(x) >= 0 then the formula

lel'(\result) <= Math.sqrt(lcl(x)) < Icl'(\result + 1)

holds and heap = heap'.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011

21/ 25

What is the meaning of a formula

A formula like x >= 0 is a Boolean Java expression. It can be evaluated
with the operational semantics.

x >= 0 holds in state (heap, Icl), iff
(Norm, heap, Icl) 2=V (fl, heap, Icl)

An assertion may not have side-effects.

For the ensures formula both the pre-state and the post-state are
necessary to evaluate the formula.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 22 /25

Semantics of a Specification (formally)
A function satisfies the specification

requires e;

ensures e
iff for all executions

(Norm, heap, Icl) 229 (Ret, heap', Icl')

with (Norm, heap, Icl) <21 g1, v; # 0, the post-condition holds, i.e.,

there exists vo, @2, such that
(Norm, heap', Icl") <222 q;, where vy # 0
However we need a new rule for evaluating \old:

(Norm, heap, Icl) =%+ q where heap, Icl is the state of the pro-
(Norm, heap, Icl") \old(e)>v q’gram before body was executed

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 23 /25

Method Parameters in Ensures-Clause

/%@ requires z >= 0;
@ assignable \nothing;

@ ensures \result <= Math.sqrt(z) €& Math.sqrt(z) < \result + 1;
ex/
public static int <sgrt(int z) {
z = 0;
return O;

}

Is this code a correct implementation of the specification?

No, because method parameters are always evaluated in the pre-state, so
\result <= Math.sqrt(z) && Math.sqrt(z) < \result + 1;

is the same as
\result <= Math.sqrt(\old(z)) && Math.sqrt(\old(z)) < \result + 1;

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 24 / 25

Side-Effects in Specification

In JML side-effects in specifications are forbidden:
If e is an expression in a specification and

(Norm, heap, Icl) 25 (flow, heap', Icl’)

then heap = heap’ and Icl = Icl’.

To be more precise, heap C heap’ since the new heap may contain new
(unreachable) objects.

Also flow # Norm is allowed. In that case the value of v may be
unpredictable.

If the value of v is undefined the tools should assume the worst-case, i.e.,
report that code is buggy.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 25 /25

