
Formal Methods for Java
Lecture 4: JML and Abstract Data Types

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

November 4, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 1 / 21



The Java Modelling Language (JML)

JML is a behavioral interface specification language (BISL) for Java

Proposed by G. Leavens, A. Baker, C. Ruby:
JML: A Notation for Detailed Design, 1999

It combines ideas from two approaches:

Eiffel with it’s built-in language for Design by Contract (DBC)
Larch/C++ a BISL for C++
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Semantics of Specification

/*@ requires x >= 0;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@*/

public static int isqrt(int x) {
body

}

Whenever the method is called with values that satisfy the requires-formula
and the method terminates normally then the ensures-formula holds.
For all executions of the method,

(Norm, heap, lcl) body−−−−→ (Ret, heap′, lcl ′),

if lcl(x) >= 0 then the formula

lcl ′(\result) <= Math.sqrt(lcl(x)) < lcl ′(\result) + 1

holds.
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What About Exceptions?

/*@ requires true;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@ signals (IllegalArgumentException) x < 0;
@ signals_only IllegalArgumentException;
@*/

public static int isqrt(int x) {
body

}

For all transitions

(Norm, heap, lcl) body−−−−→ (Exc(v), heap′, lcl ′)

where lcl satisfies the precondition and v is an Exception, v must be of
type IllegalArgumentException. Furthermore, lcl must satisfy x < 0.
The code is still allowed to throw an Error like a OutOfMemoryError or a
ClassNotFoundError.
If no signals only clause is specified, JML assumes a sane default value:
The method may throw only exceptions it declares with the throws

keyword (in this case none).
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Side-Effects

A method can change the heap in an unpredictable way.
The assignable clause restricts changes:
/*@ requires x >= 0;
@ assignable \nothing;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@*/

public static int isqrt(int x) {
body

}

For all executions of the method,

(Norm, heap, lcl) body−−−−→ (Ret, heap′, lcl ′),

if lcl(x) >= 0 then the formula

lcl ′(\result) <= Math.sqrt(lcl(x)) < lcl ′(\result + 1)

holds and heap = heap′.
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Lightweight vs. Heavyweight Specifications

A lightweight specification
/*@ requires P;
@ assignable X;
@ ensures Q;
@*/

public void foo() throws IOException;

is an abbreviation for the heavyweight specification
/*@ public behavior
@ requires P;
@ diverges false;
@ assignable X;
@ ensures Q;
@ signals_only IOException
@*/

public void foo() throws IOException;
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Making Exceptions Explicit

/*@ public normal_behavior
@ requires x >= 0;
@ assignable \nothing;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@ also
@ public exceptional_behavior
@ requires x < 0;
@ assignable \nothing;
@ signals (IllegalArgumentException) true;
@*/

public static int isqrt(int x) throws IllegalArgumentException {
if (x < 0)

throw new IllegalArgumentException();
body

}
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Making Exceptions Explicit (2)

If several specification are given with also, the method must fulfill all
specifications.

A specification with normal behavior implicitly has the clause
signals (java.lang.Exception) false

so the method may not throw an exception.

A specification with exceptional behavior implicitly has the clause
ensures false

so the method may not terminate normally.
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The Roots of JML

Ideas from Eiffel:

Executable pre- and post-condition (for runtime checking)
Uses Java syntax (with a few extensions).
Operator \old to refer to the pre-state in the post-condition.

Ideas from Larch:

Describe the state transformation behavior of a method
Model Abstract Data Types (ADT)
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A priority queue

Timer Priority queue

Subsystem

Subsystem

Subsystem

1st

Subsystems request timer events and queue them.

First timer event is passed to the timer.

Priority queue maintains events in its internal data structure.
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Priority Queue Interface

public interface PriorityQueue {

public void enqueue(Comparable o);

public Comparable removeFirst();

public boolean isEmpty();

}
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Adding Incomplete Specification

public interface PriorityQueue {

/*@ public normal_behavior
@ ensures !isEmpty();
@*/

public void enqueue(Comparable o);

/*@ public normal_behavior
@ requires !isEmpty();
@*/

public Comparable removeFirst();

public /*@pure@*/ boolean isEmpty();

}
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Why is Specification Incomplete?

The specification allows undesired things.

After removeFirst() new value of isEmpty() is undefined.

In a correct implementation, after two enqueue() and one
removeFirst() list is not empty.
Specification does not say so.

Problem: the internal state is not visible in spec.

There is not even internal state in an interface!
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Adding Model Variables

Solution: add a model variable that records the size.

public interface PriorityQueue {
//@ public instance model int size;

//@ public invariant size >= 0;

/*@ public normal_behavior
@ ensures size == \old(size) + 1;
@*/

public void enqueue(Comparable o);

/*@ public normal_behavior
@ requires !isEmpty();
@ ensures size == \old(size) - 1;
@*/

public Comparable removeFirst();

/*@ public normal_behavior
@ ensures \result == (size == 0);
@*/

public /*@pure@*/ boolean isEmpty();
}
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Model Variables

//@ public instance model int size;

Model variables only exists in the specification.

Public model variables can be accessed by other classes.

Only specification can access model variables (read-only).

If a model variable is accessed in code, the compiler complains.
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Visibility in JML

//@ public instance model int size;
...
/*@ public normal_behavior
@ ensures \result == (size > 0);
@*/

public /*@pure@*/ boolean isEmpty();

Why is size public?

The external interface must be public.

The specification is part of the interface.

To understand the specification one needs to know about size.

Therefore, size is public.
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Implementing the Specification

public class Heap implements PriorityQueue {
private Comparable[] elems;
private int numElems;

//@ private represents size <- numElems;

public void enqueue(Comparable o) {
elems[numElems++] = o;
...

}

public Comparable removeFirst() {
...
return elems[--numElems];

}

public isEmpty() {
return numElems == 0;

}
}
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Representing Model variables

Every model variable in a concrete class must be represented:
//@ private represents size <- numElems;

The expression can also call pure functions:
//@ private represents size <- computeSize();
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How to Model Internal Structure?

Specification is still incomplete.

Which values are returned by removeFirst()?

We need a model variable representing the queue.

JML defines useful types to model complex data structures.
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Example: Model for Internal Structure

//@ model import org.jmlspecs.models.JMLObjectBag;
public interface PriorityQueue {
//@ public instance model JMLObjectBag queue;

/*@ public normal_behavior
@ ensures queue.equals(\old(queue).insert(o));
@ modifies queue;
@*/

public void enqueue(Comparable o);

/*@ public normal_behavior
@ requires !isEmpty();
@ ensures \old(queue).has(\result)
@ && queue.equals(\old(queue).remove(\result))
@ && (\forall java.lang.Comparable o;
@ queue.has(o); \result.compareTo(o) <= 0);
@ modifies queue;
@*/

public Comparable removeFirst();

/*@ public normal_behavior
@ ensures \result == (queue.isEmpty());
@*/

public /*@pure@*/ boolean isEmpty();
}
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What is JMLObjectBag?

org.jmlspecs.models.JMLObjectBag is a pure class.
It has pure function and no references to non-pure classes.

Therefore, it can be used in specifications.

There are lot of other classes:
http://www.cs.iastate.edu/~leavens/JML-release/

javadocs/org/jmlspecs/models/package-summary.html
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