
Formal Methods for Java
Lecture 4: JML and Abstract Data Types

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

November 4, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 1 / 21



The Java Modelling Language (JML)

JML is a behavioral interface specification language (BISL) for Java

Proposed by G. Leavens, A. Baker, C. Ruby:
JML: A Notation for Detailed Design, 1999

It combines ideas from two approaches:

Eiffel with it’s built-in language for Design by Contract (DBC)
Larch/C++ a BISL for C++

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 2 / 21



Semantics of Specification

/*@ requires x >= 0;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@*/

public static int isqrt(int x) {
body

}

Whenever the method is called with values that satisfy the requires-formula
and the method terminates normally then the ensures-formula holds.
For all executions of the method,

(Norm, heap, lcl) body−−−−→ (Ret, heap′, lcl ′),

if lcl(x) >= 0 then the formula

lcl ′(\result) <= Math.sqrt(lcl(x)) < lcl ′(\result) + 1

holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 3 / 21



What About Exceptions?

/*@ requires true;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@ signals (IllegalArgumentException) x < 0;
@ signals_only IllegalArgumentException;
@*/

public static int isqrt(int x) {
body

}

For all transitions

(Norm, heap, lcl) body−−−−→ (Exc(v), heap′, lcl ′)

where lcl satisfies the precondition and v is an Exception, v must be of
type IllegalArgumentException. Furthermore, lcl must satisfy x < 0.
The code is still allowed to throw an Error like a OutOfMemoryError or a
ClassNotFoundError.
If no signals only clause is specified, JML assumes a sane default value:
The method may throw only exceptions it declares with the throws

keyword (in this case none).
Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 4 / 21



Side-Effects

A method can change the heap in an unpredictable way.
The assignable clause restricts changes:
/*@ requires x >= 0;
@ assignable \nothing;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@*/

public static int isqrt(int x) {
body

}

For all executions of the method,

(Norm, heap, lcl) body−−−−→ (Ret, heap′, lcl ′),

if lcl(x) >= 0 then the formula

lcl ′(\result) <= Math.sqrt(lcl(x)) < lcl ′(\result + 1)

holds and heap = heap′.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 5 / 21



Lightweight vs. Heavyweight Specifications

A lightweight specification
/*@ requires P;
@ assignable X;
@ ensures Q;
@*/

public void foo() throws IOException;

is an abbreviation for the heavyweight specification
/*@ public behavior
@ requires P;
@ diverges false;
@ assignable X;
@ ensures Q;
@ signals_only IOException
@*/

public void foo() throws IOException;

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 6 / 21



Making Exceptions Explicit

/*@ public normal_behavior
@ requires x >= 0;
@ assignable \nothing;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@ also
@ public exceptional_behavior
@ requires x < 0;
@ assignable \nothing;
@ signals (IllegalArgumentException) true;
@*/

public static int isqrt(int x) throws IllegalArgumentException {
if (x < 0)

throw new IllegalArgumentException();
body

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 7 / 21



Making Exceptions Explicit (2)

If several specification are given with also, the method must fulfill all
specifications.

A specification with normal behavior implicitly has the clause
signals (java.lang.Exception) false

so the method may not throw an exception.

A specification with exceptional behavior implicitly has the clause
ensures false

so the method may not terminate normally.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 8 / 21



The Roots of JML

Ideas from Eiffel:

Executable pre- and post-condition (for runtime checking)
Uses Java syntax (with a few extensions).
Operator \old to refer to the pre-state in the post-condition.

Ideas from Larch:

Describe the state transformation behavior of a method
Model Abstract Data Types (ADT)

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 9 / 21



A priority queue

Timer Priority queue

Subsystem

Subsystem

Subsystem

1st

Subsystems request timer events and queue them.

First timer event is passed to the timer.

Priority queue maintains events in its internal data structure.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 10 / 21



Priority Queue Interface

public interface PriorityQueue {

public void enqueue(Comparable o);

public Comparable removeFirst();

public boolean isEmpty();

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 11 / 21



Adding Incomplete Specification

public interface PriorityQueue {

/*@ public normal_behavior
@ ensures !isEmpty();
@*/

public void enqueue(Comparable o);

/*@ public normal_behavior
@ requires !isEmpty();
@*/

public Comparable removeFirst();

public /*@pure@*/ boolean isEmpty();

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 12 / 21



Why is Specification Incomplete?

The specification allows undesired things.

After removeFirst() new value of isEmpty() is undefined.

In a correct implementation, after two enqueue() and one
removeFirst() list is not empty.
Specification does not say so.

Problem: the internal state is not visible in spec.

There is not even internal state in an interface!

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 13 / 21



Adding Model Variables

Solution: add a model variable that records the size.

public interface PriorityQueue {
//@ public instance model int size;

//@ public invariant size >= 0;

/*@ public normal_behavior
@ ensures size == \old(size) + 1;
@*/

public void enqueue(Comparable o);

/*@ public normal_behavior
@ requires !isEmpty();
@ ensures size == \old(size) - 1;
@*/

public Comparable removeFirst();

/*@ public normal_behavior
@ ensures \result == (size == 0);
@*/

public /*@pure@*/ boolean isEmpty();
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 14 / 21



Model Variables

//@ public instance model int size;

Model variables only exists in the specification.

Public model variables can be accessed by other classes.

Only specification can access model variables (read-only).

If a model variable is accessed in code, the compiler complains.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 15 / 21



Visibility in JML

//@ public instance model int size;
...
/*@ public normal_behavior
@ ensures \result == (size > 0);
@*/

public /*@pure@*/ boolean isEmpty();

Why is size public?

The external interface must be public.

The specification is part of the interface.

To understand the specification one needs to know about size.

Therefore, size is public.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 16 / 21



Implementing the Specification

public class Heap implements PriorityQueue {
private Comparable[] elems;
private int numElems;

//@ private represents size <- numElems;

public void enqueue(Comparable o) {
elems[numElems++] = o;
...

}

public Comparable removeFirst() {
...
return elems[--numElems];

}

public isEmpty() {
return numElems == 0;

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 17 / 21



Representing Model variables

Every model variable in a concrete class must be represented:
//@ private represents size <- numElems;

The expression can also call pure functions:
//@ private represents size <- computeSize();

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 18 / 21



How to Model Internal Structure?

Specification is still incomplete.

Which values are returned by removeFirst()?

We need a model variable representing the queue.

JML defines useful types to model complex data structures.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 19 / 21



Example: Model for Internal Structure

//@ model import org.jmlspecs.models.JMLObjectBag;
public interface PriorityQueue {
//@ public instance model JMLObjectBag queue;

/*@ public normal_behavior
@ ensures queue.equals(\old(queue).insert(o));
@ modifies queue;
@*/

public void enqueue(Comparable o);

/*@ public normal_behavior
@ requires !isEmpty();
@ ensures \old(queue).has(\result)
@ && queue.equals(\old(queue).remove(\result))
@ && (\forall java.lang.Comparable o;
@ queue.has(o); \result.compareTo(o) <= 0);
@ modifies queue;
@*/

public Comparable removeFirst();

/*@ public normal_behavior
@ ensures \result == (queue.isEmpty());
@*/

public /*@pure@*/ boolean isEmpty();
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 20 / 21



What is JMLObjectBag?

org.jmlspecs.models.JMLObjectBag is a pure class.
It has pure function and no references to non-pure classes.

Therefore, it can be used in specifications.

There are lot of other classes:
http://www.cs.iastate.edu/~leavens/JML-release/

javadocs/org/jmlspecs/models/package-summary.html

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 21 / 21

http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html
http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html

