
Formal Methods for Java
Lecture 5: JML and Abstract Data Types

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

November 9, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 1 / 19

The Java Modelling Language (JML)

JML is a behavioral interface specification language (BISL) for Java

Proposed by G. Leavens, A. Baker, C. Ruby:
JML: A Notation for Detailed Design, 1999

It combines ideas from two approaches:

Eiffel with it’s built-in language for Design by Contract (DBC)
Larch/C++ a BISL for C++

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 2 / 19

The Roots of JML

Ideas from Eiffel:

Executable pre- and post-condition (for runtime checking)
Uses Java syntax (with a few extensions).
Operator \old to refer to the pre-state in the post-condition.

Ideas from Larch:

Describe the state transformation behavior of a method
Model Abstract Data Types (ADT)

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 3 / 19

A priority queue

Timer Priority queue

Subsystem

Subsystem

Subsystem

1st

Subsystems request timer events and queue them.

First timer event is passed to the timer.

Priority queue maintains events in its internal data structure.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 4 / 19

Priority Queue Interface

public interface PriorityQueue {

public void enqueue(Comparable o);

public Comparable removeFirst();

public boolean isEmpty();

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 5 / 19

Adding Incomplete Specification

public interface PriorityQueue {

/*@ public normal_behavior
@ ensures !isEmpty();
@*/

public void enqueue(Comparable o);

/*@ public normal_behavior
@ requires !isEmpty();
@*/

public Comparable removeFirst();

public /*@pure@*/ boolean isEmpty();

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 6 / 19

How to Model Internal Structure?

Specification is incomplete.

Which values are returned by removeFirst()?

We need a model variable representing the queue.

JML defines useful types to model complex data structures.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 7 / 19

Example: Model for Internal Structure

//@ model import org.jmlspecs.models.JMLObjectBag;
public interface PriorityQueue {
//@ public instance model JMLObjectBag queue;

/*@ public normal_behavior
@ ensures queue.equals(\old(queue).insert(o));
@ modifies queue;
@*/

public void enqueue(Comparable o);

/*@ public normal_behavior
@ requires !isEmpty();
@ ensures \old(queue).has(\result)
@ && queue.equals(\old(queue).remove(\result))
@ && (\forall java.lang.Comparable o;
@ queue.has(o); \result.compareTo(o) <= 0);
@ modifies queue;
@*/

public Comparable removeFirst();

/*@ public normal_behavior
@ ensures \result == (queue.isEmpty());
@*/

public /*@pure@*/ boolean isEmpty();
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 8 / 19

What is JMLObjectBag?

org.jmlspecs.models.JMLObjectBag is a pure class.
It has pure function and no references to non-pure classes.

Therefore, it can be used in specifications.

There are lot of other classes:
http://www.cs.iastate.edu/~leavens/JML-release/

javadocs/org/jmlspecs/models/package-summary.html

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 9 / 19

http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html
http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html

How Does It Work?

For objects, e.g., \old(this) == this, since \old(this) is the old pointer
not the old content of the object.

Why does it work as expected with \old(queue)?

JMLObjectBag is immutable

The insert method is declared as
public /*@pure@*/ JMLObjectBag insert(/*@nullable@*/ Object elem)

Compare this to the add method of List:
public boolean add(/*@nullable@*/ Object elem)

insert returns a reference to a new larger list.

The content of \old(queue) never changes, but queue changes.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 10 / 19

Representing by a Pure Function

import org.jmlspecs.models.JMLObjectBag;
public class Heap implements PriorityQueue {
private Comparable[] elems; //@ in queue;
private int numElems; //@ in queue;

//@ private represents queue <- computeQueue();

/*@
private model pure non_null JMLObjectBag computeQueue() {
JMLObjectBag bag = new JMLObjectBag();
for (int i = 0; i < numElems; i++) {
bag = bag.insert(elems[i]);

}
return bag;

}
@*/

...
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 11 / 19

Representing by a Ghost Variable

import org.jmlspecs.models.JMLObjectBag;
public class Heap implements PriorityQueue {
private Comparable[] elems; //@ in queue;
private int numElems; //@ in queue;

//@ private ghost JMLObjectBag ghostQueue; in queue;
//@ private represents queue <- ghostQueue;

public void enqueue(Comparable o) {
//@ set ghostQueue = ghostQueue.insert(o);
...

}

public Comparable removeFirst() {
...
//@set ghostQueue = ghostQueue.remove(first);
return first;

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 12 / 19

The assignable Problem

//@ model import org.jmlspecs.models.JMLObjectBag;

public interface PriorityQueue {
//@ public instance model JMLObjectBag queue;

/*@ normal_behavior
@ ensures queue.equals(\old(queue).insert(o));
@*/

public void enqueue(/*@non_null@*/ Comparable o);
...

When compiling it, it produced a warning:

>jmlc -Q PriorityQueue.java

File "PriorityQueue.java", line 7, character 24 caution:

A heavyweight specification case for a non-pure method

has no assignable clause [JML]

Lets add a assignable clause.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 13 / 19

Adding assignable.

What does the function enqueue change?
It changes the model variable queue and nothing else.

//@ model import org.jmlspecs.models.JMLObjectBag;

public interface PriorityQueue {
//@ public instance model JMLObjectBag queue;

/*@ normal_behavior
@ ensures queue.equals(\old(queue).insert(o));
@ assignable queue;
@*/

public void enqueue(/*@non_null@*/ Comparable o);
...

However, when compiling Heap.java:

File "Heap.java", line 50, character 29 error: Field "numElems"

is not assignable by method "Heap.enqueue(java.lang.Comparable)";

only fields and fields of data groups in set "{queue}" are

assignable [JML]

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 14 / 19

Mapping Variables To Model Variables.

We have to tell JML that elem and numElems are the implementation of the
model variable queue.
There is a special JML syntax:
import org.jmlspecs.models.JMLObjectBag;

public class Heap implements PriorityQueue {
private Comparable[] elems; //@ in queue;
private int numElems; //@ in queue;

/*@ private represents queue <- computeQueue(); @*/
...

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 15 / 19

Datagroups

Every model variable forms a data group.

Other variables in the class or in sub-classes can be associated with
this data group.

Functions with specification assignable queue, where queue is a
datagroup, may modify any variable in this group.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 16 / 19

More About Datagroups

There is a special data group objectState, which should represent the
object state.

All variables should be added to this group (but they are rarely).

Adding a datagroup to another datagroup works recursively:
//@ model import org.jmlspecs.models.JMLObjectBag;

public interface PriorityQueue {
//@ public instance model JMLObjectBag queue; //@ in objectState;

After this change numElems and elems are also automatically contained
in objectState.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 17 / 19

Datagroups Group Data

Datagroups are useful to group variables.
class Calendar {
//@ model JMLDataGroup datetime; in objectState;
//@ model JMLDataGroup time, date; in datetime;
int day,month,year; //@ in date;
int hour,min,sec; //@ in time;
int timezone; //@ in objectState;
Locale locale; //@ in objectState;

...
//@ assignable datetime;
void setDate(Date date);

//@ assignable timezone;
void setTimeZone();

This avoids listing the variables again.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 18 / 19

Datagroups and Visibility

Datagroups and model variables are useful for visibility issues:
class Tree {
//@ public model JMLDataGroup content; in objectState

private Node rootNode; //@ in content

//@ assignable content;
public void insert(Object o);

Using assignable rootNote would produce an error.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 19 / 19

