Formal Methods for Java
Lecture 5: JML and Abstract Data Types

Jochen Hoenicke

g Software Engineering

-=Z- Albert-Ludwigs-University Freiburg

]
i

November 9, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011

1/19

The Java Modelling Language (JML)

JML is a behavioral interface specification language (BISL) for Java
@ Proposed by G. Leavens, A. Baker, C. Ruby:
JML: A Notation for Detailed Design, 1999
@ It combines ideas from two approaches:

o Eiffel with it's built-in language for Design by Contract (DBC)
o Larch/C++ a BISL for C++

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 2 /19

The Roots of JML

o ldeas from Eiffel:

o Executable pre- and post-condition (for runtime checking)
o Uses Java syntax (with a few extensions).
o Operator \old to refer to the pre-state in the post-condition.

@ ldeas from Larch:

o Describe the state transformation behavior of a method
e Model Abstract Data Types (ADT)

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 3/19

A priority queue

b

Subsystem
1st — M
Subsystem
Priority queue
Subsystem

@ Subsystems request timer events and queue them.
@ First timer event is passed to the timer.

@ Priority queue maintains events in its internal data structure.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 4 /19

Priority Queue Interface

public interface PriorityQueue {
public void enqueue(Comparable o) ;
public Comparable removeFirst();

public boolean %sEmpty();

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 5/19

Adding Incomplete Specification

public interface PriorityQueue {

/*@ public normal_behavior
@ ensures !isEmpty();
o*/
public void enqueue(Comparable o) ;

/*@ public normal_behavior
@ requires !isEmpty();
ex/
public Comparable removeFirst();

public /*@pure@*/ boolean isEmpty();

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 6 /19

How to Model Internal Structure?

@ Specification is incomplete.
@ Which values are returned by removeFirst()?
@ We need a model variable representing the queue.

@ JML defines useful types to model complex data structures.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 7 /19

Example: Model for Internal Structure

//@ model import org.jmlspecs.models.JMLObjectBag;
public interface PriorityQueue {
//@ public instance model JMLObjectBag queue;

/*@ public normal_behavior
@ ensures queue.equals(\old (queue).insert(o));
@ modifies queue;
ox/

public void enqueue(Comparable o);

/*@ public normal_behavior
requires !tsEmpty();
ensures \old (queue).has (\result)
&9 queue.equals(\old (queue).remove(\result))
&4 (\forall java.lang.Comparable o;
queue.has(o); \result.compareTo(o) <= 0);
modifies queue;
*/

public Comparable removeFirst();

SESESESESESNS)

/*@ public normal_behavior
@ ensures \result == (queue.isEmpty());
o*/

public /*@pure@*/ boolean isEmpty();

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 8 /19

What is JMLObjectBag?

@ org.jmlspecs.models.JMLObjectBag is a pure class.
It has pure function and no references to non-pure classes.

@ Therefore, it can be used in specifications.

@ There are lot of other classes:
http://www.cs.iastate.edu/~leavens/JML-release/
javadocs/org/jmlspecs/models/package-summary.html

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 9 /19

http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html
http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html

How Does It Work?

For objects, e.g., \old(this) == this, since \old(this) is the old pointer
not the old content of the object.

Why does it work as expected with \old(queue)?

@ JMLObjectBag is immutable

@ The insert method is declared as
public /*@ure@*/ JMLObjectBag insert(/*@Gnullable@*/ Object elem)

Compare this to the add method of List:
public boolean add(/*@nullable@+*/ Object elem)

@ insert returns a reference to a new larger list.

@ The content of \old(queue) never changes, but gueue changes.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 10 / 19

Representing by a Pure Function

import org.jmlspecs.models. JMLObjectBag;

public class Heap implements PriorityQueue {
private Comparable[] elems; //@ in queue;
private int numElems; //@ in queue;

//@ private represents queue <- computeQueue();

/%@
private model pure non_null JMLObjectBag compute@ueue() {
JMLObjectBag bag = new JMLObjectBag();
for (int % = 0; 4 < numElems; i++) {
bag = bag.insert(elems[i]);

return bag;

}
ox/

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011

11/ 19

Representing by a Ghost Variable

import org.jmlspecs.models.JMLObjectBag;

public class Heap implements PriorityQueuve {
private Comparable[] elems; //@ in queue;
private int numElems; //@ in queue;

//@ private ghost JMLObjectBag ghostQueue; in queue;
//@ private represents queue <- ghostQueue;

public void enqueue(Comparable o) {
//@ set ghostQueue = ghost@ueue.insert(o);

}
public Comparable removeFirst() {
//@set ghostQueue = ghostQueue.remove(first);

return first;

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011

12 /19

The assignable Problem

//@ model import org.jmlspecs.models.JMLObjectBag;

public interface PriorityQueue {
//@ public instance model JMLObjectBag queue;

/*@ normal_behavior

@ ensures queue.equals(\old (queue).insert(o));
ox/

public void enqueue(/*@non_null@+*/ Comparable o0);

When compiling it, it produced a warning:
>jmlc -Q PriorityQueue.java
File "PriorityQueue.java", line 7, character 24 caution:

A heavyweight specification case for a non-pure method
has no assignable clause [JML]

Lets add a assignable clause.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011

13 /19

Adding assignable.

What does the function enqueue change?
It changes the model variable gueue and nothing else.

//@ model import org.jmlspecs.models.JMLObjectBag;

public interface PriorityQueue {
//@ public instance model JMLObjectBag queue;

/*@ normal_behavior

@ ensures queue.equals(\old (queue).insert(o));
@ assignable queue;
o*/

public void enqueue(/*@non_null@*/ Comparable o) ;

However, when compiling Heap.java:

File "Heap.java", line 50, character 29 error: Field "numElems"

is not assignable by method "Heap.enqueue(java.lang.Comparable)";
only fields and fields of data groups in set "{queuel}" are
assignable [JML]

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 14 /19

Mapping Variables To Model Variables.

We have to tell JML that eiem and numElems are the implementation of the
model variable queue.

There is a special JML syntax:
import org.jmlspecs.models.JMLObjectBag;

public class Heap implements PriorityQueue {
private Comparablel]l elems; //@ in queue;

private int numElems; //@ in queue;

/*@ private represents queue <- compute@ueue(); @*/

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 15 /19

Datagroups

@ Every model variable forms a data group.

@ Other variables in the class or in sub-classes can be associated with
this data group.

@ Functions with specification assignable queue, where queue is a
datagroup, may modify any variable in this group.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 16 / 19

More About Datagroups

@ There is a special data group objectState, which should represent the
object state.

@ All variables should be added to this group (but they are rarely).

@ Adding a datagroup to another datagroup works recursively:
//@ model import org.jmlspecs.models.JMLObjectBag;

public interface PriorityQueuve {
//@ public instance model JMLObjectBag queue; //@ in objectState;

After this change numElems and elems are also automatically contained
in objectState.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 17 /19

Datagroups Group Data

Datagroups are useful to group variables.

class Calendar {
//@ model JMLDataGroup datetime; in objectState;
//@ model JMLDataGroup time, date; in datetime;
int day,month,year; //@ in date;
int hour,min,sec; //@ in time;
int timezone; //@ in objectState;
Locale locale; //@ in objectState;

//@ assignable datetime;
void setDate(Date date);

//@ assignable timezone;
void setTimeZone();

This avoids listing the variables again.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011 18 /19

Datagroups and Visibility

Datagroups and model variables are useful for visibility issues:
class Tree {
//@ public model JMLDataGroup content; in objectState
private Node rootNode; //@ in content

//@ assignable content;
public void insert(Object o);

Using assignable rootNote would produce an error.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 9, 2011

19 /19

