
Formal Methods for Java
Lecture 7: ESC/Java (2)

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

November 16, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 1 / 19



Runtime vs. Static Checking

Runtime Checking

finds bugs at run-time,

tests for violation during execution,

can check most of the JML,

is done by jmlrac.

Static Checking

finds bugs at compile-time,

proves that there is no violation,

can check only parts of the JML,

is done by ESC/Java.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 2 / 19



ESC/Java and run-time exceptions

ESC/Java checks that no undeclared run-time exceptions occur.

NullPointerException

ClassCastException

ArrayIndexOutOfBoundsException

ArrayStoreException

ArithmeticException

NegativeArraySizeException

other run-time exception, e.g., when calling library functions.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 3 / 19



ESC/Java and specification

ESC/Java also checks the JML specification:

ensures in method contract,

requires in called methods,

assert statements,

signals clause,

invariant (loop invariant and class invariant).

ESC/Java assumes that some formulae hold:

requires in method contract,

ensures in called methods,

assume statements,

invariant (loop invariant and class invariant).

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 4 / 19



NullPointerException

public void put(Object o) {
int hash = o.hashCode();
...

}

results in Possible null dereference.

Solutions:

Declare o as non_null.

Add o != null to precondition.

Add throws NullPointerException.
(Also add signals (NullPointerException) o == null)

Add Java code that handles null pointers.
int hash = (o == null ? 0 : o.hashCode());

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 5 / 19



ClassCastException

class Priority implements Comparable {
public int compareTo(Object other) {

Priority o = (Priority) other;
...

}
}

results in Possible type cast error.
Solutions:

Add throws ClassCastException.
(Also add
signals (ClassCastException) !(other instanceof Priority))

Add Java code that handles differently typed objects:
if (!(other instanceof Priority))

return -other.compareTo(this)
Priority o = ...

This results in a Possible null dereference.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 6 / 19



ArrayIndexOutOfBoundsException

void write(/*@non_null@*/ byte[] what, int offset, int len) {
for (int i = 0; i < len; i++) {
write(what[offset+i]);

}
}

results in Possible negative array index
Solution:

Add offset >= 0 to pre-condition,
this results in Array index possibly too large.

Add offset + len <= what.length.

ESC/Java does not complain but there is still a problem.
If offset and len are very large numbers, then offset + len can be
negative. The code would throw an
ArrayIndexOutOfBoundsException at run-time.

The correct pre-condition is:
/*@ requires offset >= 0 && offset + len >= offset
@ && offset + len <= what.length;
@*/

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 7 / 19



ArrayStoreException

public class Stack {
/*@non_null@*/ Object[] elems;
int top;
/*@invariant 0 <= top && top <= elems.length @*/

/*@ requires top < elems.length;
@*/

void add(Object o) {
elems[top++] = o;

}

results in Type of right-hand side possibly not a subtype of array element
type (ArrayStore).
Solutions:

Add an invariant \typeof(elems) == \type(Object[]).

Add a precondition \typeof(o) <: \elemtype(\typeof(elems)).

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 8 / 19



Types in assertions

\typeof gets the run-time type of an expression
\typeof(obj) ∼ obj.getClass().

\elemtype gets the base type from an array type.
\elemtype(t1) ∼ t1.getComponentType().

\type gets the type representing the given Java type.
\type(Foo) ∼ Foo.class

<: means is sub-type of.
t1 <: t2 ∼ t2.isAssignableFrom(t1)

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 9 / 19



ArithmeticException

class HashTable {
/*@non_null@*/ Bucket[] buckets;
void put(/*@non_null@*/Object key, Object val) {

int hash = key.hashCode() % buckets.length;
...

}

results in Possible division by zero.
Solution:

Add invariant buckets.length > 0.

Run ESC/Java again to check that this invariant holds.

It probably warns about a Possible negative array index.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 10 / 19



Exceptions in Library Functions

class Bag {
/*@ non_null @*/ Object[] elems;

void sort() {
java.util.Arrays.sort(elems);

}
}

results in Possible unexpected exception.

Look in escjava/specs/java/util/Arrays.refines-spec!

Array.sort() has pre-condition:
elems[i] instanceof Comparable for all i.

Solution: Add similar condition as class invariant.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 11 / 19



Assume and Assert

The basic specifications in ESC/Java are assume and assert.

/*@ assume this.next != null; @*/
this.next.prev = this;
/*@ assert this.next.prev == this; @*/

ESCJava proves that if the assumption holds in the pre-state, the
assertion holds in the post-state.

This is a Hoare triple.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 12 / 19



Requires and Ensures

The method specification is just translated into assume and assert:
/*@ requires n > 0;
@ ensures \result == (int) Math.sqrt(n);
@*/

int m() {
...
return x;

}

is treated as:
/*@ assume n > 0; @*/
...
/*@ assert x == (int) Math.sqrt(n); @*/

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 13 / 19



Calling Methods

And if m() is called the assumption and assertion is the other way round:
...
y = m(x);
...

is treated as
...
/*@ assert x > 0; @*/
y = m(x);
/*@ assume y == (int) Math.sqrt(x); @*/
...

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 14 / 19



Checking for Exceptions

To check for run-time exceptions ESC/Java automatically inserts asserts:
a[x] = "Hello";

is treated as:
/*@ assert a != null && x >= 0 && x < a.length
@ && \typeof("Hello") <: \elemtype(\typeof(a));
@*/

a[x] = "Hello";

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 15 / 19



Assume is Considered Harmful

Never assume something wrong. This enables ESC/Java to prove
everything:

Object o = null;
/*@ assume o != null; @*/
Object[] a = new String[-5];
a[-3] = new Integer(2);

> escjava2 -q AssumeFalseTest.java

0 warnings

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 16 / 19



ESC/Java is Not Complete

ESC/Java can only do limited reasoning:
/*@ requires i == 5 && j== 3;
@ ensures \result == 15;
@*/

int m(int i, int j) {
return i*j;

}

Test.java:19: Warning: Postcondition possibly not established (Post)

}

^

Associated declaration is "Test.java", line 14, col 8:

@ ensures \result == 15;

A good assumption can help, e.g.
int m(int i, int j) {
/*@ assume 15 == 5 * 3; @*/
return i*j;

}

But this may introduce unsoundness if not used carefully.
Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 17 / 19



Loops in ESC/Java

int a[] = new int[6];
for (int i = 0; i <= 6; i++) {

a[i] = i;
}

> escjava2 -q Test.java

0 warnings

> escjava2 -Loop 7 -q Test.java

Test.java:15: Warning: Array index possibly too large (IndexTooBig)

a[i] = i;

^

1 warning

> escjava2 -LoopSafe -q Test.java

Test.java:15: Warning: Array index possibly too large (IndexTooBig)

a[i] = i;

^

1 warning

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 18 / 19



ESC/Java Demo

Demo

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 16, 2011 19 / 19


