
Formal Methods for Java
Lecture 10: Ownership and Friendship

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

November 25, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 1 / 13



A Ghost Variable for Invariants

Idea of David A. Naumann and Mike Barnett:

Make the places where an invariant does not hold explicit.

Add a ghost variable packed that indicates if the invariant should hold.

Before modifying an object set this variable to false.

When modification is finished, set it to true.

The following invariant should always hold:
packed ==> invariants of object

The caller has to ensure that the objects he uses are packed.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 2 / 13



A Ghost Variable for Invariants

Idea of David A. Naumann and Mike Barnett:

Make the places where an invariant does not hold explicit.

Add a ghost variable packed that indicates if the invariant should hold.

Before modifying an object set this variable to false.

When modification is finished, set it to true.

The following invariant should always hold:
packed ==> invariants of object

The caller has to ensure that the objects he uses are packed.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 2 / 13



A Ghost Variable for Invariants

Idea of David A. Naumann and Mike Barnett:

Make the places where an invariant does not hold explicit.

Add a ghost variable packed that indicates if the invariant should hold.

Before modifying an object set this variable to false.

When modification is finished, set it to true.

The following invariant should always hold:
packed ==> invariants of object

The caller has to ensure that the objects he uses are packed.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 2 / 13



A Ghost Variable for Invariants

Idea of David A. Naumann and Mike Barnett:

Make the places where an invariant does not hold explicit.

Add a ghost variable packed that indicates if the invariant should hold.

Before modifying an object set this variable to false.

When modification is finished, set it to true.

The following invariant should always hold:
packed ==> invariants of object

The caller has to ensure that the objects he uses are packed.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 2 / 13



The pack/unpack Mechanism

object

packed == true

Invariant holds

object

packed == false

Invariant may be broken

object

packed == true

Invariant holds

unpack pack

object.f = val object.f = val object.f = val

An object must be unpacked before fields may be accessed.

The invariant has to hold only while object is packed.

The invariant may only depend on fields of the object.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 3 / 13



Adding Ownership

The invariant may also depends on fields of other classes.

The class must own a class to depend on its fields.

A class can only be unpacked and changed if the owner is unpacked.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 4 / 13



Ownership and pack/unpack

owner

left

right

owner

left

right

owner

left

right

owner.packed == true

left.packed == true

owner.packed == false

left.packed == true

owner.packed == false

left.packed == false

unpack owner

pack owner

unpack left

pack left

owner.f = val
left.f = val

owner.f = val
left.f = val

The owner must be unpacked before an owned object can be
unpacked.

The invariant of owner may depend on owned objects.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 5 / 13



Ownership vs. Friendship

The ownership discipline has a few restrictions.

An object invariant can only depend on fields of owned objects.

An object can have at most one owner.

A field may only be changed by the owner, or if the owner is
unpacked.

Sometimes too restrictive!

Friendship offers another way to depend on other objects:

An invariant of a friend can depend on fields of granters.

The friend class must define update guards for the fields it depends
on.

The granter class has a list of friends that depend on fields.

A field may be changed if the update guards of all friends holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 6 / 13



Ownership vs. Friendship

The ownership discipline has a few restrictions.

An object invariant can only depend on fields of owned objects.

An object can have at most one owner.

A field may only be changed by the owner, or if the owner is
unpacked.

Sometimes too restrictive!

Friendship offers another way to depend on other objects:

An invariant of a friend can depend on fields of granters.

The friend class must define update guards for the fields it depends
on.

The granter class has a list of friends that depend on fields.

A field may be changed if the update guards of all friends holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 6 / 13



Ownership vs. Friendship

The ownership discipline has a few restrictions.

An object invariant can only depend on fields of owned objects.

An object can have at most one owner.

A field may only be changed by the owner, or if the owner is
unpacked.

Sometimes too restrictive!

Friendship offers another way to depend on other objects:

An invariant of a friend can depend on fields of granters.

The friend class must define update guards for the fields it depends
on.

The granter class has a list of friends that depend on fields.

A field may be changed if the update guards of all friends holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 6 / 13



Ownership vs. Friendship

The ownership discipline has a few restrictions.

An object invariant can only depend on fields of owned objects.

An object can have at most one owner.

A field may only be changed by the owner, or if the owner is
unpacked.

Sometimes too restrictive!

Friendship offers another way to depend on other objects:

An invariant of a friend can depend on fields of granters.

The friend class must define update guards for the fields it depends
on.

The granter class has a list of friends that depend on fields.

A field may be changed if the update guards of all friends holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 6 / 13



Ownership vs. Friendship

The ownership discipline has a few restrictions.

An object invariant can only depend on fields of owned objects.

An object can have at most one owner.

A field may only be changed by the owner, or if the owner is
unpacked.

Sometimes too restrictive!

Friendship offers another way to depend on other objects:

An invariant of a friend can depend on fields of granters.

The friend class must define update guards for the fields it depends
on.

The granter class has a list of friends that depend on fields.

A field may be changed if the update guards of all friends holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 6 / 13



Ownership vs. Friendship

The ownership discipline has a few restrictions.

An object invariant can only depend on fields of owned objects.

An object can have at most one owner.

A field may only be changed by the owner, or if the owner is
unpacked.

Sometimes too restrictive!

Friendship offers another way to depend on other objects:

An invariant of a friend can depend on fields of granters.

The friend class must define update guards for the fields it depends
on.

The granter class has a list of friends that depend on fields.

A field may be changed if the update guards of all friends holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 6 / 13



Ownership vs. Friendship

The ownership discipline has a few restrictions.

An object invariant can only depend on fields of owned objects.

An object can have at most one owner.

A field may only be changed by the owner, or if the owner is
unpacked.

Sometimes too restrictive!

Friendship offers another way to depend on other objects:

An invariant of a friend can depend on fields of granters.

The friend class must define update guards for the fields it depends
on.

The granter class has a list of friends that depend on fields.

A field may be changed if the update guards of all friends holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 6 / 13



Ownership vs. Friendship

The ownership discipline has a few restrictions.

An object invariant can only depend on fields of owned objects.

An object can have at most one owner.

A field may only be changed by the owner, or if the owner is
unpacked.

Sometimes too restrictive!

Friendship offers another way to depend on other objects:

An invariant of a friend can depend on fields of granters.

The friend class must define update guards for the fields it depends
on.

The granter class has a list of friends that depend on fields.

A field may be changed if the update guards of all friends holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 6 / 13



Ownership vs. Friendship

The ownership discipline has a few restrictions.

An object invariant can only depend on fields of owned objects.

An object can have at most one owner.

A field may only be changed by the owner, or if the owner is
unpacked.

Sometimes too restrictive!

Friendship offers another way to depend on other objects:

An invariant of a friend can depend on fields of granters.

The friend class must define update guards for the fields it depends
on.

The granter class has a list of friends that depend on fields.

A field may be changed if the update guards of all friends holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 6 / 13



Friendship

Friendship is not symmetric. The allies are:

Granter G that gives rights to depend on a field.
class G {

int f;
friend C reads f

}

Friend C whose invariant depends on a field.
class C {
invariant packed ==> ... g.deps.has(this) && g.f == ...
guard g.f := val by ...

}

Every class that changes a field of G has to check the friend’s guard.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 7 / 13



Update Guard and Invariant

class FriendClass {
//@ invariant packed ==> friendInvariant(granter.field)
//@ guard granter.field := val by updateGuardForField(granter, val);

}

The update guard must guarantee that the invariant is not invalidated:
friends.packed && friendInvariant(granter.field)
&& updateGuardForField(granter, val) ==> friendInvariant(val)

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 8 / 13



Field update on Friends

granterfriend1 friend2
deps deps

granter.f = val

guard guard

Friend’s invariant can depend on granted fields.

Access to granted fields is checked against update guards.

A granter can have many friends.

All current friends must be checked.

The friend objects can be packed or unpacked.

Guard is not checked for unpacked friends.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 9 / 13



Field update on Friends

granterfriend1 friend2
deps deps

granter.f = val

guard

Friend’s invariant can depend on granted fields.

Access to granted fields is checked against update guards.

A granter can have many friends.

All current friends must be checked.

The friend objects can be packed or unpacked.

Guard is not checked for unpacked friends.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 9 / 13



Friendship Example

static class Node {
Node next, prev;
Object value;
//friend Node reads next,prev,deps

//guard next.next = val by next != prev;
//guard prev.prev = val by prev != next;

/*@invariant packed ==>
(next != null && prev != null &&
deps.equals(new JMLObjectSet().insert(next).insert(prev)) &&
next.deps.has(this) && next.prev == this &&
prev.deps.has(this) && prev.next == this);

*/
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 10 / 13



Friendship Example (continued)

static class Node {
//@requires n.prev == n.next == n;
public void add(/*@non_null*/ Node n) {
//@unpack n
//@unpack this
//@unpack this.prev
n.prev = this.prev;
n.next = this;
this.prev.next = n;
this.prev = n;
//@set n.deps = new JMLObjectSet().insert(this).insert(this.prev);
//@set this.deps = this.deps.remove(prev).add(n);
//@set prev.deps = prev.deps.remove(this).add(n);
//@pack this.prev
//@pack this
//@pack n

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 11 / 13



What May Appear in an Invariant

Only the following field accesses are allowed in an invariant:

A field of the current class:
this.field for all fields.

A field of a (transitively) owned class:
x.field if x.owner...owner == this can be proven.

A field of a granter class:
x.field if x.deps.has(this) can be proven.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 12 / 13



What May Appear in an Invariant

Only the following field accesses are allowed in an invariant:

A field of the current class:
this.field for all fields.

A field of a (transitively) owned class:
x.field if x.owner...owner == this can be proven.

A field of a granter class:
x.field if x.deps.has(this) can be proven.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 12 / 13



What May Appear in an Invariant

Only the following field accesses are allowed in an invariant:

A field of the current class:
this.field for all fields.

A field of a (transitively) owned class:
x.field if x.owner...owner == this can be proven.

A field of a granter class:
x.field if x.deps.has(this) can be proven.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 12 / 13



Why Is This Sound?

We need to show the following invariant holds for each instance this at
every time:

this.packed ==> this.invariant

A field access obj.f=val can change the truth of invariant if:

obj == this is the current class:
Then this is unpacked, formula holds trivially.

obj.owner...owner == this (a field of an owned class):
Then obj is unpacked, hence this must also be unpacked. The
formula holds trivially.

obj.deps.has(this) (a field of a granter class):
Then the update guard this.guard(f , val) is true. If this.packed is
true, the invariant held before. Hence it must hold afterwards.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 13 / 13



Why Is This Sound?

We need to show the following invariant holds for each instance this at
every time:

this.packed ==> this.invariant

A field access obj.f=val can change the truth of invariant if:

obj == this is the current class:
Then this is unpacked, formula holds trivially.

obj.owner...owner == this (a field of an owned class):
Then obj is unpacked, hence this must also be unpacked. The
formula holds trivially.

obj.deps.has(this) (a field of a granter class):
Then the update guard this.guard(f , val) is true. If this.packed is
true, the invariant held before. Hence it must hold afterwards.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 13 / 13



Why Is This Sound?

We need to show the following invariant holds for each instance this at
every time:

this.packed ==> this.invariant

A field access obj.f=val can change the truth of invariant if:

obj == this is the current class:
Then this is unpacked, formula holds trivially.

obj.owner...owner == this (a field of an owned class):
Then obj is unpacked, hence this must also be unpacked. The
formula holds trivially.

obj.deps.has(this) (a field of a granter class):
Then the update guard this.guard(f , val) is true. If this.packed is
true, the invariant held before. Hence it must hold afterwards.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 25, 2011 13 / 13


