Formal Methods for Java

Lecture 12: Dynamic Logic

Jochen Hoenicke

December 2, 2011

- Theorem Prover
- Developed at University of Karlsruhe
- http://www.key-project.org/.
- Theory specialized for Java(Card).
- Can generate proof-obligations from JML specification.
- Underlying theory: Sequent Calculus + Dynamic Logic

Dynamic Logic

Dynamic logic extends predicate logic by

- $[\alpha]\phi$
- $\langle \alpha \rangle \phi$

where α is a program and ϕ a sub-formula.

The meaning is as follows:

- $[\alpha]\phi$: after all terminating runs of program α formula ϕ holds.
- $\langle \alpha \rangle \phi$: after some terminating run of program α formula ϕ holds.

Comparison with Hoare Logic

The sequent $\phi \Longrightarrow [\alpha] \psi$ corresponds to partial correctness of the Hoare formula:

$$\{\phi\}\alpha\{\psi\}$$

If α is deterministic, $\phi \Longrightarrow \langle \alpha \rangle \psi$ corresponds to total correctness.

Examples

- $[\{\}]\phi \equiv \phi$
- $\langle \{\} \rangle \phi \equiv \phi$
- [while(true) $\{\}$] $\phi \equiv \text{true}$
- $\langle \text{while(true)} \{ \} \rangle \phi \equiv \text{false}$
- $[x = x + 1;]x \ge 4 \equiv x + 1 \ge 4$
- $[x = t;]\phi \equiv \phi[t/x]$
- $[\alpha_1 \alpha_2] \phi \equiv [\alpha_1] [\alpha_2] \phi$

How can we use equivalences in Sequent Calculus?

Add the rule
$$\frac{\Gamma[\psi/\phi] \Longrightarrow \Delta[\psi/\phi]}{\Gamma \Longrightarrow \Delta}$$
, where $\phi \equiv \psi$.

This is similar to applyEq.

Dynamic Logic is Modal Logic

- $\langle \alpha \rangle \phi \equiv \neg [\alpha] \neg \phi$
- $[\alpha]\phi \equiv \neg \langle \alpha \rangle \neg \phi$

Furthermore:

- if ϕ is a tautology, so is $[\alpha]\phi$
- $[\alpha](\phi \to \psi) \to ([\alpha]\phi \to [\alpha]\psi)$

Remark: For deterministic programs also the reverse holds

$$([\alpha]\phi \to [\alpha]\psi) \to [\alpha](\phi \to \psi)$$

Termination and Deterministic Programs

How can we express that program $\boldsymbol{\alpha}$ must terminate?

$$\langle \alpha \rangle$$
true

This can be used to relate $[\alpha]$ and $\langle \alpha \rangle$:

$$\langle\alpha\rangle\phi\equiv[\alpha]\phi\wedge\langle\alpha\rangle{\rm true}$$

Rigid vs. Non-Rigid Functions vs. Variables

KeY distinguishes the following symbols:

- Rigid Functions: These are functions that do not depend on the current state of the program.
 - +, -, *: integer \times integers \rightarrow integer (mathematical operations)
 - 0,1,...: integer, TRUE, FALSE: boolean (mathematical constants)
- Non-Rigid Functions: These are functions that depend on current state.
 - $\cdot [\cdot] : \top \times int \rightarrow \top$ (array access)
 - .next : $\top \to \top$ if next is a field of a class.
 - i, j : T if i, j are program variables.
- Variables: These are logical variables that can be quantified.
 Variables may not appear in programs.
 - x, y, z

Example

$$\forall x. i = x \rightarrow \langle \{ \textit{while}(i > 0) \{ i = i - 1; \} \} \rangle i = 0$$

- 0,1,— are rigid functions.
- > is a rigid relation.
- i is a non-rigid function.
- x is a logical variable.

Quantification over i is not allowed and x must not appear in a program.