Formal Methods for Java
Lecture 12: Dynamic Logic

Jochen Hoenicke

g Software Engineering

-=Z- Albert-Ludwigs-University Freiburg

]
i

December 2, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 2, 2011

1/9



The KEY—Project

Theorem Prover

Developed at University of Karlsruhe

http://www.key-project.org/.

Theory specialized for Java(Card).

Can generate proof-obligations from JML specification.

Underlying theory: Sequent Calculus + Dynamic Logic

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 2, 2011

2/9


http://www.key-project.org/

Dynamic Logic

Dynamic logic extends predicate logic by
° [a]p
° ()¢

where « is a program and ¢ a sub-formula.

The meaning is as follows:
o [a]¢: after all terminating runs of program « formula ¢ holds.

o (a)¢: after some terminating run of program « formula ¢ holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 2, 2011

3/9



Comparison with Hoare Logic

The sequent ¢ = [«]y) corresponds to partial correctness of the Hoare
formula:

{pre{y}

If « is deterministic, ¢ = (a1 corresponds to total correctness.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 2, 2011 4/9



Examples

o [{}lo = o
o ({No=0

o [while(true){}]¢ = true

o (while(true){})¢ = false

o [x=x+1]x>4=x+1>4
o [x=t]¢ = o[t/x]

o [a102]¢ = [ou][e]

How can we use equivalences in Sequent Calculus?
My/¢l = Aly/d]
r— A

This is similar to applyEq.

Add the rule

, Where ¢ = 1.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 2, 2011

5/9



Dynamic Logic is Modal Logic

° (a)¢ = —[a]-¢
° [a]¢ = —(a)-¢

Furthermore:
e if ¢ is a tautology, so is [a]¢®

o [o(¢ — ) = ([a]d — [a]y)
Remark: For deterministic programs also the reverse holds

([a]¢ = [a]) = [al(¢ — )

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 2, 2011

6/9



Termination and Deterministic Programs

How can we express that program « must terminate?

(ar)true

This can be used to relate [a] and (a):

(a)p = [a]p A (a)true

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 2, 2011

7/9



Rigid vs.Non-Rigid Functions vs. Variables

KeY distinguishes the following symbols:
@ Rigid Functions: These are functions that do not depend on the
current state of the program.

e +,—, % : integer x integers — integer (mathematical operations)
e 0,1,...: integer, TRUE, FALSE : boolean (mathematical constants)

@ Non-Rigid Functions: These are functions that depend on current
state.

o :[]: T xint — T (array access)
e .next: T — T if next is a field of a class.
e i,j: T if i,j are program variables.
@ Variables: These are logical variables that can be quantified.
Variables may not appear in programs.
o X,y,z

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 2, 2011 8/9



Example

Vx.i=x— ({while(i >0){i=1-1;}})i=0

e 0,1,— are rigid functions.
@ > is a rigid relation.
@ i is a non-rigid function.

@ x is a logical variable.

Quantification over i is not allowed and x must not appear in a program.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 2, 2011 9/9



