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The KEY—Project

Theorem Prover

Developed at University of Karlsruhe

http://www.key-project.org/.

Theory specialized for Java(Card).

Can generate proof-obligations from JML specification.

Underlying theory: Sequent Calculus + Dynamic Logic
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http://www.key-project.org/

Rigid vs.Non-Rigid Functions vs. Variables

KeY distinguishes the following symbols:
@ Rigid Functions: These are functions that do not depend on the
current state of the program.

e +,—, % : integer x integers — integer (mathematical operations)
e 0,1,...: integer, TRUE, FALSE : boolean (mathematical constants)

@ Non-Rigid Functions: These are functions that depend on current
state.

o :[]: T xint — T (array access)
e .next: T — T if next is a field of a class.
e i,j: T if i,j are program variables.
@ Variables: These are logical variables that can be quantified.
Variables may not appear in programs.
o X,y,z
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Example

Vx.i=x— ({while(i >0){i=1-1;}})i=0

e 0,1,— are rigid functions.
@ > is a rigid relation.
@ i is a non-rigid function.

@ x is a logical variable.

Quantification over i is not allowed and x must not appear in a program.
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Builtin Rigid Functions

+,—,%,/,%,jdiv,jmod: operations on integer.
...,—1,0,1,..., TRUE FALSE, null: constants.
(A) for any type A: cast function.

A .. get gives the n-th object of type A.
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Updates in KeY

The formula (i = t; a)¢ is rewritten to

Formula {i := t}¢ is true, iff

¢ holds in a state, where the program variable i has the value denoted by
the term t.

Here:

@ i is a program variable (non-rigid function).
@ tis a term (may contain logical variables).

@ ¢ a formula
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Simplifying Updates

If ¢ contains no modalities, then {x := t}¢ is rewritten to ¢[t/x].

A double update {x; := t1,x := tr}{x1 := t], x3 1= t3}¢ is automatically
rewritten to

{Xl = ti[tl/Xl, t2/X2],X2 =t,X3 = té[tl/Xl, t2/X2]}(Z)
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Example: ({i=j;j=1+1})i=j

{i=3j=1i+1hi=3
={i1= 35 = ithi=
E{i =13,] ::j+1}i:j
=j=j+1
=false

or alternatively

{i=3j=1i+1hi=3j
={i=jH{j=1i+1}i=
={i=jli=1i+1
=j=j+1
=false
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Rules for Java Dynamic Logic

o ({i=j;..})¢ is rewritten to:
{i=31{. e
o ({i=j+k;..})o is rewritten to:
[i =+ KL Do,
o ({i=j++;..})¢ is rewritten to:
({int j0,j0=3,j=3+1,1=3j-0;..})¢.
o ({int k;...})¢ is rewritten to:
({...})¢ and k is added as new program variable.
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Proving Programs with Loops

Given a simple loop:

({while(n > 0)n--; })n =10

How can we prove that the loop terminates for alln > 0 and thatn =0
holds in the final state?
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Method (1): Induction

To prove a property ¢(x) for all x > 0 we can use induction:
@ Show ¢(0).
@ Show ¢(x) = ¢(x + 1) for all x > 0.

This proves that Vx (x > 0 — ¢(x)) holds.
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The rule int_induction

The KeY-System has the rule int_induction

= A,¢(0) T = AVX(X>0AdX)— d(X+1))
MVYX(X>0—¢(X) = A
r— A

The three goals are:
o Base Case: = ¢(0)
o Step Case: = VX(X > 0A ¢(X) = ¢(X +1))
@ Use Case: VX(X >0 — ¢(X)) =
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Method(2): Loop Invariants with Variants

Induction proofs are very difficult to perform for a loop
({while(COND) BODY;...})¢

The KeY-system supports special rules for while loops using invariants and
variants.
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The rule while_invariant_with _variant_dec

The rule while_invariant_with_variant_dec takes an invariant inv, a modifies
set {my,...,mx} and a variant v. The following cases must be proven.
o Initially Valid: = inv Av >0
@ Body Preserves Invariant:
= {my :=x1|| ... ||mk := xx}(inv A [{b = COND; }]b = true
— (BODY)inv

o Use Case:
= {m1 :=x1||...||mk := xx}(inv A [{b = COND; }|b = false
= (...)¢

@ Termination:
= {m1 :=x1||...||mk := xk}(inv Av > 0A [{b= COND; }|b = true
— {old :== v}(BODY)v < old ANv>0
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Case Study: Euklid's Algorithm

Java code to compute gcd of non-negative numbers:

public static int ged(int a, int b) {
while (a !'= 0 && b != 0) {

if (a > b)
a=a- b;
else
b=0b- a;

}

return (a > b) ? a : b;

}
Lets prove it with KeY-System.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011

15/ 18



Specification

We first need a specification.

Definition (GCD)

Let a and b be natural numbers. A number d is the greatest common
divisor (GCD) of a and b iff

Q dlaand d|b
@ If c|a and c|b, then c|d.

d|a means d divides a.
dla:=3dgq.d*q=a
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JML Specification

The specifation can be converted to JML:
/*@
@ requires a >= 0 &9 b >= 0;
@ ensures \result >= 0;
@ ensures (\exists int gq; \result*q == a) &
(\exists int g¢; \result*q == b) &
(\forall int c;
(\exists int q; c*q == a) &% (\exists int g¢; c*q == b);
(\exists int g; c*q == \result));

[SESESHESES)

*/
public static int ged(int a, int b)

So lets start proving ...
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Loop-Invariant

What is the loop invariant?

The algorithm changes a and b, but the gcd of a and b should stay the
same.

In fact the set of common divisors of a and b never changes.
This suggests the following invariant:

Vd.(d| \old(a) A d|\old(b) ¢+ d|a A d|b)

In JML this can be specified as:
/*@ loop_invariant a >= 0 &£ b >= 0 &
@ (\forall int d; true;
@ (\exists int g¢; \old(a) == g*d)
@ &4 (\exists int gq; \old(b) == g*d)
0@ <==>(\exists int q; a == g*d) &9 (\exists int q; b == g*d)
o );
@ assignable a, b;
@ decreases a+b;
©*/

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 18 / 18



