
Formal Methods for Java
Lecture 16: Abnormal Termination in Key

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

December 16, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 16, 2011 1 / 6

Abnormal Termination in Java

Abnormal termination in Java is caused by

a break statement,

a continue statement,

a return statement,

a throw statement, or

a statement that throws a exception.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 16, 2011 2 / 6

Abnormal Termination in Dynamic Logic

The formula 〈α〉φ holds,

iff α terminates normally and φ holds afterwards.

The formula [α]φ holds,

if α terminates normally and φ holds afterwards.

if α terminates abnormally.

if α does not terminate at all.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 16, 2011 3 / 6

Reasoning about exceptions.

How can we express that statement α throws an exception?

〈{α}〉φ is equivalent to false if α throws an exception or does not
terminate

[{α}]φ is equivalent to true if α throws an exception or does not
terminate

The trick is to put an exception handler into the code:

〈{Throwable thrown = null ;

try {α; }
catch (Throwable ex){thrown = ex ; }}〉thrown 6= null

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 16, 2011 4 / 6

Reasoning with try-catch blocks

Many DL-rules in KeY just skip opening of try blocks,e.g.
\find(\<{ .. #loc = #se ... }\> post)
\replacewith({ #loc := #se } \< { } \> post)

Here .. stands for an arbitrary number of opening try-blocks, labelled
blocks and normal blocks.

Example:

〈{try {label : {try {x = 5 . . .}}}〉φ

is replaced with

{x := 5}〈{try {label : {try {. . .}}}〉φ

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 16, 2011 5 / 6

Reasoning with try-catch blocks (2)

When an exception is thrown, the surrounding try blocks become
important:
\find(\<{ .. try { throw #se; #slist1 }

catch (#t #v0) { #slist2 } ... }\> post)

1 throwing a handled exception: #se instanceof #t
\replacewith(\<{ .. #t #v0 = #se; #slist2 ... }\> post)

2 throwing an unhandled exception: ! (#se instanceof #t)
\replacewith(\<{ .. throw #se; ... }\> post)

3 throwing a null pointer: #se = null
\replacewith(\< { .. try { throw new NullPointerExc(); #slist1

catch (#t #v0) { #slist2 } ... }\> post)

The KeY system defines a single rule:
\replacewith(\< { .. if (#se = null) then

try { throw new NullPointerExc(); #slist1
catch (#t #v0) { #slist2 }

else if (#se instanceof #t) then
#t v0 = #se; #slist2

else throw #se;
... }\> post)

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 16, 2011 6 / 6

