
Formal Methods for Java
Lecture 17: Advanced Key

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

December 21, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 1 / 10

Abnormal Termination in Java

Abnormal termination in Java is caused by

a break statement,

a continue statement,

a return statement,

a throw statement, or

a statement that throws a exception.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 2 / 10

Reasoning about exceptions

How can we express that statement α throws an exception?

The trick is to put an exception handler into the code:

〈{Throwable thrown = null ;

try {α; }
catch (Throwable ex){thrown = ex ; }}〉thrown 6= null

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 3 / 10

Reasoning with try-catch blocks

When an exception is thrown, the surrounding try blocks become
important:
\find(\<{ .. try { throw #se; #slist1 }

catch (#t #v0) { #slist2 } ... }\> post)

1 throwing a handled exception: #se instanceof #t
\replacewith(\<{ .. #t #v0 = #se; #slist2 ... }\> post)

2 throwing an unhandled exception: ! (#se instanceof #t)
\replacewith(\<{ .. throw #se; ... }\> post)

3 throwing a null pointer: #se = null
\replacewith(\< { .. try { throw new NullPointerExc(); #slist1

catch (#t #v0) { #slist2 } ... }\> post)

The KeY system defines a single rule:
\replacewith(\< { .. if (#se = null) then

try { throw new NullPointerExc(); #slist1
catch (#t #v0) { #slist2 }

else if (#se instanceof #t) then
#t v0 = #se; #slist2

else throw #se;
... }\> post)

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 4 / 10

Throw without try-catch blocks

If the surrounding block is not a try block, the block is just removed:
\find(\<{ .. #label: { throw #se; #slist1 } ... }\> post)
\replacewith(\<{ .. throw #se; ... }\> post)

If there is no surrounding block it depends on modality:

1 total correctness:
\find(\<{ throw #se }\> post)
\replacewith(false)

2 partial correctness:
\find(\[{ throw #se }\] post)
\replacewith(true)

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 5 / 10

Runtime exceptions

Instructions that throw exceptions are converted to a throw instruction:
\find(\<{ .. #v[#se]=#se0 ... }\> post)

Normal Execution #v != null
\add(!#v = null &

#se < #v.length & #se >= 0 &
arrayStoreValid(#v, #se0) ==>)

\replacewith(\{#v[#se] := #se0\}\<{}\> post)

Null Reference #v == null
\add(#v = null ==>)
\replacewith(\<{ .. throw new NullPointerException(); ...}\> post)

Index Out Of Bounds:
\add(!#v = null &

#se >= #v.length | #se < 0 ==>)
\replacewith(\<{ .. throw new ArrIdxOOBException(); ...}\> post)

Array Store Exception:
\add(!#v = null &

#se < #v.length & #se >= 0 &
!arrayStoreValid(#v, #se0) ==>)

\replacewith(\<{ .. throw new ArrayStoreException(); ...}\> post)

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 6 / 10

Abnormal termination by break

The handling of break statements is very similar to try-catch:

If the surrounding block has that label, the break is executed:
\find(\<{ .. #label: { break #label; #slist1 } ... }\> post)
\replacewith(\<{ }\> post)

If the surrounding block has not the right label the block is removed.
\find(\<{ .. #label2: { break #label; #slist1 } ... }\> post)
\replacewith(\<{ .. break #label; ... }\> post)

The same for try-catch blocks:
\find(\<{ .. try { break #label; #slist1 }

catch (#t #v) { #slist2 } ... }\> post)
\replacewith(\<{ .. break #label; ... }\> post)

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 7 / 10

Loops with break/continue

break/continue statements are translated to labelled break.

rule loop unwind:

\find(\<{ .. while (#expr) {.... continue; break;} ... }\> post)
\replacewith(\<{ .. if (#expr) {

#lab1: {
#lab2: {

....
continue #lab2;
....
break #lab1;
....

}
while (#expr) {.... continue; break;}

} ... } \> post)

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 8 / 10

KeY and Procedures

In KeY, the default rule is to inline the procedures.
Advantages:

No function contract needed.

No separate proof for correctness of function needed.

But it has several disadvantages:

Proof gets larger (especially important if proof is interactive).

Proof has to be repeated for every function call.

No recursive procedures possible.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 9 / 10

The rule Use Operation Contract

The rule “Use Operation Contract” allows compositional proofs.
It opens three subgoals:

Pre: Show that pre-condition holds (this includes class invariants).

Post: Show that with the post-condition, the remaining program is
correct.

Exceptional Post: Show that if called method throws an exception,
the remaining program is correct.

Note: Use Operation Contract cannot be used for the method you are just
proving.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 10 / 10

