Formal Methods for Java
Lecture 17: Advanced Key

Jochen Hoenicke

g Software Engineering

-=Z- Albert-Ludwigs-University Freiburg

]
i

December 21, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011

1/10

Abnormal Termination in Java

Abnormal termination in Java is caused by

@ a break statement,
@ a continue Statement,
@ a return Statement,
@ a throw statement, or

@ a statement that throws a exception.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 2 /10

Reasoning about exceptions

How can we express that statement « throws an exception?

@ The trick is to put an exception handler into the code:

{({Throwable thrown = null;

try {a;}
catch (Throwable ex){thrown = ex; }})thrown # null

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 3 /10

Reasoning with try-catch blocks

When an exception is thrown, the surrounding try blocks become
important:
\find(\<{ .. try { throw #se; #slistl }

catch (#t #v0) { #slist2 } ... }\> post)

© throwing a handled exception: #se instanceof #t
\replacewith(\<{ .. #t #v0 = #se; #slist2 ... }\> post)

© throwing an unhandled exception: ! (#se instanceof #t)
\replacewith(\<{ .. throw #se; ... }\> post)

© throwing a null pointer: #se = null
\replacewith(\< { .. try { throw new NullPointerEzc(); #slistl
catch (#t #v0) { #slist2 } ... }\> post)

The KeY system defines a single rule:
\replacewith(\< { .. if (#se = null) then
try { throw new NullPointerEzc(); #slistl
catch (#t #v0) { #slist2 }
else if (#se instanceof #t) then
#t v0 = #se; #slist2
else throw #se;
... }\> post)

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 4 /10

Throw without try-catch blocks

If the surrounding block is not a try block, the block is just removed:
\find(\<{ .. #label: { throw #se; #slistl } ... }\> post)
\replacewith(\<{ .. throw #se; ... }\> post)

If there is no surrounding block it depends on modality:

@ total correctness:
\find(\<{ throw #se }\> post)
\replacewith(false)

@ partial correctness:
\find(\[{ throw #se }\] post)

\replacewith(true)

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 5/ 10

Runtime exceptions

Instructions that throw exceptions are converted to a throw instruction:
\find(\<{ .. #v[#sel=#se0 ... }\> post)

@ Normal Execution #v != null
\add('#v = null &
#se < #v.length & #se >= 0 &
arrayStoreValid(#v, #se0) ==>)
\replacewith(\{#vl#se]l := #seO\}\<{}\> post)

@ Null Reference #v == nul1l
\add(#v = null ==>)
\replacewith(\<{ .. throw new NullPointerEzception(); ...}\> post)

@ Index Out Of Bounds:
\add('#v = null &
#se >= #v.length | #se < 0 ==>)
\replacewith(\<{ .. throw new ArrIdzO0BEzception(); ...}\> post)

@ Array Store Exception:
\add('#v = null &
#se < #v.length & #se >= 0 &
VarrayStoreValid(#v, #se0) ==>)
\replacewith(\<{ .. throw new ArrayStoreEzception(); ...}\> post)

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 6 /10

Abnormal termination by breax

The handling of break statements is very similar to try-catch:

o If the surrounding block has that label, the break is executed:

\find(\<{ .. #label: { break #label; #slistl } ... }\> post)
\replacewith(\<{ }\> post)

@ If the surrounding block has not the right label the block is removed.
\find(\<{ .. #label2: { break #label; #slistl } ... }\> post)
\replacewith(\<{ .. break #label; ... }\> post)

@ The same for try-catch blocks:
\find(\<{ .. try { break #label; #slistl }
catch (#t #v) { #sl<st2 } ... }\> post)
\replacewith(\<{ .. break #label; ... }\> post)

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 7 /10

LOOpS Wlth break/continue

break/continue statements are translated to labelled break.

rule loop_unwind:

\find(\<{ .. while (#ezpr) {.... continue; break;} ... }\> post
\replacewith(\<{ .. if (#ezpr) {
#labl: {
#lab2: {

continue #lab2;
break #labl;
¥

while (#expr) {.... continue; break;}

} ...} \> post)

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 8 /10

KeY and Procedures

In KeY, the default rule is to inline the procedures.
Advantages:

@ No function contract needed.
@ No separate proof for correctness of function needed.
But it has several disadvantages:
@ Proof gets larger (especially important if proof is interactive).
@ Proof has to be repeated for every function call.

@ No recursive procedures possible.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011

9/10

The rule Use Operation Contract

The rule “Use Operation Contract” allows compositional proofs.
It opens three subgoals:
@ Pre: Show that pre-condition holds (this includes class invariants).
@ Post: Show that with the post-condition, the remaining program is
correct.
@ Exceptional Post: Show that if called method throws an exception,
the remaining program is correct.
Note: Use Operation Contract cannot be used for the method you are just
proving.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 21, 2011 10 / 10

