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Abnormal Termination in Java

Abnormal termination in Java is caused by

a break statement,

a continue statement,

a return statement,

a throw statement, or

a statement that throws a exception.
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Reasoning about exceptions

How can we express that statement α throws an exception?

The trick is to put an exception handler into the code:

〈{Throwable thrown = null ;

try {α; }
catch (Throwable ex){thrown = ex ; }}〉thrown 6= null
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Reasoning with try-catch blocks

When an exception is thrown, the surrounding try blocks become
important:
\find( \<{ .. try { throw #se; #slist1 }

catch (#t #v0) { #slist2 } ... }\> post )

1 throwing a handled exception: #se instanceof #t
\replacewith( \<{ .. #t #v0 = #se; #slist2 ... }\> post )

2 throwing an unhandled exception: ! (#se instanceof #t)
\replacewith( \<{ .. throw #se; ... }\> post )

3 throwing a null pointer: #se = null
\replacewith( \< { .. try { throw new NullPointerExc(); #slist1

catch (#t #v0) { #slist2 } ... }\> post )

The KeY system defines a single rule:
\replacewith( \< { .. if (#se = null) then

try { throw new NullPointerExc(); #slist1
catch (#t #v0) { #slist2 }

else if (#se instanceof #t) then
#t v0 = #se; #slist2

else throw #se;
... }\> post )
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Throw without try-catch blocks

If the surrounding block is not a try block, the block is just removed:
\find( \<{ .. #label: { throw #se; #slist1 } ... }\> post )
\replacewith( \<{ .. throw #se; ... }\> post )

If there is no surrounding block it depends on modality:

1 total correctness:
\find( \<{ throw #se }\> post )
\replacewith( false )

2 partial correctness:
\find( \[{ throw #se }\] post )
\replacewith( true )
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Runtime exceptions

Instructions that throw exceptions are converted to a throw instruction:
\find( \<{ .. #v[#se]=#se0 ... }\> post )

Normal Execution #v != null
\add( !#v = null &

#se < #v.length & #se >= 0 &
arrayStoreValid(#v, #se0) ==>)

\replacewith( \{#v[#se] := #se0\}\<{ .. ...}\> post )

Null Reference #v == null
\add( #v = null ==> )
\replacewith( \<{ .. throw new NullPointerException(); ...}\> post )

Index Out Of Bounds:
\add( !#v = null &

#se >= #v.length | #se < 0 ==>)
\replacewith( \<{ .. throw new ArrIdxOOBException(); ...}\> post )

Array Store Exception:
\add( !#v = null &

#se < #v.length & #se >= 0 &
!arrayStoreValid(#v, #se0) ==>)

\replacewith( \<{ .. throw new ArrayStoreException(); ...}\> post )
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Abnormal termination by break

The handling of break statements is very similar to try-catch:

If the surrounding block has that label, the break is executed:
\find( \<{ .. #label: { break #label; #slist1 } ... }\> post )
\replacewith( \<{ .. ... }\> post )

If the surrounding block has not the right label the block is removed.
\find( \<{ .. #label2: { break #label; #slist1 } ... }\> post )
\replacewith( \<{ .. break #label; ... }\> post )

The same for try-catch blocks:
\find( \<{ .. try { break #label; #slist1 }

catch (#t #v) { #slist2 } ... }\> post )
\replacewith( \<{ .. break #label; ... }\> post )
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Loops with break/continue

break/continue statements are translated to labelled break.

rule loop unwind:

\find( \<{ .. while (#expr) {.... continue; .... break; ....} ... }\> post )
\replacewith( \<{ .. if (#expr) {

#lab1: {
#lab2: {

....
continue #lab2;
....
break #lab1;
....

}
while (#expr) {.... continue; .... break; ....}

} ... } \> post)
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KeY and Procedures

In KeY, the default rule is to inline the procedures.
Advantages:

No function contract needed.

No separate proof for correctness of function needed.

But it has several disadvantages:

Proof gets larger (especially important if proof is interactive).

Proof has to be repeated for every function call.

No recursive procedures possible.
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The rule Use Operation Contract

The rule “Use Operation Contract” allows compositional proofs.
It opens three subgoals:

Pre: Show that pre-condition holds (this includes class invariants).

Post: Show that with the post-condition, the remaining program is
correct.

Exceptional Post: Show that if called method throws an exception,
the remaining program is correct.

Note: Use Operation Contract cannot be used for the method you are just
proving.
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