Formal Methods for Java Lecture 19: Jahob

Jochen Hoenicke

Software Engineering Albert-Ludwigs-University Freiburg

Jan 11, 2012

- Topic of the next lectures: How does a Static Checker work?
- We will look into Jahob.

Focus of Jahob: verifying properties of data structures.

Developed at

- EPFL, Lausanne, Switzerland (Viktor Kuncak)
- MIT, Cambridge, USA (Martin Rinard)
- Freiburg, Germany (Thomas Wies)

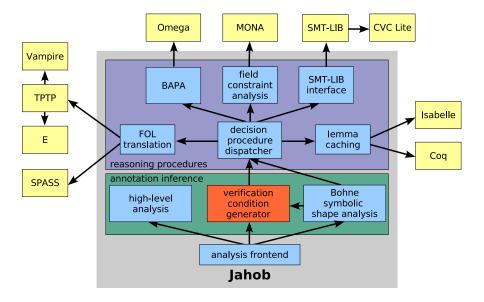
References

- Jahob webpage: http://lara.epfl.ch/w/jahob_system
- Viktor Kuncak's PhD thesis

$Comparison \ of \ ESC/Java \ and \ Jahob$

	ESC/Java	Jahob	
Goal	find bugs	prove correctness	
Spec. language	JML	based on Isabelle/HOL	
Java support	aims at full Java	subset of Java (no excep- tions, no concurrency, no generics, no dyn. dispatch,)	
Loop invariants	optional	provided by user or automat- ically derived	
Completeness	only linear arithmetic with free function symbols	general purpose theorem provers and decision proce- dures for specialized theories	

Jahob system architecture



Jahob's assertion language is a subset of the interactive theorem prover Isabelle/HOL which is built on the simply typed lambda calculus.

Why Isabelle/HOL and not e.g. JML?

- → natural syntax
- → unifying semantic foundation for all specification constructs
- → no artificial limitations regarding expressiveness
- → decision procedures can be used to automate reasoning
- → interactive theorem provers can be used for
 - debugging the system
 - proving the most difficult theorems interactively

Core syntax of HOL

		Terms and Formulas:	
f	::=	$\lambda x :: t. f$	lambda abstraction (λ is also written %)
		$f_1 f_2$	function application
	ĺ	X	variable or constant
	İ	f :: t	typed formula
		Types:	
t	::=	bool	truth values
		int	integers
		obj	uninterpreted objects
		$t_1 \Rightarrow t_2$	total functions
		t set	sets
		$t_1 * t_2$	pairs

Predefined constants in HOL

Core syntax is enriched with predefined constants:

- Boolean connectives: ~ F, F & G, F | G, F --> G, F <-> G
- (dis)equality: f = g, f ~= g
- sets and set operations: {f_1, ..., f_n}, {x. F}, f : S, S Un T, S Inter T, S - T
- quantification: ALL x. F, EX x. F
- reflexive transitive closure of predicates: rtrancl_pt P a b
- the null object: null

• . . .

Example formula:

Verification conditions

Goal: reduce correctness of a program to the validity of logical formulae.

Consider program fragment (verification condition):

assume(F); c; assert(G);

Idea for proving correctness:

- start from G and symbolically execute c backwards
- prove that F implies the resulting formula

Backwards execution is done by computing weakest preconditions.

Weakest precondition wp(c, G) is the weakest formula such that

$$\forall q_0, q_1. q_0 \models \mathsf{wp}(c, G) \land q_0 \stackrel{c}{\longrightarrow} q_1 \text{ implies } q_1 \models G$$

Internally, Jahob uses a simplified language to represent programs.

Weakest precondition semantics of guarded commands:

$$wp(x := e, G) \equiv \forall x'. x' = e \rightarrow G[x'/x] \qquad x' \text{ fresh}$$
$$wp(havoc(x), G) \equiv \forall x. G$$
$$wp(assert(F), G) \equiv F \wedge G$$
$$wp(assume(F), G) \equiv F \rightarrow G$$
$$wp(c_1; c_2, G) \equiv wp(c_1, wp(c_2, G))$$
$$wp(c_1 \Box c_2, G) \equiv wp(c_1, G) \wedge wp(c_2, G)$$

Generated formulas are linear in the size of the program.

Translating Java to Guarded Commands (1)

Jahob does not support Java statements with side effects such as

 $x = y^{++};$

Translating Java to Guarded Commands (2)

Conditions are translated to choice and assume:

if
$$(x > 0) \{ z = x \}$$
 else $\{ z = -x \}$

is translated to

$$(assume(x > 0); z := x) \Box(assume(\neg(x > 0)); z := -x)$$

Desugaring loops with invariants

```
while [inv I](F) c
```

Combine previous cases to one guarded command: assert(I); $havoc(x_1,...,x_n);$ assume(I); $(assume(\neg F) \square$ assume(F); c;assert(I);

```
assume(false))
```

Desugaring method calls

```
Call of a method p: z := p(v)
```

```
where p(u) has specification:
    requires pre(x, y, u)
    modifies x
    ensures post(old(x), x, y, u, result)
```

```
call is desugared to:

assert(pre(x, y, v));

x_0 := x;

havoc(x);

havoc("private representation");

havoc(z);

assume(post(x_0, x, y, v, z))
```

Notice: Before any reentrant call to an object of the same class the class invariants must be reestablished.

Jochen Hoenicke (Software Engineering)

Fields are total functions on objects:

Node.next :: $obj \Rightarrow obj$

we have by definition Node.next null = null.

Field access is just function application:

y = x.next becomes y := Node.next x

References and fields (2)

Fields are total functions on objects:

Node.next :: $obj \Rightarrow obj$

we have by definition Node.next null = null.

Field update is function update:

x.next = y becomes Node.next := Node.next[x := y]

where f[x := y](z) = f(z) for $z \neq x$ and f[x := y](x) = y.

Updates on fields can be eliminated:

$$wp(Node.next := Node.next[x := y], Node.next z = t)$$

$$\equiv Node.next[x := y] z = t$$

$$\equiv (z = x \land y = t) \lor (z \neq x \land Node.next z = t)$$

Introduce a new set valued variable *Object.alloc* :: obj set to denote all allocated objects

```
x = \text{new } T();
becomes:
havoc(x);
assume(x \notin Object.alloc);
assume(x \in T);
Object.alloc := Object.alloc \cup \{x\};
**Translation of call of constructor x. T()**
```

Demo