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Internals of a Static Checker

@ Topic of the next lectures:
How does a Static Checker work?

@ We will look into Jahob.
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The Jahob system

Focus of Jahob: verifying properties of data structures.

Developed at
e EPFL, Lausanne, Switzerland (Viktor Kuncak)
e MIT, Cambridge, USA (Martin Rinard)
o Freiburg, Germany (Thomas Wies)

References
@ Jahob webpage: http://lara.epfl.ch/w/jahob_system
o Viktor Kuncak's PhD thesis
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Comparison of ESC/Java and Jahob

Goal
Spec. language
Java support

Loop invariants

Completeness

find bugs
JML
aims at full Java

optional

only linear arithmetic
with  free function
symbols
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prove correctness

based on Isabelle/HOL
subset of Java (no excep-
tions, no concurrency, no
generics, no dyn. dispatch,
provided by user or automat-
ically derived

general purpose theorem
provers and decision proce-
dures for specialized theories
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Jahob system architecture
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Isabelle/HOL

Jahob's assertion language is a subset of the interactive theorem prover
Isabelle/HOL which is built on the simply typed lambda calculus.

Why Isabelle/HOL and not e.g. JML?

&

natural syntax
unifying semantic foundation for all specification constructs
no artificial limitations regarding expressiveness

decision procedures can be used to automate reasoning

L K N 2

interactive theorem provers can be used for

o debugging the system
e proving the most difficult theorems interactively
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Core syntax of HOL

Terms and Formulas:

f o= Mx:utf lambda abstraction (A is also written %)
| A h function application
| x variable or constant
| fot typed formula
Types:
t = bool truth values
| int integers
|  obj uninterpreted objects
| t=t total functions
|  tset sets
| tixt pairs
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Predefined constants in HOL

Core syntax is enriched with predefined constants:
@ Boolean connectives: ~ F, F & G, F | G, F -——> G, F <> G
o (dis)equality: f =g, £ "= g
@ sets and set operations:
{f_1, ..., fn}, {x. F}, £ : S, SUnT, SInter T, S-T

quantification: ALL x. F, EX x. F
reflexive transitive closure of predicates: rtrancl_pt P a b

the null object: null

Example formula:

rtrancl_pt = % (P :: obj => obj => bool) (a :: obj) (b :: obj).
ALL S. a:S& (ALLxy. x : S&Pxy-—>y:8) -—>
b: S
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Verification conditions

Goal: reduce correctness of a program to the validity of logical formulae.

Consider program fragment (verification condition):
assume(F); c; assert(G);

Idea for proving correctness:
@ start from G and symbolically execute ¢ backwards

@ prove that F implies the resulting formula

Backwards execution is done by computing weakest preconditions.

Weakest precondition wp(c, G) is the weakest formula such that

Yq0,q1-qo = wp(c, G) A go — q1 implies g1 = G
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Loop-free guarded commands

Internally, Jahob uses a simplified language to represent programs.

c = x:= formula (side-effect free assignment statement

| havoc(x) (non-deterministic assignment to x

| assume(formula) (assume statement

| assert(formula) (assert statement

| aso (sequential composition

| alc (non-deterministic choice
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Semantics of guarded commands

Weakest precondition semantics of guarded commands:

wp(x :=¢,G) =Vx. X = e — G[x'/x] x" fresh
wp(havoc(x), G) = Vx.
wp(assert(F),G) = F A G
wp(assume(F),G)=F — G
wp(cr; &2, G) = wp(c1, wp(c2, G))
wp(c1 B e, G) = wp(c, G) A wp(cp, G)

Generated formulas are linear in the size of the program.
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Translating Java to Guarded Commands (1)

Jahob does not support Java statements with side effects such as

T = yt+;

Instead one can transform this to side-effect free code beforehand:
T y;
y y+1;
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Translating Java to Guarded Commands (2)

Conditions are translated to choice and assume:
if (> 0) { z=2}else{ z=-z}

is translated to

(assume(x > 0); z := x) O(assume(—(x > 0)); z := —x)
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Desugaring loops with invariants

while [inv /] (F) ¢

Combine previous cases to one guarded command:
assert(1);
havoc(xy, ..., Xp);
assume(l);
(assume(—F) O
assume(F);
(o8
assert(1);
assume(false))
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Desugaring method calls
Call of a method p: z := p(v)

where p(u) has specification:
requires pre(x,y, u)
modlifies x
ensures post(old(x), x,y, u, result)

call is desugared to:
assert(pre(x,y,v));
X0 = X;
havoc(x);
havoc(" private  representation” );
havoc(z);
assume(post(xo, X, y, Vv, 2))

Notice: Before any reentrant call to an object of the same class the class
invariants must be reestablished.
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References and fields (1)

Fields are total functions on objects:

Node.next :: obj = obj
we have by definition Node.next null = null.
Field access is just function application:

y = z.nexst becomes y := Node.next x
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References and fields (2)
Fields are total functions on objects:
Node.next :: obj = obj

we have by definition Node.next null = null.
Field update is function update:

z.next =y becomes Node.next := Node.next[x := y]
where f[x := y|(z) = f(z) for z # x and f[x := y|(x) = y.
Updates on fields can be eliminated:

wp(Node.next := Node.next[x := y], Node.next z = t)
= Node.next[x :=ylz=t
=(z=xAy=t)V (z# x A\ Node.next z = t)
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Allocation of objects

Introduce a new set valued variable Object.alloc :: obj set to denote all
allocated objects

z = new T();

becomes:
havoc(x);
assume(x ¢ Object.alloc);
assume(x € T);
Object.alloc := Object.alloc U {x};
**Translation of call of constructor x. T()**
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Demo
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