
Formal Methods for Java
Lecture 19: Jahob

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Jan 11, 2012

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 1 / 19

Internals of a Static Checker

Topic of the next lectures:
How does a Static Checker work?

We will look into Jahob.

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 2 / 19

The Jahob system

Focus of Jahob: verifying properties of data structures.

Developed at

EPFL, Lausanne, Switzerland (Viktor Kuncak)

MIT, Cambridge, USA (Martin Rinard)

Freiburg, Germany (Thomas Wies)

References

Jahob webpage: http://lara.epfl.ch/w/jahob_system

Viktor Kuncak’s PhD thesis

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 3 / 19

http://lara.epfl.ch/w/jahob_system

Comparison of ESC/Java and Jahob

ESC/Java Jahob
Goal find bugs prove correctness
Spec. language JML based on Isabelle/HOL
Java support aims at full Java subset of Java (no excep-

tions, no concurrency, no
generics, no dyn. dispatch,
. . .)

Loop invariants optional provided by user or automat-
ically derived

Completeness only linear arithmetic
with free function
symbols

general purpose theorem
provers and decision proce-
dures for specialized theories

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 4 / 19

Jahob system architecture

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 5 / 19

Isabelle/HOL

Jahob’s assertion language is a subset of the interactive theorem prover
Isabelle/HOL which is built on the simply typed lambda calculus.

Why Isabelle/HOL and not e.g. JML?

Ü natural syntax

Ü unifying semantic foundation for all specification constructs

Ü no artificial limitations regarding expressiveness

Ü decision procedures can be used to automate reasoning

Ü interactive theorem provers can be used for

debugging the system
proving the most difficult theorems interactively

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 6 / 19

Core syntax of HOL

Terms and Formulas:
f ::= λx :: t. f lambda abstraction (λ is also written %)
| f1 f2 function application
| x variable or constant
| f :: t typed formula

Types:
t ::= bool truth values
| int integers
| obj uninterpreted objects
| t1 ⇒ t2 total functions
| t set sets
| t1 ∗ t2 pairs

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 7 / 19

Predefined constants in HOL

Core syntax is enriched with predefined constants:

Boolean connectives: ~ F, F & G, F | G, F --> G, F <-> G

(dis)equality: f = g, f ~= g

sets and set operations:
{f_1, ..., f_n}, {x. F}, f : S, S Un T, S Inter T, S - T

quantification: ALL x. F, EX x. F

reflexive transitive closure of predicates: rtrancl_pt P a b

the null object: null

. . .

Example formula:

rtrancl_pt = % (P :: obj => obj => bool) (a :: obj) (b :: obj).

ALL S. a : S & (ALL x y. x : S & P x y --> y : S) -->

b : S

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 8 / 19

Verification conditions

Goal: reduce correctness of a program to the validity of logical formulae.

Consider program fragment (verification condition):

assume(F); c; assert(G);

Idea for proving correctness:

start from G and symbolically execute c backwards

prove that F implies the resulting formula

Backwards execution is done by computing weakest preconditions.

Weakest precondition wp(c ,G) is the weakest formula such that

∀q0, q1. q0 |= wp(c ,G) ∧ q0
c−→ q1 implies q1 |= G

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 9 / 19

Loop-free guarded commands

Internally, Jahob uses a simplified language to represent programs.

c ::= x := formula (side-effect free assignment statement)
| havoc(x) (non-deterministic assignment to x)
| assume(formula) (assume statement)
| assert(formula) (assert statement)
| c1 ; c2 (sequential composition)
| c12 c2 (non-deterministic choice)

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 10 / 19

Semantics of guarded commands

Weakest precondition semantics of guarded commands:

wp(x := e,G) ≡ ∀x ′. x ′ = e → G [x ′/x] x ′ fresh

wp(havoc(x),G) ≡ ∀x .G

wp(assert(F),G) ≡ F ∧ G

wp(assume(F),G) ≡ F → G

wp(c1 ; c2,G) ≡ wp(c1,wp(c2,G))

wp(c12 c2,G) ≡ wp(c1,G) ∧ wp(c2,G)

Generated formulas are linear in the size of the program.

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 11 / 19

Translating Java to Guarded Commands (1)

Jahob does not support Java statements with side effects such as

x = y++;

Instead one can transform this to side-effect free code beforehand:
x = y;
y = y+1;

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 12 / 19

Translating Java to Guarded Commands (2)

Conditions are translated to choice and assume:

if (x > 0) { z = x } else { z = -x }

is translated to

(assume(x > 0); z := x)2(assume(¬(x > 0)); z := −x)

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 13 / 19

Desugaring loops with invariants

while [inv I] (F) c

Combine previous cases to one guarded command:
assert(I);
havoc(x1, ..., xn);
assume(I);

(assume(¬F)2

assume(F);
c;
assert(I);
assume(false))

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 14 / 19

Desugaring method calls

Call of a method p: z := p(v)

where p(u) has specification:
requires pre(x , y , u)
modifies x
ensures post(old(x), x , y , u, result)

call is desugared to:
assert(pre(x , y , v));
x0 := x ;
havoc(x);
havoc(”private representation”);
havoc(z);
assume(post(x0, x , y , v , z))

Notice: Before any reentrant call to an object of the same class the class
invariants must be reestablished.

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 15 / 19

References and fields (1)

Fields are total functions on objects:

Node.next :: obj ⇒ obj

we have by definition Node.next null = null .

Field access is just function application:

y = x.next becomes y := Node.next x

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 16 / 19

References and fields (2)

Fields are total functions on objects:

Node.next :: obj ⇒ obj

we have by definition Node.next null = null .

Field update is function update:

x.next = y becomes Node.next := Node.next[x := y]

where f [x := y](z) = f (z) for z 6= x and f [x := y](x) = y .

Updates on fields can be eliminated:

wp(Node.next := Node.next[x := y],Node.next z = t)

≡ Node.next[x := y] z = t

≡ (z = x ∧ y = t) ∨ (z 6= x ∧ Node.next z = t)

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 17 / 19

Allocation of objects

Introduce a new set valued variable Object.alloc :: obj set to denote all
allocated objects

x = new T();

becomes:
havoc(x);
assume(x /∈ Object.alloc);
assume(x ∈ T);
Object.alloc := Object.alloc ∪ {x};
Translation of call of constructor x .T ()

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 18 / 19

Demo

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012 19 / 19

