Formal Methods for Java
Lecture 19: Jahob

Jochen Hoenicke

Software Engineering
— Albert-Ludwigs-University Freiburg

Jan 11, 2012

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012

1/19

Internals of a Static Checker

@ Topic of the next lectures:
How does a Static Checker work?

@ We will look into Jahob.

Jochen Hoenicke (Software Engineering) FM4) Jan 11, 2012 2 /19

The Jahob system

Focus of Jahob: verifying properties of data structures.

Developed at
e EPFL, Lausanne, Switzerland (Viktor Kuncak)
e MIT, Cambridge, USA (Martin Rinard)
o Freiburg, Germany (Thomas Wies)

References
@ Jahob webpage: http://lara.epfl.ch/w/jahob_system
o Viktor Kuncak's PhD thesis

Jochen Hoenicke (Software Engineering) FM4) Jan 11, 2012 3/19

http://lara.epfl.ch/w/jahob_system

Comparison of ESC/Java and Jahob

Goal
Spec. language
Java support

Loop invariants

Completeness

find bugs
JML
aims at full Java

optional

only linear arithmetic
with free function
symbols

Jochen Hoenicke (Software Engineering) FM4J

prove correctness

based on Isabelle/HOL
subset of Java (no excep-
tions, no concurrency, no
generics, no dyn. dispatch,
provided by user or automat-
ically derived

general purpose theorem
provers and decision proce-
dures for specialized theories

Jan 11, 2012 4/19

Jahob system architecture

Omega

MONA

SMT-LIB

—>>

CVC Lite

Vampire

SPASS

Jochen Hoenicke (Software Engineering)

BAPA
TPTP
E FOL
translation

high-level
analysis

field
constraint
analysis

decision
procedure
dispatcher

analysis frontend

SMT-LIB
interface

lemma
caching

Bohne
symbolic
shape analysis

Jahob

FM4J

Isabelle

Coq

Jan 11, 2012 5/19

Isabelle/HOL

Jahob's assertion language is a subset of the interactive theorem prover
Isabelle/HOL which is built on the simply typed lambda calculus.

Why Isabelle/HOL and not e.g. JML?

&

natural syntax
unifying semantic foundation for all specification constructs
no artificial limitations regarding expressiveness

decision procedures can be used to automate reasoning

L K N 2

interactive theorem provers can be used for

o debugging the system
e proving the most difficult theorems interactively

Jochen Hoenicke (Software Engineering) FM4) Jan 11, 2012 6 /19

Core syntax of HOL

Terms and Formulas:

f o= Mx:utf lambda abstraction (A is also written %)
| A h function application
| x variable or constant
| fot typed formula
Types:
t = bool truth values
| int integers
| obj uninterpreted objects
| t=t total functions
| tset sets
| tixt pairs

Jochen Hoenicke (Software Engineering) FM4) Jan 11, 2012 7 /19

Predefined constants in HOL

Core syntax is enriched with predefined constants:
@ Boolean connectives: ~ F, F & G, F | G, F -——> G, F <> G
o (dis)equality: f =g, £ "= g
@ sets and set operations:
{f_1, ..., fn}, {x. F}, £ : S, SUnT, SInter T, S-T

quantification: ALL x. F, EX x. F
reflexive transitive closure of predicates: rtrancl_pt P a b

the null object: null

Example formula:

rtrancl_pt = % (P :: obj => obj => bool) (a :: obj) (b :: obj).
ALL S. a:S& (ALLxy. x : S&Pxy-—>y:8) -—>
b: S

Jochen Hoenicke (Software Engineering) FM4) Jan 11, 2012 8 /19

Verification conditions

Goal: reduce correctness of a program to the validity of logical formulae.

Consider program fragment (verification condition):
assume(F); c; assert(G);

Idea for proving correctness:
@ start from G and symbolically execute ¢ backwards

@ prove that F implies the resulting formula

Backwards execution is done by computing weakest preconditions.

Weakest precondition wp(c, G) is the weakest formula such that

Yq0,q1-qo = wp(c, G) A go — q1 implies g1 = G

Jochen Hoenicke (Software Engineering) FM4) Jan 11, 2012

9/19

Loop-free guarded commands

Internally, Jahob uses a simplified language to represent programs.

c = x:= formula (side-effect free assignment statement

| havoc(x) (non-deterministic assignment to x

| assume(formula) (assume statement

| assert(formula) (assert statement

| aso (sequential composition

| alc (non-deterministic choice

Jochen Hoenicke (Software Engineering) FM4) Jan 11, 2012

10/ 19

Semantics of guarded commands

Weakest precondition semantics of guarded commands:

wp(x :=¢,G) =Vx. X = e — G[x'/x] x" fresh
wp(havoc(x), G) = Vx.
wp(assert(F),G) = F A G
wp(assume(F),G)=F — G
wp(cr; &2, G) = wp(c1, wp(c2, G))
wp(c1 B e, G) = wp(c, G) A wp(cp, G)

Generated formulas are linear in the size of the program.

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012

11/ 19

Translating Java to Guarded Commands (1)

Jahob does not support Java statements with side effects such as

T = yt+;

Instead one can transform this to side-effect free code beforehand:
T y;
y y+1;

Jochen Hoenicke (Software Engineering) FM4) Jan 11, 2012 12 /19

Translating Java to Guarded Commands (2)

Conditions are translated to choice and assume:
if (> 0) { z=2}else{ z=-z}

is translated to

(assume(x > 0); z := x) O(assume(—(x > 0)); z := —x)

Jochen Hoenicke (Software Engineering) FM4J Jan 11, 2012

13 /19

Desugaring loops with invariants

while [inv /] (F) ¢

Combine previous cases to one guarded command:
assert(1);
havoc(xy, ..., Xp);
assume(l);
(assume(—F) O
assume(F);
(o8
assert(1);
assume(false))

Jochen Hoenicke (Software Engineering) FM4) Jan 11, 2012 14 /19

Desugaring method calls
Call of a method p: z := p(v)

where p(u) has specification:
requires pre(x,y, u)
modlifies x
ensures post(old(x), x,y, u, result)

call is desugared to:
assert(pre(x,y,v));
X0 = X;
havoc(x);
havoc(" private representation”);
havoc(z);
assume(post(xo, X, y, Vv, 2))

Notice: Before any reentrant call to an object of the same class the class
invariants must be reestablished.

Jochen Hoenicke (Software Engineering) FM4) Jan 11, 2012 15 /19

References and fields (1)

Fields are total functions on objects:

Node.next :: obj = obj
we have by definition Node.next null = null.
Field access is just function application:

y = z.nexst becomes y := Node.next x

Jochen Hoenicke (Software Engineering) FM4) Jan 11, 2012 16 / 19

References and fields (2)
Fields are total functions on objects:
Node.next :: obj = obj

we have by definition Node.next null = null.
Field update is function update:

z.next =y becomes Node.next := Node.next[x := y]
where f[x := y|(z) = f(z) for z # x and f[x := y|(x) = y.
Updates on fields can be eliminated:

wp(Node.next := Node.next[x := y], Node.next z = t)
= Node.next[x :=ylz=t
=(z=xAy=t)V (z# x A\ Node.next z = t)

Jochen Hoenicke (Software Engineering) FM4) Jan 11, 2012 17 /19

Allocation of objects

Introduce a new set valued variable Object.alloc :: obj set to denote all
allocated objects

z = new T();

becomes:
havoc(x);
assume(x ¢ Object.alloc);
assume(x € T);
Object.alloc := Object.alloc U {x};
Translation of call of constructor x. T()

Jochen Hoenicke (Software Engineering) FM4) Jan 11, 2012 18 /19

Demo

Jochen Hoenicke (Software Engineering) FM4) Jan 11, 2012 19 /19

