Formal Methods for Java

Lecture 21: Verification of Data Structures in Jahob

Jochen Hoenicke

g Software Engineering
-gg— Albert-Ludwigs-University Freiburg
Jan 18, 2012

Jochen Hoenicke (Software Engineering) FM4) Jan 18, 2012

1/19

The Jahob system

Focus of Jahob: verifying properties of data structures.

Developed at
e EPFL, Lausanne, Switzerland (Viktor Kuncak)
e MIT, Cambridge, USA (Martin Rinard)
o Freiburg, Germany (Thomas Wies)

References
@ Jahob webpage: http://lara.epfl.ch/w/jahob_system
o Viktor Kuncak's PhD thesis

Jochen Hoenicke (Software Engineering) FM4) Jan 18, 2012 2 /19

http://lara.epfl.ch/w/jahob_system

Core syntax of HOL

Jahob's assertion language is a subset of the interactive theorem prover

Isabelle/HOL which is built on the simply typed lambda calculus.

Terms and Formulas:

Ax ot f
fh
X

fot

Types:
bool
int

obj

t1 = b
t set

t1 * b

Jochen Hoenicke (Software Engineering)

lambda abstraction (X is also written %)

function application
variable or constant
typed formula

truth values

integers
uninterpreted objects
total functions

sets

pairs

FM4) Jan 18, 2012

3/19

Function with Several Arguments

A function with two arguments g(x, y) has the type
g:(tixt)=t3

In HOL, usually one defines a function with two arguments as
f it = th =t

and the application as
fxy=g(xy)

Note that = is right-associative and function application is left-associative:

(tl = th = t3) = (tl = (t2 = t3)) and f x y = (f X)y.

Jochen Hoenicke (Software Engineering) FM4) Jan 18, 2012 4 /19

Lambda Abstraction
Suppose, you want to define a function or relation:

incx=x+1 or succxy=(y=x+1).

With lambda abstraction these can be written as

inc=(Ax.x+1) resp. succ=(Axy.y=x+1).

This is especially useful if you need a function argument:

rtrancl_pt succ 0 z

can be written as

rtranclpt (A xy. y=x+1)0z

Jochen Hoenicke (Software Engineering) FM4) Jan 18, 2012 5/19

Data Structure Consistency

Statically verify data structure consistency properties.

Internal Data Structure Consistency

next next next next
prev prev prev

o field prev is inverse of field next

o field next is acyclic

=¥ inconsistency can cause program crashes.

Jochen Hoenicke (Software Engineering) FM4) Jan 18, 2012 6 /19

External Consistency Properties

Example (Library)

Person [0“13 > Book
orrows
| ITTE2D | gg@@@ S22,

@ if a book is loaned to a person, then

o the person is registered with the library, and
o the book is in the catalog

@ Can loan a book to at most one person at a time

correlate multiple data structures
depend on internal consistency

capture design constraints (object models)

¢0 e o

inconsistency can cause policy violations.

Jochen Hoenicke (Software Engineering) FM4) Jan 18, 2012 7 /19

Goal

Proof data structure consistency properties

o for all program executions (sound)
@ with high level of automation
@ both internal and external consistency properties

@ both implementation and use of data structures.

Jochen Hoenicke (Software Engineering) FM4) Jan 18, 2012 8 /19

Overview of the Jahob Approach

- uses of interfaces
- global consistency

scalable analyses

Reasoning about program in terms of simpler interfaces

Application

(Data Structure Client)

/

AN

4

0000 A interface

X

B interface|

O O

B implementation

A implementation

Checking that interfaces reflect implementations
and internal consistency is preserved - precise analyses

»

-

Jochen Hoenicke (Software Engineering)

FM4)

Jan 18, 2012

9/19

Overview of the Jahob Approach

Key question in automating approach (while keeping it useful)

How to choose Application

(Data Structure Client)| ,,4sis3

interface language?

/ N\
Y \
A interface B interface
analysis1 analysis2

A implementation

B implementation

Jochen Hoenicke (Software Engineering) FM4J

Jan 18, 2012

10/ 19

The Jahob Approach through an Example

Person [0..1]

[

borrows
Sa e he A ash

Book

Data structures to record who borrowed which book. These consist of

@ a set of persons, implemented by a linked list.

Each person has a unique id.

@ a set of books, implemented by a linked list.

Each book has a unique id.

@ a relation borrows, implemented by an array indexed by the person

unique id.

Array contains a linked list of books borrowed by that person.

Jochen Hoenicke (Software Engineering)

FM4)

Jan 18, 2012 11/ 19

The Jahob Approach through an Example

Person [0..1] > Book

borrows
ITRITRR S S2EER

class Library { class Set {
public static Set persomns; private Node first;
public static Set books; R
public static Relation borrows; public void add(Object o1){
- Node n = new Node();
} n.data = ol;

class Relation { n.next = first;
private Set[] a; first = n;
private int size; }
}

public void add(int i, Object ol){

}

Jochen Hoenicke (Software Engineering) FM4) Jan 18, 2012 12 /19

Factoring Out Complexity

Person [0"1g > Book
orrows
I BEnE SR

if a person has borrowed a book, then
@ the person is registered with the library, and
o the book is in the catalog

Vp b.(p,b) € borrows.content —
p € persons.content
A b € books.content

Specification Variables

Set.content = { x | In.n € first.next™ A n.data = b}

Relation.content = { (x, y) | a[x] # null A y € a[x].content }

Jochen Hoenicke (Software Engineering) FM4) Jan 18, 2012 13 /19

Defining Interfaces using Specification Variables

class Node {
Object data;

Node mnezxt;
}
class Set {
public Node first;

/*: public specvar content :: objset;

How can we define the set of data values in the linked list?
content == first.next*.data

Jahob supports reflexive transitive closure but with a different syntax:

Definition (rtrancl_pt)

Let R: a = a = bool be a relation on some type «, then rtrancl_pt R is
the reflexive transitive closure of R:

rtrancl_pt R x y holds if there is a sequence x = xg,...,x, =y, n>0
such that R x; xj+1 holds for 0 </ < n.

Jochen Hoenicke (Software Engineering) FM4) Jan 18, 2012 14 /19

Using the rtrancl_pt predicate

Definition (rtrancl_pt)

Let R : & = a = bool be a relation on some type «, then rtrancl_pt R is
the reflexive transitive closure of R:

rtrancl_pt R x y holds if there is a sequence x = xp,...,x, =y, n >0
such that R x; xj+1 holds for 0 </ < n.

Define the successor relation using the field vode. next:

R==(= y. z.. Node.next = y) Note: % is A-abstraction.
The set of all nodes on the list is:
nodes == {n. rtrancl_pt (% z y. z..Node.next = y) first n}

and the set of all values on the list is:

contents == {x. EX n. n..Node.data = z
& rtrancl_pt (%4 vl v2. vl..Node.next = v2) first n}

Jochen Hoenicke (Software Engineering) FM4) Jan 18, 2012 15 /19

Jahob Code

class Set {
private Node first;

/*: public specvar content :: objset;
vardefs "content == {x. EX n. n..Node.data = x &

rtrancl pt (% vl v2. vl..Node.next = v2) first nl}";

invariant "tree [Node.next]";
*/
public void add(Object ol)
/*: requires "ol ~: content"
modifies "content"

ensures "content = old content Un {ol1}"

*/
{...}

Jochen Hoenicke (Software Engineering) FM4) Jan 18, 2012 16 / 19

Use Interfaces to Verify Data Structure Clients

class Library {
public static Set persons;

*: invariant . s : borrows..Relation.content -->
/*: i i "ALL p b. (p,b) : b Relati
p : persons..Set.content & b : books..Set.content" */

public static void checkOutBook(Person p, Book b)
/*:
requires "p "= null & b "= null &
b : books..Set.content & p : persons..Set.content"
modifies "borrows..Relation.content"
ensures "((ALL p1. (p1,b) ~: old borrows..Relation.content) -->
borrows..Relation.content =
0ld (borrows..Relation.content) Un {(p,b)})
& (EX pl. (p1,b) : old borrows..Relation.content -->
borrows..Relation.content = old borrows..Relation.content)"

*/
{...}
¥
Jochen Hoenicke (Software Engineering) FM4) Jan 18, 2012

17 /19

Demo

Jochen Hoenicke (Software Engineering) FM4) Jan 18, 2012 18 /19

Example: Doubly Linked List

public /*: claimedby DoublyLinkedList */ class Node {
public Node next;
public Node prewv;
public Object data;

}

class DoublyLinkedList

{
private static Node first;
private static Node last;

Jochen Hoenicke (Software Engineering) FM4) Jan 18, 2012 19 /19

