### Formal Methods for Java Lecture 21: Proofs in Jahob

#### Jochen Hoenicke



Software Engineering Albert-Ludwigs-University Freiburg

Jan 18, 2012

## Static Checking vs. Theorem Proving

Goal:

- finds bugs at compile-time,
- proves that there is no violation.

Static Checking:

- e.g. Jahob and ESC/Java
- fully automatic (after annotation)
- can only verify simple properties

Theorem Proving:

- e.g. KeY Prover
- Needs lot of manual interaction
- complete calculus, can verify any property.

#### Goals

- Improve the strength of the provable properties.
- Still fully automatic (after annotation).
- Have intermediate proof steps in annotation.

#### Paper:

• Karen Zee, Viktor Kuncak, and Martin Rinard. An integrated proof language for imperative programs. In ACM Conf. Programming Language Design and Implementation (PLDI), 2009.

### Note command

We already know one command

note  $\ell$  : F

which abbreviates

```
assert \ell : F; assume \ell : F
```

- $\ell$  is a label (or name) for the formula F
- When F cannot be proven Jahob tells that the check for  $\ell$  failed.
- $\ell$  can also be used to tell the Jahob which formulas are relevant:

assert G from  $\ell$ 

This rule is correct, i.e.,  $wp(note F, H) \rightarrow H$ :

$$wp(\text{note } F, H) \leftrightarrow F \land (F \to H)$$
$$\leftrightarrow F \land H$$
$$\to H$$

### Proving implications



#### • : stands for arbitrary proof statements

The implication rule is correct, provided the proof statements used in between are correct.

$$\begin{split} & \mathsf{wp}((\mathsf{assume}\ F; p; \mathsf{assert}\ G; \mathsf{assume}\ \mathsf{false} \square \mathsf{assume}\ F \to G, H) \\ & \equiv (F \to \mathsf{wp}(p, G)) \land ((F \to G) \to H) \\ & \to [\mathsf{assuming}\ \mathsf{that}\ \mathsf{proof}\ \mathsf{statments}\ p\ \mathsf{are}\ \mathsf{correct}] \\ & (F \to G) \land ((F \to G) \to H) \\ & \to H \end{split}$$

۱

## **Case Splits**

One can split cases, e.g.

cases  $x \ge 0, x < 0$  for  $abs(x) \ge 0$ 

cases  $F_1, \ldots, F_n$  for G

is an abbreviation for

assert  $F_1 \lor \cdots \lor F_n$ ; assert  $F_1 \to G$ ; ... assert  $F_n \to G$ ; assume G

- Proof that  $F_1, \ldots, F_n$  are all possible cases.
- Proof for each case G separately.
- Assume G holds.

### Proving Universal Quantifiers

To prove a universal quantified formula the syntax is



The inverse operation removes universal quantifiers:

```
instantiate \forall x.F[x] with t
```

This is an abbreviation for

assert  $\forall x.F[x]$ assume F[t]

#### To prove an existential quantified formula the syntax is

witness t for  $\exists x.F[x]$ 

This is an abbreviation for

assert F[t]assume  $\exists x.F[x]$ 

# Removing Existential Quantifiers

The syntax is

```
pickWitness x for F[x]

: where x does not occur in G

note G
```

This is an abbreviation for

```
( assert ∃x.F[x]
   havoc x
   assume F[x]
   :
   assert G
   assume false
□
   assume G
)
```