Formal Methods for Java
Lecture 23: Excursion: Explicit State Model Checking and JVM

Jochen Hoenicke

Software Engineering
- Albert-Ludwigs-University Freiburg

UNI
FREIBURG

Jan 25, 2012

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012

1/23



What Have We Seen?

o JML Tools: Runtime assertion checking

e ESC/Java: Static checking of JML annotations and runtime
constraints

o KeY: Formal proof of JML annotations

@ Jahob: Data structure verification

= Symbolic state representation and reasoning

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 2/23



Explicit State Model Checking



Now: Explicit State

@ Concrete representation of states, e.g., m

@ Transitions produce new concrete states, e.g.,

@ System model: Transition System (TS)
@ Graph search algorithms used to search for property violations

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 4 /23



Transition Systems (TS)

Definition (Transition System)

A transition system (TS) is a structure TS = (Q, Act, —), where
@ @ is a set of states,
@ Act a set of actions,
o —C @ x Act x @ the transition relation.

e Q - {CIO7Q17CI27CI3}
X+ y++ I = {q)

- = {(QO»X++aq1)7
start — (Q17 y++) CI3)7

(QO’Y‘H‘, q2)’

+4; XA+
Y @ (g2, x+4+, g3)}

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 5/23



Exploring Transition Systems

@ Treat transition system as graph

@ Use graph search algorithm to explore states
o Different search strategies:

o Depth-First-Search (DFS)
o Breath-First-Search (BFS)
o Greedy Search

w Goal: Find error fast (“before running out of memory™)
= More debugging than verification

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 6 /23



Searching



Basics

Explore states in a graph.
Unify states.

Keep “pending list” of nodes yet to explore.

Keep “closed list” of already explored states.

Explore all possible states.

Heuristic cutoff:

@ bounded number of states
@ bounded path length

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 8 /23



Abstract Searching

@ Choose and remove next state s.

@ If s is already closed, goto Step 1

© Evaluate s.

@ Add all successors of s onto the pending list
© Move s to closed list

Main Operations

@ State evaluation
@ Creation of successor states

@ State unification

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 9 /23



Different Types

Uninformed Searches

@ Exploration order determined by graph structure.
@ Not goal-directed.

v

Informed Searches

@ Exploration order guided by heuristics and/or path length.

o “Prefer short paths.”

@ Heuristic value = estimate of distance to goal.

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 10 / 23



Depth-First-Search (DFS)

@ uninformed search
o first explore the successor nodes, then the siblings
e Pending list: LIFO (e.g., stack)

é.i (w)

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 11 /23



Breath-First-Search (BFS)

@ uninformed search
o first explore the siblings, then the successor nodes
e Pending list: FIFO (e.g., Queue)

é.i o

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 12 /23



Greedy Search

informed search
heuristic estimate of the minimal distance of a state to a goal

expand state with minimal value of the heuristic

Pending list: Ordered list (e.g., priority queue or Heap)

Problems

@ Highly sensitive to heuristic
o Plateaus

@ Found error path might still be long

... but highly efficient in practice

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 13 /23



A* Search

informed search
use heuristic,
but also consider the cost of the path to the current state

expand state with minimal sum of heuristic value and path cost

Pending list: Ordered list (e.g., priority queue or Heap)

Admissible heuristics

Let n be a node and d(n) be the exact distance of node n to the goal.
Heuristic h is admissible if and only if

Vv. h(v) < d(v)

A* search with admissible heuristic ensures shortest path to goall!

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 14 /23



A Unified Search Framework

Observation

Search procedures only differ in the order in which they explore the state
space.

We can express all these search methods using two functions over states s
(and a bound on the length of paths):

@ d(s) - a distance function
@ h(s) - a heuristic function
Choose s that minimizes d(s) + h(s).

d(s) h(s)
DFS —pathlength(s) 0
BFS pathlength(s) 0
Greedy Search 0 heuristic(s)
A* pathlength(s) | heuristic(s)

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 15 /23



Java Virtual Machine



Virtual vs. Concrete Machine

Programs

@ Machine independent code

Virtual Machine @ Machine dependent interpreter in machine code

_ @ Machine code interpreter
Concrete Machine

Rebuild for every concrete machiné Compile once — Run everywhere

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 17 /23



JVM Basics

@ JVM interprets .class files
@ .class files contain
o a description of classes (name, fields, methods, inheritance
relationships, referenced classes, ...)
o a description of fields (name, type, attributes (visibility, volatile,
transient, .. ))

o bytecode for the methods
Stack machine

Typed instructions

Bytecode verifier to ensure type safety

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 18 / 23



Different Memory Areas

Java separates between

@ a Java stack
o Used for method calls and expression evaluation
e One per thread
o Checked for overflows

@ a native stack
e Used for native calls using JNI

o Not directly usable by the bytecode
o Not checked for overflows

@ a heap

Used for dynamic allocation
Managed by garbage collectors
Shared between all threads

Size limited by JVM configuration

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012

19 /23



Calling Methods

Activation Frame contains:
@ Variables local to the called method

@ Stack space for instruction execution (Operand Stack)

Operand Stack

Locals

One activation frame per method call: z. foo()
@ pushes new activation frame
@ calls the method foo

© pops the activation frame

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 20 /23



Executing Instructions

@ Arguments are on the operand stack
w Some instructions move local variables or constants to the stack

@ Most instructions pop topmost arguments from the stack and push
result onto the stack

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 21 /23



Example: 1cmp

Compare two long values 11 and 12

long 12 = popLong();

long 11 = popLong();

if (11 < 12)
push(-1);

if (11 == 12)
push(0);

if (11 > 12)
push(1);

2

11

lemp

result

Jochen Hoenicke (Software Engineering)

FM4)

Jan 25, 2012

22 /23



Java Native Interface (JNI)

foreign function interface
execution jumps to non-Java code
runs outside of VM

uses native stack

but can access JVM trough JnIEnv structure
w jNIEnv needed to translate between native stack and heap

@ useful to access native OS libraries or optimize certain computation
tasks
w Assumption: Native code is faster than Java code
w Note: Native code breaks platform independence

Jochen Hoenicke (Software Engineering) FM4) Jan 25, 2012 23 /23



	Explicit State Model Checking
	Searching
	Java Virtual Machine

