Formal Methods for Java

Lecture 27: Model Checking Concurrent Java Programs

Jochen Hoenicke

Software Engineering
- Albert-Ludwigs-University Freiburg

UNI
FREIBURG

Feb 08, 2012

Jochen Hoenicke (Software Engineering) FM4) Feb 08, 2012

1/17

Introduction to Concurrent Java Programs

Example: Concurrent Java Code

public void MyStack {
int size;
Object[] elem;

public void moveTopToStack(Stack other) {

if (other.size == other.elem. length)
other. grow() ;
other.elemlother.size++] = this.elem[--this.size];

}

MyStack a,b;

thread1() {
a.moveTopToStack(d) ;

}

thread2() {
b.moveTopToStack(a) ;

}

}

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 3/17

Error Sources in Concurrent Java Code

@ Races: Other threads may interfere at any time.
Even instructions like elem++ are not atomic.

Solution: Add synchronized blocks.

@ Deadlocks: Threads may block each other.
Solution: Define a total order on synchronized and obey it everywhere.

@ Non-Determinism: Whether or not problems occur depend on
machine (multi-core/single-core) and exact timing.

Problems occur randomly, usually only under heavy load.

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 4/17

Example: Concurrent Java Code

public void MyStack {
int size;
Object[] elem;

public synchronized void moveTopToStack(Stack other) {
synchronized (other) {

if (other.size == other.elem. length)
other. grow() ;
other.elemlother.size++] = this.elem[--this.size];

}

MyStack a,b;

thread1() {
a.moveTopToStack(d) ;

}

thread2() {
b.moveTopToStack(a) ;

}

}

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 5/17

Race Example

Demo

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 6 /17

Challenge in Model Checking Concurrent Programs

State Space Explosion

@ Model checking has to consider all possible interleavings

@ Assume N threads where thread i contains n; instructions. How many
possible interleavings?

Threads Interieaw'ngs
<y

H H (=,,n)!
Atomic Mo—= "

Instructions n2[| "N|:I IIi';linti D
o)

http://babelfish.arc.nasa.gov/trac/jpf/wiki

e For N =3, nj =20: M ~5.8-10%

@ Scalability problem for model checking

-y

]

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 8 /17

Solution: Partial Order Reduction (POR)

Observation

If a context switch does not influence the currently running thread, this
interleaving is not interesting.

/" thread 1
(s

N thread 2

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 9/17

Partial Order Reduction in JPF

JVM and Concurrency

@ JVM is a stack machine.
@ Stacks are local to a thread.

@ Most instructions only manipulate the stack.

= Only a few instructions can influence other threads.

v

Instructions Influencing Other Threads

o Field instructions (GETFIELD, PUTFIELD, GETSTATIC,
PUTSTATIC)

@ Array instructions (xALOAD, xASTORE)
@ Synchronization (MONITORENTER, MONITOREXIT)
@ Function calls:

e synchronized functions
o thread management functions
e object notification functions

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 11 /17

Limiting the Number of Relevant Instructions

Observation

Field and Array instructions, and synchronization only interesting if object
is shared.

However, detecting objects shared between multiple threads is expensive.

@ Reuse jpf's garbage collector for this (piggybacking).
@ Garbage collector marks objects that are reachable.

@ We need to mark objects reachable from different threads.

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 12 /17

Detecting Shared Objects

Extending the Mark Phase

@ Mark either with thread id, or shared.

@ Mark every static field shared.
@ For every field f in the root set of Thread i:

o If f already has a mark different from i, mark f shared.
o Otherwise mark f with /.

@ Propagate marks until a fixed point is reached.

.. ! referencing thread number
- shared

http://babelfish.arc.nasa.gov/trac/jpf/wiki

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 13 /17

POR: Relevant instructions

exec@ecode instruction

[_scheduling relevantinsn type. |

dala races |
field insn SyNc insn deadlocks Invoke insn
| ” .
GETFIELD MONTTORENTER lock races) THVOKEVIRTUAL configured
PUTFIELD MOMITOREXIT INVOKESTATIC class/mihd
GETSTATIC / M, attributes
F‘ﬂg}gﬂc sync threading
x
KASTORE mth call

Thread. start(), yield(D
sLeep(), join()
iject.wa?t(],rnLinyj

other runnable threads |

[recursive locks |

[shared objects |
tracking of access threads

[lock protected access |
lock distance & stanistics

scheduling relevant instruction (registeres a ThreadChoiceGenerator)
http://babelfish.arc.nasa.gov/trac/jpf/wiki

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012

14 /17

Concurrency Problems

Dining Philosophers

Five philosophers sit around a round table. A plate with spaghetti is in
front of every philosopher. A fork lies to the right of every philosopher. A
philosopher is not allowed to speak, but may think, grab or drop a fork, or
eat if he has two forks. How can we ensure that no philosopher starves?

http://en.wikipedia.org/wiki/Dining_philosophers_problem

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 16 / 17

A Solution?

© Think

@ Grab left fork
© Grab right fork
Q Eat

© Drop right fork
@ Drop left fork
@ GotoStepl

w Check with JPF

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 17 /17

	Introduction to Concurrent Java Programs
	Challenge in Model Checking Concurrent Programs
	Partial Order Reduction in JPF
	Concurrency Problems

