
Formal Methods for Java
Lecture 27: Model Checking Concurrent Java Programs

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Feb 08, 2012

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 1 / 17



Introduction to Concurrent Java Programs



Example: Concurrent Java Code

public void MyStack {
int size;
Object[] elem;

public void moveTopToStack(Stack other) {

synchronized (other) {

if (other.size == other.elem.length)
other.grow();

other.elem[other.size++] = this.elem[--this.size];

}

}
...
MyStack a,b;
thread1() {
a.moveTopToStack(b);

}
thread2() {
b.moveTopToStack(a);

}
}

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 3 / 17



Error Sources in Concurrent Java Code

Races: Other threads may interfere at any time.
Even instructions like elem++ are not atomic.

Solution: Add synchronized blocks.

Deadlocks: Threads may block each other.
Solution: Define a total order on synchronized and obey it everywhere.

Non-Determinism: Whether or not problems occur depend on
machine (multi-core/single-core) and exact timing.

Problems occur randomly, usually only under heavy load.

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 4 / 17



Example: Concurrent Java Code

public void MyStack {
int size;
Object[] elem;

public synchronized void moveTopToStack(Stack other) {

synchronized (other) {

if (other.size == other.elem.length)
other.grow();

other.elem[other.size++] = this.elem[--this.size];

}

}
...
MyStack a,b;
thread1() {
a.moveTopToStack(b);

}
thread2() {
b.moveTopToStack(a);

}
}

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 5 / 17



Race Example

Demo

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 6 / 17



Challenge in Model Checking Concurrent Programs



State Space Explosion

Model checking has to consider all possible interleavings

Assume N threads where thread i contains ni instructions. How many
possible interleavings?

http://babelfish.arc.nasa.gov/trac/jpf/wiki

For N = 3, ni = 20: M ≈ 5.8 · 1026

Scalability problem for model checking

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 8 / 17



Solution: Partial Order Reduction (POR)

Observation

If a context switch does not influence the currently running thread, this
interleaving is not interesting.

q0start

q1

q2

q3

q4

q5

q6

q7

q8

thread 1

thread 2

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 9 / 17



Partial Order Reduction in JPF



JVM and Concurrency

Observations

JVM is a stack machine.

Stacks are local to a thread.

Most instructions only manipulate the stack.

å Only a few instructions can influence other threads.

Instructions Influencing Other Threads

Field instructions (GETFIELD, PUTFIELD, GETSTATIC,
PUTSTATIC)

Array instructions (xALOAD, xASTORE)

Synchronization (MONITORENTER, MONITOREXIT)

Function calls:

synchronized functions
thread management functions
object notification functions

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 11 / 17



Limiting the Number of Relevant Instructions

Observation

Field and Array instructions, and synchronization only interesting if object
is shared.

However, detecting objects shared between multiple threads is expensive.

Idea

Reuse jpf’s garbage collector for this (piggybacking).

Garbage collector marks objects that are reachable.

We need to mark objects reachable from different threads.

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 12 / 17



Detecting Shared Objects

Extending the Mark Phase

Mark either with thread id, or shared.

Mark every static field shared.

For every field f in the root set of Thread i :

If f already has a mark different from i , mark f shared.
Otherwise mark f with i .

Propagate marks until a fixed point is reached.

http://babelfish.arc.nasa.gov/trac/jpf/wiki

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 13 / 17



POR: Relevant instructions

http://babelfish.arc.nasa.gov/trac/jpf/wiki

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 14 / 17



Concurrency Problems



Dining Philosophers

Five philosophers sit around a round table. A plate with spaghetti is in
front of every philosopher. A fork lies to the right of every philosopher. A
philosopher is not allowed to speak, but may think, grab or drop a fork, or
eat if he has two forks. How can we ensure that no philosopher starves?

http://en.wikipedia.org/wiki/Dining philosophers problem

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 16 / 17



A Solution?

1 Think

2 Grab left fork

3 Grab right fork

4 Eat

5 Drop right fork

6 Drop left fork

7 Go to Step 1

å Check with JPF

Jochen Hoenicke (Software Engineering) FM4J Feb 08, 2012 17 / 17


	Introduction to Concurrent Java Programs
	Challenge in Model Checking Concurrent Programs
	Partial Order Reduction in JPF
	Concurrency Problems

