J. Hoenicke
02.11.2011
J. Christ

Hand in solutions via email to christj@informatik.uni-freiburg.de until 09.11.2011 (only Java sources and PDFs accepted)

Tutorials for "Formal methods for Java"
 Exercise sheet 2

Exercise 1: Operational semantics

Consider the following Java class:

```
class C {
    private boolean b = true;
    public int m(int x) {
        return (this.b = !this.b) ? ++x : x;
    }
}
```

Give rules for the operational semantics of the ?: and the ! operator. Use the rules defining the operational semantics of Java to compute the result of the method call: c.m(4). Assume that c is an instance of class C which has just been initialized.

Exercise 2: Loops with breaks

Java provides the break statement that when executed within a loop causes the execution of the loop to be stopped immediately. Execution is then continued with the first statement after the corresponding loop. For simplicity, we assume every loop is labeled, and every break statement is followed by a label, i.e., a while loop has the form l : while $(e) s$ where l is the label of the loop.
We can model break statements by extending the flow component of program states:

$$
\text { Flow }::=\text { Norm }|\operatorname{Ret}| E x c\langle\langle A d d r e s s\rangle\rangle \mid \text { Break }\langle\langle\text { Label }\rangle\rangle .
$$

Use this extension to define the operational semantics of break l statements and while loops with breaks.
Hint: You only need to define two axioms.

Exercise 3: Operational equivalence

We say that two Java statements c_{1} and c_{2} are operationally equivalent if

$$
\begin{aligned}
\forall \text { flow, heap, lcl, } \text { flow }^{\prime}, \text { heap }^{\prime}, l c l^{\prime} . & (\text { flow, heap, lcl }) \xrightarrow{c_{1}}\left(\text { flow }^{\prime}, \text { heap }^{\prime}, l c l^{\prime}\right) \\
& \text { (flow, heap, lcl }) \xrightarrow{c_{2}}\left(\text { flow }^{\prime}, \text { heap }^{\prime}, l c l^{\prime}\right)
\end{aligned} \Longleftrightarrow
$$

Are the following pairs of Java statements operationally equivalent? Give a proof or a counter-example.
(a) $y=x^{++}$; and $y=x ; x++$; , where x and y are local variables.
(b) if $(e) c$ else c and c, where e is a boolean expression and c a statement.
(c) $l:$ while $(e) c$ and $l:$ while $($ true $)\{\mathbf{i f}(!e)$ break l; else $c\}$, where l is a label, e a Boolean expression and c a statement (use your rules from Exercise 2).
(Bonus) Try to find a counterexample to the equivalence of $e_{1}<e_{2}$ and $-e_{1}>-e_{2}$ where e_{1} and e_{2} are integer-valued expressions. Although we did not present a rule for negation, less, and greater you should assume the Java semantics.

