
J. Hoenicke
J. Christ

02.11.2011
Hand in solutions via email to

christj@informatik.uni-freiburg.de

until 09.11.2011 (only Java sources and
PDFs accepted)

Tutorials for “Formal methods for Java”
Exercise sheet 2

Exercise 1: Operational semantics
Consider the following Java class:

class C {

private boolean b = true;

public int m(int x) {

return (this.b = !this.b) ? ++x : x;

}

}

Give rules for the operational semantics of the ?: and the ! operator. Use the rules
defining the operational semantics of Java to compute the result of the method call:
c.m(4). Assume that c is an instance of class C which has just been initialized.

Exercise 2: Loops with breaks
Java provides the break statement that when executed within a loop causes the execution
of the loop to be stopped immediately. Execution is then continued with the first state-
ment after the corresponding loop. For simplicity, we assume every loop is labeled, and
every break statement is followed by a label, i.e., a while loop has the form l : while(e)s
where l is the label of the loop.
We can model break statements by extending the flow component of program states:

Flow ::= Norm|Ret |Exc〈〈Address〉〉|Break〈〈Label〉〉 .

Use this extension to define the operational semantics of break l statements and while
loops with breaks.
Hint: You only need to define two axioms.

christj@informatik.uni-freiburg.de

Exercise 3: Operational equivalence
We say that two Java statements c1 and c2 are operationally equivalent if

∀flow , heap, lcl ,flow ′, heap ′, lcl ′. (flow , heap, lcl) c1−−→ (flow ′, heap ′, lcl ′) ⇐⇒
(flow , heap, lcl) c2−−→ (flow ′, heap ′, lcl ′)

Are the following pairs of Java statements operationally equivalent? Give a proof or a
counter-example.

(a) y = x++; and y = x; x++; , where x and y are local variables.

(b) if(e) c else c and c ,
where e is a boolean expression and c a statement.

(c) l : while(e) c and l : while(true) {if(!e) break l ; else c} ,
where l is a label, e a Boolean expression and c a statement (use your rules from
Exercise 2).

(Bonus) Try to find a counterexample to the equivalence of e1 < e2 and − e1 > −e2
where e1 and e2 are integer-valued expressions. Although we did not present a rule
for negation, less, and greater you should assume the Java semantics.

