Hie J

%> ALBERT-LUDWIGS-

UNIVERSITAT FREIBURG
J. Hoenicke 02.11.2011
J. Christ Hand in solutions via email to

christj@informatik.uni-freiburg.de
until 09.11.2011 (only Java sources and
PDF's accepted)

Tutorials for “Formal methods for Java”
Exercise sheet 2

Exercise 1: Operational semantics
Consider the following Java class:

class C {
private boolean b = true;
public int m(int x) {
return (this.b = !this.b) ? ++x : x;
}
+

Give rules for the operational semantics of the ?7: and the ! operator. Use the rules
defining the operational semantics of Java to compute the result of the method call:
c.m(4). Assume that ¢ is an instance of class C which has just been initialized.

Exercise 2: Loops with breaks

Java provides the break statement that when executed within a loop causes the execution
of the loop to be stopped immediately. Execution is then continued with the first state-
ment after the corresponding loop. For simplicity, we assume every loop is labeled, and
every break statement is followed by a label, i.e., a while loop has the form [: while(e)s
where [is the label of the loop.

We can model break statements by extending the flow component of program states:

Flow ::= Norm|Ret|Exc{(Address))| Break {{ Label)) .

Use this extension to define the operational semantics of break [statements and while
loops with breaks.
Hint: You only need to define two axioms.

christj@informatik.uni-freiburg.de

Exercise 3: Operational equivalence
We say that two Java statements ¢; and ¢y are operationally equivalent if

Vflow, heap, lcl, flow', heap', Icl’. (flow, heap, lcl) <= (flow’, heap’, lcl') <=
(flow, heap, lcl) <2 (flow’, heap', lcl’)

Are the following pairs of Java statements operationally equivalent? Give a proof or a
counter-example.

(a) y=xz++; and y=uz; az++; , where z and y are local variables.

(b) if(e)celse ¢ and ¢

where e is a boolean expression and ¢ a statement.

(c) [:while(e)c and [:while(true){if(le) break/;else ¢} ,
where [is a label, e a Boolean expression and ¢ a statement (use your rules from
Exercise 2).

(Bonus) Try to find a counterexample to the equivalence of ¢, < e and — e > —e
where e; and ey are integer-valued expressions. Although we did not present a rule
for negation, less, and greater you should assume the Java semantics.

