
Formal Methods for Java
Lecture 21: Proofs in Jahob

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Jan 18, 2012

Jochen Hoenicke (Software Engineering) FM4J Jan 18, 2012 1 / 11

Static Checking vs. Theorem Proving

Goal:

finds bugs at compile-time,

proves that there is no violation.

Static Checking:

e. g. Jahob and ESC/Java

fully automatic (after annotation)

can only verify simple properties

Theorem Proving:

e. g. KeY Prover

Needs lot of manual interaction

complete calculus, can verify any property.

Jochen Hoenicke (Software Engineering) FM4J Jan 18, 2012 2 / 11

The Jahob Proof Language

Goals

Improve the strength of the provable properties.

Still fully automatic (after annotation).

Have intermediate proof steps in annotation.

Paper:

Karen Zee, Viktor Kuncak, and Martin Rinard. An integrated proof
language for imperative programs. In ACM Conf. Programming
Language Design and Implementation (PLDI), 2009.

Jochen Hoenicke (Software Engineering) FM4J Jan 18, 2012 3 / 11

Note command

We already know one command

note ` : F

which abbreviates
assert ` : F ; assume ` : F

` is a label (or name) for the formula F

When F cannot be proven Jahob tells that the check for ` failed.

` can also be used to tell the Jahob which formulas are relevant:

assert G from `

This rule is correct, i. e., wp(note F ,H)→ H:

wp(note F ,H)↔ F ∧ (F → H)

↔ F ∧ H

→ H

Jochen Hoenicke (Software Engineering) FM4J Jan 18, 2012 4 / 11

Proving implications

To prove an implication F → G , the syntax is

assuming F
...
note G

This is an abbreviation for

(assume F
...
assert G
assume false

2

assumeF → G
)

... stands for arbitrary proof statements

Jochen Hoenicke (Software Engineering) FM4J Jan 18, 2012 5 / 11

Correctness of assuming statement

The implication rule is correct, provided the proof statements used in
between are correct.

wp((assume F ; p; assert G ; assume false2 assume F → G ,H)

≡ (F → wp(p,G)) ∧ ((F → G)→ H)

→ [assuming that proof statments p are correct]

(F → G) ∧ ((F → G)→ H)

→ H

Jochen Hoenicke (Software Engineering) FM4J Jan 18, 2012 6 / 11

Case Splits

One can split cases, e. g.

cases x ≥ 0, x < 0 for abs(x) ≥ 0

cases F1, . . . ,Fn for G

is an abbreviation for
assert F1 ∨ · · · ∨ Fn;
assert F1 → G ; . . .
assert Fn → G ;
assume G

Proof that F1, . . . ,Fn are all possible cases.

Proof for each case G separately.

Assume G holds.

Jochen Hoenicke (Software Engineering) FM4J Jan 18, 2012 7 / 11

Proving Universal Quantifiers

To prove a universal quantified formula the syntax is

pickAny x
...
note F

This is an abbreviation for

(havoc x
...
assert F [x]
assume false

2

assume ∀x .F [x]
)

Jochen Hoenicke (Software Engineering) FM4J Jan 18, 2012 8 / 11

Removing Universal Quantifiers

The inverse operation removes universal quantifiers:

instantiate ∀x .F [x] with t

This is an abbreviation for

assert ∀x .F [x]
assume F [t]

Jochen Hoenicke (Software Engineering) FM4J Jan 18, 2012 9 / 11

Proving Existential Quantifiers

To prove an existential quantified formula the syntax is

witness t for ∃x .F [x]

This is an abbreviation for

assert F [t]
assume ∃x .F [x]

Jochen Hoenicke (Software Engineering) FM4J Jan 18, 2012 10 / 11

Removing Existential Quantifiers

The syntax is

pickWitness x for F [x]
...
note G

where x does not occur in G

This is an abbreviation for

(assert ∃x .F [x]
havoc x
assume F [x]
...
assert G
assume false

2

assume G
)

Jochen Hoenicke (Software Engineering) FM4J Jan 18, 2012 11 / 11

