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Static Checking vs. Theorem Proving

Goal:

finds bugs at compile-time,

proves that there is no violation.

Static Checking:

e. g. Jahob and ESC/Java

fully automatic (after annotation)

can only verify simple properties

Theorem Proving:

e. g. KeY Prover

Needs lot of manual interaction

complete calculus, can verify any property.
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The Jahob Proof Language

Goals

Improve the strength of the provable properties.

Still fully automatic (after annotation).

Have intermediate proof steps in annotation.

Paper:

Karen Zee, Viktor Kuncak, and Martin Rinard. An integrated proof
language for imperative programs. In ACM Conf. Programming
Language Design and Implementation (PLDI), 2009.
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Note command

We already know one command

note ` : F

which abbreviates
assert ` : F ; assume ` : F

` is a label (or name) for the formula F

When F cannot be proven Jahob tells that the check for ` failed.

` can also be used to tell the Jahob which formulas are relevant:

assert G from `

This rule is correct, i. e., wp(note F ,H)→ H:

wp(note F ,H)↔ F ∧ (F → H)

↔ F ∧ H

→ H
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Proving implications

To prove an implication F → G , the syntax is

assuming F
...
note G

This is an abbreviation for

( assume F
...
assert G
assume false

2

assumeF → G
)

... stands for arbitrary proof statements
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Correctness of assuming statement

The implication rule is correct, provided the proof statements used in
between are correct.

wp((assume F ; p; assert G ; assume false2 assume F → G ,H)

≡ (F → wp(p,G )) ∧ ((F → G )→ H)

→ [assuming that proof statments p are correct]

(F → G ) ∧ ((F → G )→ H)

→ H

Jochen Hoenicke (Software Engineering) FM4J Jan 18, 2012 6 / 11



Case Splits

One can split cases, e. g.

cases x ≥ 0, x < 0 for abs(x) ≥ 0

cases F1, . . . ,Fn for G

is an abbreviation for
assert F1 ∨ · · · ∨ Fn;
assert F1 → G ; . . .
assert Fn → G ;
assume G

Proof that F1, . . . ,Fn are all possible cases.

Proof for each case G separately.

Assume G holds.
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Proving Universal Quantifiers

To prove a universal quantified formula the syntax is

pickAny x
...
note F

This is an abbreviation for

( havoc x
...
assert F [x ]
assume false

2

assume ∀x .F [x ]
)
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Removing Universal Quantifiers

The inverse operation removes universal quantifiers:

instantiate ∀x .F [x ] with t

This is an abbreviation for

assert ∀x .F [x ]
assume F [t]

Jochen Hoenicke (Software Engineering) FM4J Jan 18, 2012 9 / 11



Proving Existential Quantifiers

To prove an existential quantified formula the syntax is

witness t for ∃x .F [x ]

This is an abbreviation for

assert F [t]
assume ∃x .F [x ]
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Removing Existential Quantifiers

The syntax is

pickWitness x for F [x ]
...
note G

where x does not occur in G

This is an abbreviation for

( assert ∃x .F [x ]
havoc x
assume F [x ]
...
assert G
assume false

2

assume G
)
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