Formal Methods for Java
Lecture 4: JML and Abstract Data Types

Jochen Hoenicke

g Software Engineering

-=Z- Albert-Ludwigs-University Freiburg

]
i

November 4, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011

1/21



The Java Modelling Language (JML)

JML is a behavioral interface specification language (BISL) for Java
@ Proposed by G. Leavens, A. Baker, C. Ruby:
JML: A Notation for Detailed Design, 1999
@ It combines ideas from two approaches:

o Eiffel with it's built-in language for Design by Contract (DBC)
o Larch/C++ a BISL for C++

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 2/21



Semantics of Specification

/*@ requires = >= 0;

@ ensures \result <= Math.sqrt(z) &9 Math.sqrt(z) < \result + 1;
o*/

public static int <sgrt(int z) {
body
}

Whenever the method is called with values that satisfy the requires-formula

and the method terminates normally then the ensures-formula holds.
For all executions of the method,

(Norm, heap, Icl) 229 (Ret, heap', Icl'),

if lc/(x) >= 0 then the formula

lel'(\result) <= Math.sqrt(lcl(x)) < lcI'(\result) + 1
holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 3/21



What About Exceptions?

/%@ requires true;
@ ensures \result <= Math.sqrt(z) &5 Math.sqrt(z) < \result + 1;
@ signals (IllegalArgumentEzception) = < 0;
@ signals_only IllegalArgumentException;
ox/
public static int isgrt(int z) {
body
¥

For all transitions
(Norm, heap, Icl) 229 (Exc(v), heap', Icl')

where Ic/ satisfies the precondition and v is an Exception, v must be of
type lllegalArgumentException. Furthermore, lc/ must satisfy x < 0.

The code is still allowed to throw an Error like a OutOfMemoryError or a
ClassNotFoundError.

If no signals_only clause is specified, JML assumes a sane default value:
The method may throw only exceptions it declares with the throws
keyword (in this case none).

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 4/21



Side-Effects

A method can change the heap in an unpredictable way.

The assignable clause restricts changes:
/*@ requires ¢ >= 0;
@ assignable \nothing;
@ ensures \result <= Math.sqrt(z) €& Math.sqrt(z) < \result + 1;
o*/
public static int <sgrt(int z) {
body
}

For all executions of the method,

(Norm, heap, Icl) —2°% (Ret, heap', Icl'),

if lc/(x) >= 0 then the formula

lel'(\result) <= Math.sqrt(lcl(x)) < Icl'(\result + 1)

holds and heap = heap'.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011

5/ 21



Lightweight vs. Heavyweight Specifications

A lightweight specification
/*@ requires P;
@ assignable X;
@ ensures ({;
ox/
public void foo() throws IOEzception;

is an abbreviation for the heavyweight specification
/*@ public behavior

@ requires P;

@ diverges false;

@ assignable X;

@ ensures ({;

@ signals_only IOException
@x/

public void foo() throws IOEzception;

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 6 /21



Making Exceptions Explicit

/*@ public normal_behavior
@ requires T >= 0;
@ assignable \nothing;
@ ensures \result <= Math.sqrt(z) &4 Math.sqrt(z) < \result + 1;
@ also
@ public exceptional_behavior
@ requires = < 0;
@ assignable \nothing;
@ signals (IllegalArgumentException) true;
ex/
public static int <sqrt(int z) throws IllegaldArgumentEzception {
if (z < 0)
throw new IllegalArgumentEzception();
body
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 7/21



Making Exceptions Explicit (2)

o If several specification are given with also, the method must fulfill all
specifications.

@ A specification with normal_behavior implicitly has the clause
signals (java.lang.Exzception) false

so the method may not throw an exception.

@ A specification with exceptional_behavior implicitly has the clause
ensures false

so the method may not terminate normally.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 8/21



The Roots of JML

o ldeas from Eiffel:

o Executable pre- and post-condition (for runtime checking)
o Uses Java syntax (with a few extensions).
o Operator \old to refer to the pre-state in the post-condition.

@ ldeas from Larch:

o Describe the state transformation behavior of a method
e Model Abstract Data Types (ADT)

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 9/21



A priority queue

b

Subsystem
1st — M
Subsystem
Priority queue
Subsystem

@ Subsystems request timer events and queue them.
@ First timer event is passed to the timer.

@ Priority queue maintains events in its internal data structure.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 10 / 21



Priority Queue Interface

public interface PriorityQueue {
public void enqueue(Comparable o) ;
public Comparable removeFirst();

public boolean %sEmpty();

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 1 /21



Adding Incomplete Specification

public interface PriorityQueue {

/*@ public normal_behavior
@ ensures !isEmpty();
o*/
public void enqueue(Comparable o) ;

/*@ public normal_behavior
@ requires !isEmpty();
ex/
public Comparable removeFirst();

public /*@pure@*/ boolean isEmpty();

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 12 /21



Why is Specification Incomplete?

The specification allows undesired things.
o After removeFirst() new value of isEmpty() is undefined.

@ In a correct implementation, after two enqueue() and one
removeFirst() list is not empty.
Specification does not say so.

@ Problem: the internal state is not visible in spec.

@ There is not even internal state in an interface!

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 13 /21



Adding Model Variables

Solution: add a model variable that records the size.

public interface PriorityQueue {
//@ public instance model int size;

//@ public invariant size >= 0;

/*0 public normal_behavior
@ ensures size == \old(size) + 1;
©*/

public void enqueue(Comparable o);

/*@ public normal_behavior
@ requires !isEmpty();
@ ensures size == \old(size) - 1;
o/

public Comparable removeFirst();

/*0 public normal_behavior
@ ensures \result == (size == 0);
©*/

public /*@ure@*/ boolean tsEmpty();

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011

14 /21



Model Variables

//@ public instance model int size;

Model variables only exists in the specification.
Public model variables can be accessed by other classes.

Only specification can access model variables (read-only).

If a model variable is accessed in code, the compiler complains.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011

15 /21



Visibility in JML

//@ public instance model int size;

/*@ public normal_behavior
@ ensures \result == (size > 0);
©*/

public /*@pure@*/ boolean tsEmpty();

Why is size public?
@ The external interface must be public.
@ The specification is part of the interface.

@ To understand the specification one needs to know about size.

@ Therefore, size is public.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 16 / 21



Implementing the Specification

public class Heap implements PriorityQueue {
private Comparable[]l elems;
private int numElems;

//@ private represents size <- numElems;

public void enqueue(Comparable o) {
elems[numElems++] = o;

}
public Comparable removeFirst() {

return elems[--numElems] ;

}

public isEmpty() {
return numElems == 0;
}
¥

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 17 /21



Representing Model variables

Every model variable in a concrete class must be represented:
//@ private represents size <- numElems;

The expression can also call pure functions:
//@ private represents stize <- computeSize();

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 18 /21



How to Model Internal Structure?

@ Specification is still incomplete.
@ Which values are returned by removeFirst()?
@ We need a model variable representing the queue.

@ JML defines useful types to model complex data structures.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 19 /21



Example: Model for Internal Structure

//@ model import org.jmlspecs.models.JMLObjectBag;
public interface PriorityQueue {
//@ public instance model JMLObjectBag queue;

/*@ public normal_behavior
@ ensures queue.equals(\old (queue).insert(o));
@ modifies queue;
ox/

public void enqueue(Comparable o);

/*@ public normal_behavior
requires !tsEmpty();
ensures \old (queue).has (\result)
&9 queue.equals(\old (queue).remove(\result))
&4 (\forall java.lang.Comparable o;
queue.has(o); \result.compareTo(o) <= 0);
modifies queue;
*/

public Comparable removeFirst();

SESESESESESNS)

/*@ public normal_behavior
@ ensures \result == (queue.isEmpty());
o*/

public /*@pure@*/ boolean isEmpty();

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 20 /21



What is JMLObjectBag?

@ org.jmlspecs.models.JMLObjectBag is a pure class.
It has pure function and no references to non-pure classes.

@ Therefore, it can be used in specifications.

@ There are lot of other classes:
http://www.cs.iastate.edu/~leavens/JML-release/
javadocs/org/jmlspecs/models/package-summary.html

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 4, 2011 21 /21


http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html
http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html

