
Formal Methods for Java
Lecture 2: Operational Semantics

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

October 28, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 1 / 13



Semantics for Java

The Java Language Specification (JLS) 3rd edition gives semantics for
Java

The document has 684 pages.

118 pages to define semantics of expression.

42 pages to define semantics of method invocation.

Semantics are only defined by prosa text.
How can we give the semantics formally?
Need a mathematical model for computations.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 2 / 13



Operational Semantics for Java

Idea: define transition system for Java

Definition (Transition System)

A transition system (TS) is a structure TS = (Q,Act,→), where

Q is a set of states,

Act a set of actions,

→⊆ Q × Act × Q the transition relation.

Q reflects the current dynamic state (heap and local variables).

Act is the executed code.

Idea from: D. v. Oheimb, T. Nipkow, Machine-checking the Java
specification: Proving type-safety, 1999

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 3 / 13



Example: State of a Java Program

What is the state after executing this code?
List mylist = new LinkedList();
mylist.add(new Integer(1));

heap lcl

mylist: 7

7: LinkedList 1 8 1

8: LinkedList.Entry 0 9 9

9: LinkedList.Entry 10 8 8

10: Integer 1

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 4 / 13



State of a Java Program

The state of a Java program gives valuations local and global (heap)
variables.

Q = Heap × Local

Heap = Address → Class × seq Value

Local = Identifier → Value

Value = Z,Address ⊆ Z
A state is denoted as (heap, lcl), where heap : Heap and lcl : Local .

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 5 / 13



Actions of a Java Program

An action of a Java Program is either

the evaluation of an expression e to a value v , denoted as e . v , or

a Java statement, or

a Java code block.

Note that expressions with side-effects can modify the current state

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 6 / 13



Example: Actions of a Java Program

Post-increment expression:

(heap, lcl ∪ {x 7→ 5}) x++.5−−−−→ (heap, lcl ∪ {x 7→ 6})

Pre-increment expression:

(heap, lcl ∪ {x 7→ 5}) ++x.6−−−−→ (heap, lcl ∪ {x 7→ 6})

Assignment expression:

(heap, lcl ∪ {x 7→ 5}) x=x*2.10−−−−−−→ (heap, lcl ∪ {x 7→ 10})

Assignment statement:

(heap, lcl ∪ {x 7→ 5}) x=x*2;−−−−−→ (heap, lcl ∪ {x 7→ 10})

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 7 / 13



Rules

The last slide listed some examples for transitions.
Define rules when a transition is valid.

Definition (Inference Rules)

A rule of inference
F1 . . .Fn

G
, where . . .

is a decidable relation between formulae. The formulae F1, . . . ,Fn are
called the premises of the rule and G is called the conclusion.
If n = 0 the rule is called an axiom schema. In this case the bar may be
omitted.

The intuition of a rule is that if all premises hold, the conclusion also holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 8 / 13



Rules for Java expressions (1)

axiom for evaluating local variables:

(heap, lcl)
x.lcl(x)−−−−−→ (heap, lcl)

rule for field access:

(heap, lcl) e.v−−−→ (heap′, lcl ′)

(heap, lcl)
e.fld.heap′(v)(idx)−−−−−−−−−−−−→ (heap′, lcl ′)

,
where idx is the index
of the field fld in the
object heap′(v)

rule for assignment to local:

(heap, lcl) e.v−−−→ (heap′, lcl ′)

(heap, lcl) x=e.v−−−−−→ (heap′, lcl ′ ⊕ {x 7→ v})

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 9 / 13



Rules for Java expressions (2)

axiom for evaluating a constant expression c :

(heap, lcl) c.c−−−→ (heap, lcl)

rule for multiplication (similar for other binary operators)

(heap1, lcl1) e1.v1−−−−→ (heap2, lcl2)
(heap2, lcl2) e2.v2−−−−→ (heap3, lcl3)

(heap1, lcl1)
e1*e2.(v1·v2) mod 232−−−−−−−−−−−−−−→ (heap3, lcl3)

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 10 / 13



A derivation for x = x ∗ 2

(heap, lcl ∪ {x 7→ 5}) x.5−−−→ (heap, lcl ∪ {x 7→ 5})
(heap, lcl ∪ {x 7→ 5}) 2.2−−−→ (heap, lcl ∪ {x 7→ 5})

(heap, lcl ∪ {x 7→ 5}) x*2.10−−−−−→ (heap, lcl ∪ {x 7→ 5})
(heap, lcl ∪ {x 7→ 5}) x=x*2.10−−−−−−→ (heap, lcl ∪ {x 7→ 10})

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 11 / 13



Rules for Java Statements

expression statement (assignment or method call):

(heap, lcl) e.v−−−→ (heap′, lcl ′)

(heap, lcl) e;−−→ (heap′, lcl ′)

sequence of statements:

(heap1, lcl1) s1−−→ (heap2, lcl2) (heap2, lcl2) s2−−→ (heap3, lcl3)

(heap1, lcl1) s1 s2−−−→ (heap3, lcl3)

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 12 / 13



Rules for Java Statements

if statement:

(heap1, lcl1) e.v−−−→ (heap2, lcl2) (heap2, lcl2) bl1−−→ (heap3, lcl3)

(heap1, lcl1)
if(e) bl1elsebl2−−−−−−−−−→ (heap3, lcl3)

,where v 6= 0

(heap1, lcl1) e.v−−−→ (heap2, lcl2) (heap2, lcl2) bl2−−→ (heap3, lcl3)

(heap1, lcl1)
if(e) bl1elsebl2−−−−−−−−−→ (heap3, lcl3)

,where v = 0

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 28, 2011 13 / 13


