A Specialization Calculus for Pruning
Disjunctive Predicates to Support Verification

Wei-Ngan Chint Cristian Gherghina Razvan Voict
Quang Loc Lé Florin Craciud Shengchao Qth

(1) Department of Computer Science, National Universitgiofgapore
(2) School of Computing, Teesside University

Abstract. Separation logic-based abstraction mechanisms, enhavitedser-
defined inductive predicates, represent a powerful, egpesneans of specify-
ing heap-based data structures with strong invariant ptiegeHowever, expres-
sive power comes at a cost: the manipulation of such logisajly requires the
unfolding of disjunctive predicates which may lead to exgvem proof search.
We address this problem by proposingradicate specializatiotechnique that
allows efficient symbolic pruning of infeasible disjunatside each predicate in-
stance. Our technique is presented as a calculus whosatiteni preserve the
satisfiability of formulas, while reducing the subsequergtof their manipula-
tion. Initial experimental results have confirmed significapeed gains from the
deployment of predicate specialization. While speciglirais a familiar tech-
nique for code optimization, its use in program verificati@new.

1 Introduction

Abstraction mechanisms are important for modelling andyairag programs. Recent
developments allow richer classes of properties to be egprkvia user-defined pred-
icates for capturing commonly occurring patterns of praggaroperties. Separation
logic-based abstraction mechanisms represent one suelogewent. As an example,
the following predicate captures an abstraction of a sattely-linked list.

datanode { int val; node prev; node next; }
dl1(root,p,n,S) = root=null An=0 A S={}
V 3v,q,S; - root—node(v,p,q) * d11(q,root,n—1,S;)
AS = 81U{v}AVaEs; -v<a inv n>0;

In this definitionroot denotes a pointer into the listthe length of the lists repre-
sents its set of values, whergadenotes a backward pointer from the first node of the
doubly-linked list. The invariant>0 must hold for all instances of this predicate.

We clarify the following points. Firstly, spatial conjurah, denoted by the sym-
bol «, provides a concise way of describing disjoint heap sp&msondly, this abstrac-
tion mechanism is inherently infinite, due to recursion iadicate definition. Thirdly,

a predicate definition is capable of capturing multiple dees of the data structure it
models, such as its size and set of values. While this ricktesfdeatures can enhance
the precision of a program analysis, it inevitably leadsatgér disjunctive formulas.

This paper is concerned with a novel way of handling disjuedbrmulas, in con-
junction with abstraction via user-defined predicates. [@/tisjunctive forms are nat-
ural and expressive, they are major sources of redundarttynafficiency. The goal
of this paper is to ensure that disjunctive predicates caeffi@ently supported in a
program analysis setting, in general, and program verifioaetting, in particular.

To achieve this, we proposespecialization calculusor disjunctive predicates that
supports symbolic pruning of infeasible states within ea&dicate instance. This al-
lows for the implementation of botihcremental pruninggndmemoizatioriechniques.
As a methodology, predicate specialization is not a new epnsince general special-
ization techniques have been extensively used in the agiion of logic programs [18,
17,11]. The novelty of our approach stems from applying seation to a new do-
main, namely program verification, with its focus on prunimfgasible disjuncts, rather
than a traditional focus on propagating static informatiida callee sites. This new use
of specialization yields a fresh approach towards optimgigirogram verification. This
approach has not been previously explored, since pervasw®f user-defined predi-
cates in analysis and verification has only become poputants/ (e.g. [14]). Our key
contributions are:

— We propose aew specialization calculubat leads to more effective program ver-
ification. Our calculus specializes proof obligations proed in the program veri-
fication process, and can be used as a preprocessing step thef@bligations are
fed into third party theorem provers or decision procedures

— We adaptmemoizatiorandincremental pruningechniques to obtain an optimized
version of the specialization calculus.

— We present a prototype implementation of our specialipatialculus, integrated
into an existing program verification system. The use of pecglizer yields sig-
nificant reductions in verification times, especially fagler problems.

Section 2 illustrates the technique of specializing disfive predicates. Section 3
introduces the necessary terminology. Section 4 presemtsadculus for specializing
disjunctive predicates and outlines its formal propertisction 5 presents inference
mechanisms for predicate definitions to support our speai&n calculus. Section 6
presents experimental results which show multi-fold inweroent to verification times
for larger problems. Section 7 discusses related workr poia short conclusion.

2 Motivating Example

Program states that are built from predicate abstractimnaare concise, but may re-
quire properties that are hidden inside predicates. As ample, consider :

d11(x,p1,n,81) xd11(y, pa,n,S2) A x#null

This formula expresses the property that the two doublyelihlists pointed to by
andy have the same length. Ideally, we should augment our formititethe property:
y#null, n>0, S;#{} ands,#{}, currently hidden inside the two predicate instances but
may be needed by the program verification tasks at hand.

A naive approach would be to unfold the two predicate ingtanbut this would
blow up the number of disjuncts to four, as shown:

x=null A y=null An=0 A S;={} A Sa={} A x#null
V y—node(va, P2, qa) * d11(qga, y,n—1,84) A x=null
AN 512{} An=0A SQZ{VQ} U S4 A n—1ZO A x;énull
V x+—mnode(vy,Pp1,91) *d11(qs,x,n—1,83) A y=null A n=0
AS1={vi} US3 A Sy={} An—1>0 A x#null
V x—mnode(vy, p1,q1) * y—node(va, pa, g2) * d11(qs,x,n—1,S3)
* d11(qa,y,n—1,84) A S1={v1} US3ASy={va} USs An—1>0 A x#null

As contradictions occur in the first three disjuncts, we ¢axpsfy our formula to:

x—node(vy, p1,Qq1) * yr—onode(va, p2, q2) * d11(qs,x,n—1,S3)
* d11(qe,y,n—1,84) AS1={vi} US3 A Sy={vy} USs An—1>0 A x#null

After removing infeasible disjuncts, the propagated progeare exposed in the above

morespecializedormula. However, this naive approach has the shortconfiagun-

folding leads to an increase in the number of disjuncts fathdind its associated costs.
A better approach would be to avoid predicate unfolding,ibsitead apply predi-

cate specialization to prune infeasible disjuncts andggape hidden properties. Given

a predicatepred(- - -) that is defined by disjuncts, we shall denote each of its spe-

cialized instances byred(- - -)@L, whereL denotes a subset of the disjuncts, namely

L C {i...k}, that have not been pruned. Initially, we can convert eaellipate in-

stancepred(- - -) to its most general formred(---)@{1...k}, while adding the basic

invariant of the predicate to its context. As an illustratizve may view the definition

of d11 as a predicate with two disjuncts, labelled informallytyand2: prior to each

of its disjuncts, as follows:

dll(root,p,n,S) = 1:(root=null An=0 A S={})

V 2:(rootrnode(v,p,q) * d1l(qg,root,n—1,S;) A S =8;U{v} AVa€S; v<a)

We may convert eactii1 predicate by adding its invariant-0, as follows:
d11(x,p,n,S) = d11(x,p,n,S)@{1,2} An>0

With our running example, this would lead to the followingtig formula after the
same invariani>o (from the two predicate instances) is added.

d11(x,p1,n,81)@{1,2} x d11(y, p2,n, S2)@{1, 2} A x#null An>0

This predicate may be further specialized with the helpo€dntext by pruning away
disjuncts that are found to be infeasible. Each such prunimgd allow more states to
be propagated by the specialized predicate. By using th@expr#null, we can spe-
cialize the first predicate instancedol (x, p:, n, S1)@{2} since this context contradicts
the first disjunct of thei11l predicate. With this specialization, we may strengthen the
context with a propagated state, nameho A S:#{}, that is implied by its specialized
instance, as follows:

d11(x,p1,n,8:)@{2} * d11(y,pa, 1, S2)@{1,2} A x#null An>0 A S;#{}

Note thata>0 is removed when a stronger constrais is added. The new constraint

pred :=p(v*) = [inv 7]

e w=V (Fw o))" 0 = RAT

K = emp | v—c(v") | p(v") | K1 * K2

™ n= | mAT

N

Ié] i=v1=v2 | v=null | <0 | a=0

a w=k | kxv| a1+ a2 | maxai,az) | min(ai,az2)

where p is a predicate namev, w are variable names
cis a data type namek is an integer constant
k represents heap formulasr represents pure formulas
0 represents atomic interpreted predicates

Fig. 1. The Unannotated Specification Language.

n>0 Now triggers a pruning of the second predicate instanceesia first disjunct can
be shown to be infeasible. This leads to a specializatioh®f&tcond predicate, with
more propagation of atomic formulas, as follows:

dll(X, Pi1,1, S1)@{2} * dll(y, P2, 1, SZ)@{2}
A x#null An>0 A S1#{} A y#null A S#{}

In a nutshell, the goal of our approach is to apply aggresgreeialization to our
predicate instances, without the need to resort to pregligafiolding, in the hope that
infeasible disjuncts are pruned, where possible. In theges, our specialization tech-
nique is expected to propagate states that are consequereash of the specialized
predicate instances. We expect this proposal to suppow efticient manipulation of
program states, whilst keeping the original abstractiaotesct where possible.

3 Formal Preliminaries

Our underlying computation model is a state machine withumtable set of variables
and a heap, which is a partial mapping from addresses tos/alue

Fig. 1 defines the syntax of our (unannotated) specificatoguage. We denote
sequences of variables, . . . , v, by the notation*, and by3 atomic interpreted pred-
icates such as equality and disequality of program varsadohel arithmetic expressions.
Conjunctions of (possibly negated) atomic predicates fpure formulas, which we
denote by the symbat. Heap formulas, denoted by model the configuration of the
heap. They rely on two important components: data constrsicfv*), which model
simple data records (e.g. the node of a tree), and indugtilefined predicates, which
are generated by the non-termipatdin Fig. 1.

Definition 1 (Heap Formula and Predicate Definition) A heap formulas is either the
symbolemp, denoting the empty heap, or a formula of the farmc(v*), denoting a
singleton heap, or a predicagv*), or finally, a formula of the form; * o, wherex;

and ky are heap formulas, and is the separating conjunction connective. Predicates

spred ::= p(v*) = é:T; R
& =\ Bw's|0) Gu=RAT
I = emp | v—c(v") | p(V)QLH#R| A1 * k2
where p, v, w, ¢, w denote the same as in Fig. 1;
7 is a family of invariants
‘R is a set of pruning conditions
C is a pure formula denoting a context computed in the spieeigbn process.

Fig. 2. The Annotated Specification Language.

are defined inductively as the equivalence between a predgyembop(v*), and dis-
junctions of formulas of the formw™ - (x A 7), where variables* may appear free.
Predicate definitions may be augmented with invariantsifipddy theinv keyword.

Unannotated formulas become annotated in the specializatiocess. Fig. 2 de-
fines the syntax of thennotatedspecification language. Annotated predicate definitions
are generated by the nontermisated

Definition 2 (Annotated Predicates and Formulas) Given a predicate definition
p(v*) =V (Gw*-kAT)*, the correspondingnnotated predicate definititias the form
p(v*) =V (Qw*-kAr|C)*;Z; R, whereZ is a family of invariants, an® is a set of
pruning conditions. Each disjungiv*-& A | C how contains the annotated counterpart
% of k, and is augmented with a conteXxtwhich is a pure formula for which G 7
always holds. Intuitively, C captures also the consequentthe specialized statesiof
Anannotated formula a formula where all the predicate instances are annotafed
annotated predicaiastance is of the form(v*)@QL#R, where IC{1,..,n} is a set of
labels denoting the unpruned disjuncts, and where R is a set of remaining pruning
conditions. Theet of invariantd is of the form{(L—.) | 0)CcLC{1,..,n}}. For each set
of labelsL, 7. represents the invariant for the specialized predicat¢ansep(v*)@L.
For a given annotated predicate instang@*)QL#R, it is possible for L= (. When
this occurs, it denotes that none of the predicate’s didgiace satisfiable. Moreover,
we havery=false which will contribute towards a false state (or contradast) for its
given context.

Definition 3 (Pruning Condition) The set of pruning conditior® is of the form
{(a+=L) | ---}. A pruning conditionis a pair between an atomic predicate instance
and a set of labels L, written«L. Its intuitive meaning is that the disjuncts in L should
be kept ifa is satisfiable in the current context.

Given a predicate definitiop(v*) = /I, (3w*-6;|C;); Z; R, we callD; =4
(Fw*-6; | C;) the '™ disjunct ofp ; i will be called thelabel of its disjunct. We shall
useD; freely as thei*® disjunct of the predicate at hand whenever there is no risk of
confusion. We employ a notion afosurefor a given conjunctive formula. Consider a
formular(w*) = Fv*-a1A- - A, Wherea; are atomic predicates, and variables
appear free. We denote By= closure(m(w*)) a set of atomic predicates (over the free
variablesw*) such that each elementc S is entailed byr(w*). Some of the variables
w* may appear free in butnotv™. To ensure this closure set be finite, we also impose a

requirementthat weaker atomic constraints are never prgsthe same set, as follows:
Va; € 8- (3o € S-i#j A a; = «). ldeally,closurgr(w*)) containsall stronger
atomic formulas entailed by(w*), though depending on the abstract domain used, this
set may not be computable. A larger closure set leads to nggressive pruning.

Our specialization calculus (Sec 4) is based on the anrbsatecification language.
We have an initialization and inference process (Sec 5) tonaatically generate all
annotations (including, R) that are required by specialization. For simplicity of pre
sentation, we only include normalized linear arithmetiostoaints in our language. Our
system currently supports both arbitrary linear arithmetinstraints, as well as set con-
straints. This is made possible by integrating the Omeghdh@ MONA solvers [9]
into the system. In principle, the system may support abjtconstraint domains, pro-
vided that a suitable solver is available for the domain tériest. Such a solver should
be capable of handling conjunctions efficiently, as well asputing approximations
of constraints that convert disjunctions into conjuncsi¢e.g. hulling).

4 A Specialization Calculus

Our specialization framework detects infeasible disjamtipredicate definitions with-
out explicitly unfolding them, and computes a correspogdimengthening of the pure
part while preserving satisfiability. We present this aslautas consisting obpecial-
ization rulesthat can be applied exhaustively to convert a non-speelannotated
formulal into a fully specialized one, with stronger pure parts, teat be subsequently
extracted and passed on to a theorem prover for satisfideiitailment checking. Apart
from being syntactically correct, annotated formulas naagisfy the following well-
formedness conditions.

Definition 4 (Well-formedness) For each annotated predicatév*)QL#R in the for-
mula at hand, assuming the definitigw*)=\/!", D;;Z; R, we have that (a) LC
{1,...,n};(b) RC R ;and (c) foralla~L, € R we have IO Ly # 0.

Definition 5 (Specialization Step) A specialization step has the form
&1 | C; —st> @4 | Cy, and denotes the relation allows theAannotated fornadiawith
contextC; to be transformed into a more specialized form@lawith contextCs.

Our calculus produces specialization steps, which aréexppl sequence, exhaus-
tively, to producdully specializedormulas (a formal definition of such formulas will
be given below). Relatiorsf—~ depends on relationsp—, which produces predicate
specialization steps defined by the following:

Definition 6 (Predicate Specialization Step)A predicate specializatiostep has form
(1) p*)AL1#Ry | C; —sp— p(v™)ALy#R; | Co.

and signifies that annotated predicat@*)@QL,#R; | C; can be specialized into
p(v*)QLy#Ry | Co, where by C Ly, Ry C Ry, and G is stronger than €.

! The conversion of non-annotated formulas into annotates shall be presented in Sec. 5.

[sP—[FILTER]]
Ry = {(aLo) | (a—Lo)€R, (LNLo=0)V(C =)}
C,L + Rilter— (R— Ry)

[sP—[PRUNE]|
Cha = false (a+Lp)€R LNLy#0® Ly=L-Lo
Ci = Znv(p(v*),Ls) CACy, Lo F R-ilter— Ry
p(v*)AQL#R | C —sp— p(v*)QL2#R; | CA Cy

[sP—[FINISH]]
C,LFR-fiter—0 R#£0
p(v7)GL#R| C —sp- p(v")QL#D | C

Fig. 3. Single-step Predicate Specialization

Here, the setk; andL. denote sets of disjuncts pfv*) that have not been detected
to be infeasible. Each specialization step aims at detgotw infeasible disjuncts and
removing them during the transformation. Thusis expected to be a subsetlof.

The sets of pruning conditior?; andR, may be redundant, but are instrumental
in making specialization efficient. They record increméanltenges to the state of the
specializer, and represent information that would be egperto re-compute at every
step. Essentially, a pruning conditiar—L, states that wheneveix is entailed by the
current context, the disjuncts whose labels arégrcan be pruned. The initial set of
pruning conditions is derived when converting formulas imtnotated formulas, and is
formally discussed in Section 5.

In a nutshell, each specialization step of the form (1) dstéEpossible) a prun-
ing conditiona«—Ly € R such that if-« is entailed by the current context, then the
disjuncts whose labels occur I are infeasible and can be pruned. Given the nota-
tions in (1), this is achieved by settihg = L, — L . Subsequently, the current set of
pruning conditions is reduced to contain only elements efftdrm o’<—L{, such that
L, N Ly # (0. Thus, the well-formedness of the annotated formula isgovesl

A key aspect of specialization is that context strengthghielps reveal and prune
mutually infeasiblalisjuncts in groups of predicates, which leads to a moreessire
optimization as compared to the case where predicates ec&atiped in isolation.

Definition 7 (Fully Specialized Formula; Complete Specialiation) An annotated
formula isfully specializedw.r.t a context when all its annotated predicates have empty
pruning condition sets. If the initial pruning conditiontserre computed using a notion
of strongest closurehen for each predicate in the fully specialized formulk,ttze
remaining labels in the predicate’s label set denote fdasilisjuncts with respect to
the current context, and in that sense, the specializai@oninplete

This procedure is formalized in the calculus rules giveniguFes 3 and 4. Fig-
ure 3 defines the predicate specialization relatisp—. This relation has two main
components: the one represented by the fse-[FILTER]], which restores the well-
formedness of an annotated predicate, and the one repeddsrihe ruldsp - [PRUNE]],
which detects infeasible disjuncts and removes the cooretipg labels from the anno-
tation. A third rule,[sp—[FinisH]| produces the fully specialized predicate.

[SF—[PRUNE]]
p(v")AL#R| C —sp— p(v")OLa#R; | Cy
p(v)AQAL#R* & | C —sf— p(v*)@L#Rs x /& | Co

[SF—[CASE—SPLIT||
FC=— ai1Vazs F aiAas — false
Vi€ {1,2} - & | CAa;y st ki | C;
k| C—sf= (k1]C1) V (R2 | C2)

[sF—[OR]]
R1 | C, —sf- i3 | Cs
(1%1 |C1) V (/%2 | CQ) —sf— (/%3 | Cg) Vv (I%Q | CQ)

Fig. 4. Single-step Formula Specialization

The predicate specialization relation can be weaved irgddmula specialization
relation given in Fig. 4. The first rulg¢sF—-[PRUNE]], defines the part of thesf— re-
lation which picks a predicate in a formula and transformssing the—sp— relation,
leaving the rest of the predicates unchanged. Howeverrdnsformation of the pred-
icate’s context is incorporated into the transformatiortref formula’s context. This
rule realizes the potential for cross-specialization efjicates, eliminating disjuncts of
different predicates that are mutually unsatisfiable.

The rule[sF-[case—spriT]] allows further specialization via case analysis. It de-
fines the part of thesf— relation that produces two instances of the same formula,
joined in a disjunction, each of the new formulas having argjer context. Each
stronger context is produced by conjunction with an atemi € {1, 2}, with the re-
quirement that the two atoms be disjoint and their disjurctiover the original context
C. This rule is instrumental in guaranteeing that all pretisaeach a fully specialized
status. Indeed, whenever an annotated predicate has ag@mronditiona«L, such
thata is not entailed by the conte&, yeta A C is satisfiable, the only way to further
specialize the predicate is by case analysis with the atoansd—«. Finally, the rule
[sF-[or]] handles formulas with multiple disjunctions.

In the remainder of this section, we formalize the notiort tha calculus produces
terminating derivations, and is sound and complete.

Property 1 Relations-sp—~ and —sf— preserve well-formedness. Thus, given two an-
notated predicate instanceév*)@L; #R; andp(v*)@QL.#Ry, if

P(v")@QL1#Ry | C1 —sp— p(v")QL2#R; [C;

can be derived from the calculus, ap@*)@L; #R; is well-formed, them(v*)QL.#R,
is well-formed as well. Moreover, for all annotated formsda andé,, if

&, | Ci —sf> by | Co

can be derived from the calculus, a#d is well-formed, the®, is well formed as well.
A predicate specialization sequerisea sequence of annotated predicates such that
each pair of consecutive predicates is in the relatisp—. A formula specialization se-

guencas a sequence of annotated formulas such that each pair sécotive formulas

is in the —sf— relation.
Definition 8 (Canonical Specialization Sequencep canonical specialization sequence

is a formula specialization sequence where (a) the first etans well-formed; (b) spe-
cialization rules are applied exhaustively ; (c) tf—[case—spLIT]] relation is only
applied as a last resort (i.e. when no other relation is apatile); and (d) the case
analysis atoms for th&sF-[case—sprIT]] relation must be of the form, —«, where
a«Lg is a pruning condition occurring in an annotated predicaie*)QL#R of the
formula, such that I0 Ly # 0.

Property 2 (Termination) All canonical specialization sequences are finite and pro-
duce either fully specialized formulas, or formulas whosetext is unsatisfiable.

Property 3 (Soundness)The —sp—~ and —sf- relations preserve satisfiability. Thus,
if p(vo.n)Q@L1#Ry | C; —sp— p(vo.n)@L2#Rs | Co can be derived from the calculus,
then for all heapsh and stackss, s,hE=p(v*)QL#R, |Cy iff shE
p(v*)@Ly#R; | C,. Moreover, ifd, | C; —sf— &, | C, can be derived from the calculus,
thens, h = &,|Cy iff s, h = 5|Cs.

We note here that the sBtdoes not play a role in the way an annotated predicate
is interpreted. Mishandling (as long as no elements are added) may result in lack of
termination or incompleteness, but does not affect sowsglne

Finally, we address the issue of completeness. This pypdestvever, is depen-
dent on how “complete” the conversion of a predicate int@aiteotated form is. Thus,
we shall first give an ideal characterization of such a caiver after which we shall
endeavour to prove the completeness property. Realispteimmentations of this con-
version shall be discussed in Section 5.

Definition 9 (Strongest Closure) The strongest closure of unannotated formtjale-
noted sclosur@b), is the largest set of atomswith the following properties: (a) for all
stackss, s = « whenever there existssuch thats, h = &, and (b) if« is not of the
formv#£null, then there exists no atomi strictly stronger thany — that is, it is not the
case that for alls, s = a whenever |= /. For practical and termination reasons, we
shall assume only closures which return finite sets in ounfdation.

In our conversion of an unannotated predicate definitiopfoet) into the annotated
definition p(v*)=\/;_, Di; Z; R, we compute the following sets; = sclosurgD;Ar),
fori=1,.,n,Hy = {a|foralli € L,existsa’ € G; s.t. foralls, s = o/ whenever =
a}andZ = {L—r |[LC{l..n}, 7 = A, gy, o}, andR = {a«L|L s the largest set
s.t.a€ ;e Gi}. Moreover, we introduce the notatighnv(p(v*),L) = =, where
(L—m_)€Z. This notation is necessary in applying the rige— PRUNE]].

In practice, either the assumption holds, or the closureqmore computes a close
enough approximation to the strongest closure so that svyif any, infeasible dis-
juncts are left in the specialized formula.

Property 4 (Completeness)Letp(v*)@QL#() x 5|C be a fully specialized formula that
resulted from a specialization process that started witraanotated formula. Denote
by m;, 1 < i < n the pure parts of the disjuncts in the definitionpd?*), and assume
that C is satisfiable. Then, for alle L, m; A C is satisfiable.

Proofs of the above properties, as well as a more detailedsisn of our calculus
rules, can be found in [3].

5 Inferring Specializable Predicates

We present inference techniques that must be applied topgaditate definition so that
they can support the specialization process. We refersqgtioicess amference for spe-

cializable predicatesA predicate is said to bgpecializabléf it has multiple disjuncts

and it has a non-empty set of pruning conditions. These twalitions would allow a

predicate instance to be specializable from one form toleatpecialized form. Our
predicates are processed in a bottoms-up order with theafmlfy key steps:

— Transform each predicate definition to its specialized form

— Compute annvariant(in conjunctive form) for each predicate.

— Compute damily of invariantgo support all specialized instances of the predicate.
— Compute aset of pruning conditionfor the predicate.

— Specialize recursive invocations of the predicate, if fibss

As a running example for this inference process, let us denshe following pred-
icate which could be used to denote a list segment of sirigket nodes:
data snode { int val; snode next; }
lseg(x,p,n) = x=pAn=0 V Jq,m- x—snode(_,q) * 1seg(q,p,m) Am=n—1
Our inference technique derives the following specialiegivedicate definition:

1seg(x,p,n) = x=p A n=0 | x=pAn=0 V

Jdq,m - x—snode(_, q)*1seg(q, p,m)Am=n—1 | x#nullAn>0;

7T = {{1}—>x=pAn=0, {2} —x#nullAn>0, {1,2}—n>0};

R = {x=p—{1}, n=0—{1}, x#null—{2}, n>0—{2}}
Note that we have a family of invariants, namgdo cater to each of the specialized
states. The most general invariant for the predicat&i$lseg(x,p,n), {1,2}) = n>0.
This is computed by a fix-point analysis [4] on the body of tmedicate. If we de-
termine that a particular predicate instance can be sjmibtio1seg(x, p,n)@{2}, we
may use a stronger invariabiv(1lseg(x, p,n), {2}) = x#null A n>0 to propagate this
constraint from the specialized instance. Such a familyediiiants allows us to enrich
the context of the predicate instances that are being pssiyedy specialized.

Furthermore, we must process the predicate definitions iot@fn-up order, so
that predicates lower in the definition hierarchy are irddribefore predicates higherin
the hierarchy. This is needed since we intend to specidiiedbdy of each predicate
definition with the help of specialized definitions that warkerred earlier. In the case
of a set of mutually-recursive predicate definitions, wellgh@cess this set of pred-
icates simultaneously. Initially, we shall assume thatgéeof pruning conditions for
each recursive predicate is empty, which makes its re@insstances unspecializable.
However, once its set of pruning conditions has been detehiwe can apply further
specialization so that the recursive invocations of thelipege are specialized as well.
The formal rules for inferring each specializable predicate given in Fig. 5. The

rule inrT- [(MULTI-SPEC]| CONverts an unannotated formula into its corresponding spe
cialized form. It achieves this by an initialization ste@\the —if— relation given in
Fig. 6, followed by a multi-step specialization usingf—*, without resorting to case
specialization (that would otherwise result in an outejudistive formula). This essen-
tially applies a transitive closure esf— until no further reduction is possible.

[INIT-[MUTLI-SPEC]]
kAT —if— RAT | Cq /| CL —st" k1| Co
kAT —msf- G AT | Co

[ISP—[SPEC-BODY]]
spreqy = (p(v*) = Vi, Fui - 04)) Vie{l,..,n} - o; -mst= &; | C;
sprede, = (p(v") = V", (3u; -6/ C)))
spred,q —isp— spred,,

[ISP—[BUILD-INV—FAMILY]]
spredyy = (p(v) = VI, (Bul 611 Co) p= [invy(v)—fix(Vi, 3ui - Co))
T = {(L=hull(\V/, ¢, Fu; - pC;) | BcLc{l..n}} U {{1.n}—p(inv,(v"))}
spreden, = (P(v") = Vi, (Bui - 6:(pCi); T)
spred;y —isp— spreds,,

[ISP—[BUILD-PRUNE-COND]]
spredyy = (p(v') = Vi, (ui - 6:|Ci); I) G = Ui, closurdZ({i}))
R =Ujecla—{i | 1<i<n A I({i}) = a}} Vie{l,.,n} 6:|Ci —s"Gi2 | Cio
spredey = (P(v) = Vi, (Bui - 6i2|Ciz2); T; R)
Spred;q —Sp— Sprede,
where —sf—" is the transitive closure ofsf—; and Z({i}) = m;, given({i}—m) € Z.

Fig. 5. Inference Rules for Specializable Predicates

The rule 1sp—[spEc-BODY]] converts the body of each predicate definition into
its specialized form. For each recursive invocation, it witially assume a symbolic
invariant, namedhv, (v*), without providing any pruning conditions. This immediste
puts each recursive predicate instance in the fully-spizetform.

After the body of the predicate definition has been sped@ellizve can proceed to
build a constraint abstraction for its predicate’s invatjalenoted byinv,(v*), in the
[1Isp-BUuILD-INV-FaMILY]] FUle. FOr example, we may denote the invariant of predi-
catelseg(x, p,n) symbolically usingnvis (x, p,n), before building the following recur-
sive constraint abstraction:

iNVigeg(x,p,n) = x=pAn=0 V 3q,m-x#nullAn=m+1AiNVise(q, p,m)

If we apply a classical fix-point analysis to the above algsiba, we would obtain a
closed-form formula as the invariant of theeg predicate, that i, (x, p,n) = n>0.
With this predicate invariant, we can now build a family ofamniants for each proper
subset of disjuncts, namelgcLc{1..n}. This is done with the help of the convex hull
approximation. The size of this family of invariants is erpatial to the number of
disjuncts. While this is not a problem for predicates withrea number of disjuncts,
it could pose a problem for unusual predicates with a largaeber of disjuncts. To
circumvent this problem, we could employ either a lazy cartgiton technique or a
more aggressive approximation to cut down on the numbewafiants generated. For
simplicity, this aspect is not considered in the presenepap

[INIT—[EMP]] [INIT—[CELL]|
emp —ih— emp | true x—p(v*) Adh— z—p(v*) | z#null

[INIT—[PRED]] [INV-DEF]
p(") = (ViZ,Gui-6:[C) LR p(v™) = (Vis, (Fui-64|Ci)); IR
C = Znv(p(v"),{1..n}) (L=C) ez
p(v*) —ih— p(v*)Q{1..n}#R | C Inv(p(v*),L)=C
[INIT-[HEAP]| [INIT-[FORMULA]|
vie{l,2}-k; —h— &; | C; k —ih— & |C

K1*kko —h— K1*Ro | Ci1ACy rKAT —f— RAT | CAT

Fig. 6. Initialization for Specialization

Our last step is to build a set of pruning conditions for thgdictive predicates
using the[isp- BuiLb-PrRUNE-conD]] rule. This is currently achieved by applying a
closure operation over the invariant{i}) for each of the disjuncts. To obtain a more
complete set of pruning conditions, we are expected to gémerset of strong atomic
constraints for each of the closure operations. For exarifple currently have a for-
mulaa>b A b>c, a strong closure operation over this formula may yield tiloWing
set of atomic constraint&a>b, b>c, a>c+1} as pruning conditions and omit weaker
atomic constraints, such as-c.

Definition 10 (Sound invariant and sound pruning condition) Given a predicate def-

inition p(v*)=\/!_, Ds; ---:

(1) aninvariant.—~ is said to be sound w.r.t. the predicaté (1.a)® c L C {1,..,n},
and (1.b)p(v*)QL#_ |= .

(2) afamily of invariant< is sound if every invariant from is sound and the domain
of 7 is the set of all non-empty subsetg/of.., n};

(3) a pruning condition(a«+L) is sound w.r.t. the predicateif (3.a)® c L C {1,..,n},
(3.b)vars(a) C {v*}, and (3.cVieL-D; | a.

(4) asetof pruning conditiorRis sound if every pruning condition Ris sound w.r.t.
the predicatep.

Property 5 For each predicate(v*), the family of invariants and the set of pruning
conditions derived fop by our inference process are sound, assuming the fixpoirit ana
ysis and the hulling operation used by the inference are doun

A proof of this property can be found in [3].

6 Experiments

We have built a prototype system for our specializationwakinside an existing pro-
gram verification system for separation logic, calldld® [14]. Our implementation
benefits greatly from two optimizationmaemoizatiorand incremental pruningThe
key here is to support the early elimination of infeasibbtes, by attempting a proof

Programs (specified propd)OC|| HIP [HIP+Speg HIP HIP+Spec
Time(s) Time(s) ||CountDisj| Size||CountDisj| Size
17 small progs (size) | 87 || 0.86 0.80 229 (1.6312.39| 612 [1.13 2.97
Bubble sort (size,sets) | 80 || 2.20 2.23 296 |2.1318.18| 876 |1.09 2.79
Quick sort (size,sets) | 115(| 2.43 2.13 255 (3.2917.97| 771 |1.27, 3.08
Merge sort (size,sets) | 128|| 3.10 2.15 286 [2.0416.74| 1079(1.07 2.99
Complete (size,minheighf)137| 5.01 2.94 463 |3.5243.75| 2134 |1.11 10.lq
AVL (height, size,bal) | 160|| 64.1 16.4 764 (2.9085.04| 6451|1.07 9.66
Heap Trees (size, maxelen?08|| 14.9 4.62 649 [2.1056.46| 2392(1.02 8.68
AVL (height, size) 340|| 27.5 13.1 704 {2.9870.65| 7078(1.0910.74
AVL (height, size, sets) | 500|| 657 60.7 || 1758|8.0086.79 146621 1.9110.11
Red Black (size, height)| 630 25.2 15.6 | 2225|3.8480.91| 7697|1.01 3.79

Fig. 7. Verification Times and Proof Statistics (Proof Counts, Avgjincts, Avg Size)

of each atomic constrainat being in contradiction with a given contegt In this way,
the contextC is allowed to evolve to a monotonically stronger contéxt such that
Ci = C. Hence, if indee — -« is established, we can be assured that= —«
will also hold. This monotonic context change is the basthefmemoization optimiza-
tion that leads to reuse of previous outcomes of implicatiamd contradictions.

More specifically, we maintain a memoization detior each contexC. This de-
notes a set of atomic constraints that are implied by thesxt@t that isvacl-C = «.
Contradictions of the forniCAa) = false are also memoized in the same way, since we
can model it as an implication check = -a. These memoization recalls are only
sound approximations of the corresponding implicatiorckkeln case both member-
ship tests fail for a given pruning conditien we could turn to automated provers (as a
last resort) to help determit®e = —«. Memoization would, in general, help minimize
on the number of invocations to the more costly provers.

The early elimination of infeasible states has an additiadeantage. We can easily
slice outrelevant constraints from a (satisfiable) contexhat is needed to prove an
atomic constraint.. This is possible because we detect infeasible branchesdwy p
ing only one atomic pruning constraint at a time. For exampt:sider a context
x#null A n>0 A S#{}. If we need to prove its contradiction with-=0, a naive solu-
tion is to Us&(x#null An>0 A S#{}) = —(n=0). A better solution is to slice out just
the constraint>0, and then proceed to prove the contradiction using — —(n=0),
leading to an incremental pruning approach that uses snpadef obligations. To im-
plement this optimization, we partition each context iretsof connected constraints.
Two atomic constraints in a contegtare said to be&onnectedf they satisfy the fol-
lowing relation.

connected(ai, an) - (vars(ai)Nvars(az)) # {}
connected(a, az) - Ja€C - connected(a,) Aconnected(az, av)

Using this relation, we can easily slice out a set of constsaifrom the context) that
are connected to each pruning condition.

Fig 7 summarizes a suite of programs tested which includedlth small pro-
grams (comprised of various methods on singly, doublyesaihd circular linked lists,
selection-sort, insertion-sort and methods for handlieaps, and perfect trees). Due
to similar outcomes, we present the average of the perfaresdior these 17 programs.

HIP %

100

75
HIP + Spec :

WAvg.
Disjuncts

50

OAvg. Size

25 A
H Time

17 small Bubble Quick Merge Complete AVL Heap AVL AVL Red
progs sort sort sort (h, s,b) Trees (h,s) (h,s,s) Black

Fig. 8. Characteristic (disjunct, size, timing) of HIP+Spec conggato the Original HIP

We also experimented with a set of medium-sized prograntsiticluded complex
shapes and invariants, to support full functional correstn We measured the verifi-
cation times taken for the origin&ll P system, and also the enhanced system, called
HI P+Spec, with predicate specialization. For the suite of simplegpamns, the veri-
fier with specializer runs about 7% faster. For programs witlie complex properties
(with the exception of bubble sort), predicate specialiratmanages to reduce verifi-
cation times by between 12% and 90%. These improvementslargey due to the
presence of smaller formulae with fewer disjuncts, as gaptin Fig 8. This graph
compares the characteristics (e.g. average disjunces aizd timings) of formula en-
countered byl P+Spec, as a percentage relative to the same properties of theaigi
HI P system. For example, the average number of disjuncts pef pnaountered went
down from 3.2 to 1.1; while the size of each proof (based omhasiumber of atomic
formulae) also decreased from an average of 48.0 to 6.5.spleied-up was achieved
despite a six fold increase in the proof counts per programff63 to 4375 used by
the specialization and verification processes. We managachtieve this improvement
despite the overheads of a memoization mechanism and teeaken to infer anno-
tations for specializable predicates. We believe this stdusmaller and simpler proof
obligations generated with the help our specializatiorcpss.

We also investigated the effects of various optimizatianghe specialization mech-
anism. Memoizing implications and contradictions savé3 %, while memoizing each
context for state change saves 22.3%. For incrementalpyuwe have utilized the slic-
ing mechanism which saves 48% on average. We have not yetiedihe incremental
proving capability based on strengthening of contextsesour current solvers, Omega
and MONA, do not support such a feature. These optimizaticere measured sepa-
rately, with no attempt made to study their correlation. &orextended version of the
present paper, including further experimental detaild33f

7 Related Work and Conclusion

Traditionally, specialization techniques [8,17,11] h#een used for code optimiza-
tion by exploiting information about the context in whichetprogram is executed.

Classical examples are the partial evaluators based oingitiche analysers that di-
vide a program into static parts to be specialized and dyoaarits to be residualized.
However, our work focusses on a different usage domain,qsiog a predicate spe-
cialization for program verification to prune infeasiblgjdincts from abstract program
states. In contrast, partial evaluators [8] use unfoldimgdyspecialised methods to prop-
agate static information. More advanced partial evalmatchniques which integrate
abstract interpretation have been proposed in the contéagiz and constraint logic
programming [18,17, 11]. They can control the unfolding cégicates by enhancing
the abstract domains with information obtained from oth&olding operations. Our
work differs in its focus on minimizing the number of infelalg states, rather than on
code optimization. This difference allows us to use techeg) such as memoization
and incremental pruning, that were not previously exptbite specialization.

SAT solvers usually use a conflict analysis [22] that recéidscauses of conflicts
S0 as to recognize and preempt the occurrences of similéliateitater on in the search.
Modern SMT solvers (e.g. [15, 6]) use analogous analysestioce the number of calls
to underlying theory solvers. Compared to our pruning aaghoconflict analysis [22]
is a backtracking search technique that discovers corladiéng to conflicts and uses
them to prune the search space. These techniques are nasiiyemmentary since they
did not consider predicate specialization, which is imaotfor expressive logics.

The primary goal of our work is to provide a more effective wayhandle dis-
junctive predicates for separation logic [14, 13]. The mrdpeatment of disjunction (to
achieve a trade-off between precision and efficiency) isyack@cern of existing shape
analyses based on separation logic [5, 10]. One researettidin is to design param-
eterized heap materialization mechanisms (also known@assfoperation) adapted to
specific program statements and to specific verificatiorstpxk 12, 20, 1, 16]. Another
direction is to design partially disjunctive abstract damsawith join operators that en-
able the analysis to abstract away information consideydaktirrelevant for proving
a certain property [7, 23, 2]. Techniques proposed in th@settbns are currently or-
thogonal to the contribution of our paper and it would beresting to investigate if
they could benefit from predicate specialization, and vieesa.

Conclusion We have proposed in this paper a specialization calculudi§unctive
predicates in a separation logic-based abstract domainsg@acialization calculus is
proven sound and is terminating. It supports symbolic prgoif infeasible states within
each predicate instance, under monotonic changes to tlgegonocontext. We have
designed inference techniques that can automaticallyelatiannotations required for
each specializable predicate. Initial experiments havdicoed speed gains from the
deployment of our specialization mechanism to handle s¢jparlogic specifications
in program verification. Nevertheless, our calculus is ngereral, and is useful for
program reasoning over any abstract domain that suppeijtsdtive predicates. This
modular approach to verification is being enabled by predispecialization.
AcknowledgementWe thank the reviewers for insightful feedback. This workééng
supported principally by MoE research grant R-252-000-212.

References

1. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. OliHga Wies, and H. Yang. Shape
analysis for composite data structuresCIAV, pages 178-192, 2007.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

B.-Y. E. Chang and X. Rival. Relational inductive shapalgsis. INPOPL, pages 247—-260,
2008.

W.N. Chin, C. Gherghina, R. \oicu, Q.L. Le, F. Craciun, aqin S.C. A
specialization calculus for pruning disjunctive predésatto support verification.
Technical report, School of Computing, National Universiof Singapore, 2011,
http://loris-7.ddns. conp. nus. edu. sg/ ~pr oj ect/ hi ppruni ng/ .

P. Cousot and R. Cousot. Abstract interpretation: a whifigice model for static analysis
of programs by construction or approximation of fixpoints ACM POPL, pages 238-252,
1977.

D. Distefano, P. W. O’Hearn, and H. Yang. A local shapeysialbased on separation logic.
In TACAS pages 287-302, 2006.

B. Dutertre and L. M. de Moura. A Fast Linear-Arithmetich&w for DPLL(T). In CAYV,
pages 81-94, 2006.

B. Guo, N. Vachharajani, and D. |. August. Shape analy#fsinductive recursion synthesis.
In ACM PLDI, pages 256—-265, 2007.

N.D. Jones, C.K. Gomard, and P. Sesté&fartial Evaluation and Automatic Program Gen-
eration Prentice Hall, 1993.

N. Klarlund and A. Moller. MONA Version 1.4 - User ManualRBCS Notes Series, January
2001.

V. Laviron, B.-Y. Evan Chang, and X. Rival. Separatingysh graphs. IEESOR pages
387-406, 2010.

M. Leuschel. A framework for the integration of partiehkiation and abstract interpretation
of logic programs ACM Trans. Program. Lang. Sys26(3):413-463, 2004.

R. Manevich, J. Berdine, B. Cook, G. Ramalingam, and Mjis&hape analysis by graph
decomposition. IMACAS pages 3-18, 2007.

H. H. Nguyen and W.-N. Chin. Enhancing program verifaatiith lemmas. I'CAV, pages
355-369, 2008.

H.H. Nguyen, C. David, S.C. Qin, and W.N. Chin. Automatedlification of Shape And
Size Properties via Separation Logic. UMCAI, pages 251-266, January 2007.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving S&id SAT Modulo Theories: From
an abstract Davis—Putnam—Logemann—Loveland procedelta(T). J. ACM 53(6):937—
977, 2006.

A. Podelski and T. Wies. Counterexample-guided focmsACM POPL, pages 249-260,
2010.

G. Puebla and M. Hermenegildo. Abstract specializatind its applications. IRACM
SIGPLAN PEPMpages 29-43, 2003.

G. Puebla, M. Hermenegildo, and J. P. Gallagher. An iatemn of partial evaluation in a
generic abstract interpretation framework. ABM SIGPLAN PEPMpages 75-84, January
1999.

W. Pugh. The Omega Test: A fast practical integer progreag algorithm for dependence
analysis.Communications of the ACN8:102-114, 1992.

N. Rinetzky, A. Poetzsch-Heffter, G. Ramalingam, M.i®aand E. Yahav. Modular shape
analysis for dynamically encapsulated programs€£80OR pages 220-236, 2007.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape aisalyja 3-valued logic. ACM
Trans. Program. Lang. SysR4(3):217-298, 2002.

J. P. Marques Silva and K. A. Sakallah. GRASP—a new sedgdhtithm for satisfiability.
In International Conference on Computer-Aided Desjgages 220-227, 1996.

H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. faske, and P. W. O'Hearn. Scal-
able shape analysis for systems codeCRV, pages 385-398, 2008.

