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Abstract. Verifying code equivalence is useful in many situations, such
as checking: yesterday’s code against today’s, different implementations
of the same (standardized) interface, or an optimized routine against a
reference implementation. We present a tool designed to easily check the
equivalence of two arbitrary C functions. The tool provides guarantees
far beyond those possible with testing, yet it often requires less work
than writing even a single test case. It automatically synthesizes inputs
to the routines and uses bit-accurate, sound symbolic execution to verify
that they produce equivalent outputs on a finite number of paths, even
for rich, nested data structures. We show that the approach works well,
even on heavily-tested code, where it finds interesting errors and gets
high statement coverage, often exhausting all feasible paths for a given
input size. We also show how the simple trick of checking equivalence
of identical code turns the verification tool chain against itself, finding
errors in the underlying compiler and verification tool.

1 Introduction

Historically, code verification has been hard. Thus, implementors rarely make
any effort to do it. We present uc-klee, a modified version of the klee [2] tool
designed to make it easy to verify that two routines are equivalent. This ability
is useful in many situations, such as checking: different implementations of the
same (standardized) interface, different versions of the same implementation, op-
timized routines against a reference implementation, and finding compiler bugs
by comparing code compiled with and without optimization. Comparing identi-
cal code against itself finds bugs in our own tool.

Previously, cross checking code that takes inputs with complex invariants
or complicated data structures required tediously constructing these inputs by
hand. From experience, the non-trivial amount of code needed to do so can
easily dwarf the size of the checked code (e.g., as happens when checking small
library routines). Manual construction also leads to missed errors caused by
over-specificity. For example, when manually building a linked list containing
symbolic data, should it have one entry? Two? A hash table should have how
many collisions and in which buckets? Creating all possible instances is usually
difficult or even impossible. Further, manually specifying pointers (by assigning
the concrete address returned by malloc) can limit paths that check relationships
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on them, such as when an if-statement checks whether one pointer is less than
another. In general, if input has many constraints, a human tester will miss one.

In contrast, using our tool is easy: rather than requiring users to manually
construct inputs or write a specification to check code against, they simply give
our tool two routines (written in raw, unannotated C) to cross check. The tool
automatically synthesizes the routines’ inputs (even for rich, nested data struc-
tures) and systematically explores a finite number of their paths using sound,
bit-accurate symbolic execution. It verifies that the routines produce identical
results when fed identical inputs on these explored paths by checking that they
either (1) write the same values to all escaping memory locations or (2) terminate
with the same errors. If one path is correct, then verifying equivalence proves
the other is as well. If the tool terminates, then with some caveats (discussed in
§ 3.4), it has verified equivalence up to a given input size.

Because uc-klee leverages the underlying klee system to automatically
explore paths and reason about all values feasible on each path, it gives guar-
antees far beyond those of traditional testing, yet it often requires less work
than writing even a single test case. We show that the approach works well even
on heavily-tested code, by using it to cross check hundreds of routines in two
mature, widely-used open source libc implementations, where it:

1. Found numerous interesting errors.
2. Verified the equivalence of 300 routines (150 distinct pairs) by exhausting

all their paths up to a fixed input size (8 bytes).
3. Got high statement coverage — the lowest median coverage for any experi-

ment was 90% and the rest were 100%.

A final contribution is a simple, novel trick for finding bugs in the compiler and
checking tool by turning the technique on itself, which we used to detect a serious
llvm optimizer bug and numerous errors in uc-klee.

2 Overview

Cross checking implementations simplifies finding correctness violations because,
rather than requiring that users write a functional specification, it lets the tool
use a second implementation as a reference — functional differences will show
up as mismatches. A natural concern is what happens on invalid inputs. In
our experience, real code often shows error equivalence, where an illegal input
causes the same behavior in both (e.g., when given a null pointer, both cross
checked routines crash). Our tool exploits this fact and treats equivalent crashes
as equivalent behavior, but flags when one implementation crashes and the other
does not. (In general, cross checking cannot detect when two routines make
equivalent mistakes.) This finesse works well in practice. In the rare cases where
inputs are allowed to produce differing results, it is easy for simple, user-written
C code to filter these inputs (discussed further in § 2.1).

We show how uc-klee works by walking through the simple but complete
example in Figure 1, which gives two trivial routines intended to add a value
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to a structure field and the cross checking harness that uc-klee provides to
compare them. The user compiles the routines using uc-klee’s compiler (llvm)
and gives the resultant bitcode modules and two routine names to uc-klee,
which links the code against a checking harness and runs the result. At a high
level, the cross checking harness executes as follows:

1. It marks all function parameters as containing unconstrained symbolic data
(i.e., they can contain any value representable given their size). uc-klee will
lazily allocate memory on demand if this symbolic data is used as a pointer
and dereferenced (discussed below).

2. It uses symbolic execution to explore (ideally all) paths in the two imple-
mentations, checking that they produce identical effects when run on the
same values.

3. If a path’s constraints permit a value that causes an error (such as a division
by zero, null pointer dereference, or assertion failure), uc-klee verifies that
the other routine terminates with the same error when run with the same
input values. uc-klee also forks execution and explores a path on which the
error does not occur so that it can cross-check the routine on the remaining
values.

4. At the end of each path, uc-klee traverses all reachable memory, and uses
its constraint solver to prove this memory has equivalent contents at the end
of both paths. If this check fails, it generates a concrete input to demonstrate
the difference. If the check succeeds, then with some caveats (see § 3.4) uc-
klee has verified the two routines as equivalent since the constraints it tracks
are accurate and exact (down to the level of a single bit). Thus, if one path
is correct, uc-klee has verified that the other path is correct as well.

Note that uc-klee’s equivalence guarantee only holds on the finite set of paths
that it explores. Like traditional testing, it cannot make statements about paths
it misses. However, in many cases, even if there are too many paths, klee can
at least show total equivalence up to a given input size.

At a more detailed level, the code in Figure 1 works as follows:

Lines 14–18: stack allocates two variables to pass as the routine’s parameters
(f and v) and marks them as symbolic.

Line 21: creates a copy of the current address space, which it will restore later
so that add bad runs on identical values.

Line 22: uses klee eval to run add. This call returns once for each path ex-
plored in add. If add terminates with an error, the error is stored in e1.

Line 3: at the first dereference f→val, uc-klee checks if f can be null. Since
f has no constraints on its value, it can, so uc-klee forks execution and
continues as follows:

Error path: adds the constraint that f is null, records in e1 that a null deref-
erence error occurred, and returns from klee eval.

Non-error path: adds the constraint that f is not null and attempts to resolve
the dereference. It determines that f is an unbound symbolic pointer, so it
allocates memory (of size foo), marks it as symbolic, binds it to f, and con-
tinues executing until the path completes. It then returns from klee eval.
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1 : // two routines to cross−check.
2 : int add(foo *f, int v) {
3 : f−>val = f−>val + v;
4 : return f−>val;
5 : }
6 : int add bad(foo *f, int v) {
7 : f−>val = f−>val + 1;
8 : return f−>val;
9 : }
10:
11: // harness provided by uc−klee
12: main() {
13: klee err e1,e2;
14: int retv, v;
15: foo *f;
16:
17: klee make symbolic(&f);
18: klee make symbolic(&v);

19:
20: // record memory state "add" runs on.
21: int s0 = klee snapshot();
22: klee eval(retv = add(f,v), &e1);
23: int s1 = klee snapshot();
24:
25: // discard writes, keep path constraints
26: klee restore(s0);
27: klee eval(retv = add bad(f,v), &e2);
28: int s2 = klee snapshot();
29:
30: // compare results.
31: if (!klee compare errors(&e1,&e2)
32: | | !klee compare(s1, s2, &f)
33: | | !klee compare(s1, s2, &v)
34: | | !klee compare(s1, s2, &retv))
35: klee error("Mismatch!\n");
36: }

Fig. 1. Trivial but complete checking example.

Line 22 (after klee eval): the two paths execute independently through the
remaining code.

Line 23: records the memory state produced by running add, which it later
compares against the memory state produced by running add bad.

Line 26: restores the values of f and v that the current path ran add on so that
add bad runs on identical values. It discards all writes add did (otherwise
add bad would run with a modified value for f→val), but preserves all
constraints, including any pointers it lazily bound (i.e., the dereference of f
on line 3).

Line 27: evaluates add bad using klee eval. The error path also returns with
a null pointer error (since f is constrained to null and line 7 dereferences
it). The non-error path executes without error; the dereferences of pointer f
(lines 7,8) resolve to the same object lazily allocated at line 3.

Line 31: checks that both paths returned with the same error state (they did).

Lines 32–34: checks that the values transitively reachable from the routines’
outputs in each memory state are equivalent (§ 3.2 describes this analysis
in more detail). On the non-error path, the check for f (line 32) fails and
produces a test case with v equal to some value other than 1 (the single
value for which both routines return identical results).

Notes. While the example declares the input variables f and v with their static
types for readability, as far as uc-klee is concerned they could have been un-
typed byte arrays (which is how uc-klee treats them in any case) since our
implementation correctly handles casting between pointers and integers.

Although this example does not access environment variables, uc-klee addi-
tionally marks the global environ pointer as unbound in order to explore paths
where its values are read. Section 4 gives an example difference found as a result.
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For performance, uc-klee does not explore paths that have identical llvm
instructions since they must produce the same results. uc-klee silently prunes a
path when it satisfies both of the following conditions: (1) all previously executed
basic blocks are identical and (2) all reachable basic blocks are identical.

2.1 Handling uninteresting mismatches

A tight specification that maps each input value to a single output value provides
the simplest use case for uc-klee since any difference between implementations
constitutes a bug. For looser specifications that include “don’t cares,” user ef-
fort may be needed to suppress uninteresting differences that uc-klee would
otherwise report. Examples include permitting code to do anything when fed il-
legal input values or representing “success” by any non-zero integer rather than
a single, specific value (e.g., 1). Note that the problems caused by permitting
flexibility are not specific to uc-klee — any method (such as randomized or
specification-based testing) that checks output values or behavior has to deal
with them.

uc-klee provides a simple yet general mechanism for eliminating uninter-
esting mismatches. Instead of invoking checked code directly (lines 22 and 27
in Figure 1), it passes the checked routine and its arguments to a user-supplied
function, which calls the checked routine after filtering its input (e.g., by using an
if-statement to skip illegal values) and then returns the (possibly canonicalized)
return value.

Figure 2 shows an example filter for the isdigit function in the C library,
specified to return non-zero if its input represents a digit in ASCII and 0 oth-
erwise. The filter first rejects input values that fall outside the range specified
in the C standard (line 2). It then invokes the passed-in isdigit function (line
4) and canonicalizes all non-zero return values to 1. In our experiments, this
routine eliminated all mismatches for isdigit and 11 analogous routines.

1 : int isdigit f(int (*f)(int), int c){
2 : if (c < EOF | | c > 255)
3 : return 0;
4 : return ((*f)(c) != 0);
5 : }

Fig. 2. Simple filter routine.

In practice, even if a specification permits
variable behavior, code tends to behave sim-
ilarly. In fact, the most wide-spread use for
uc-klee we envision — checking new ver-
sions of code against old versions — suffers
from this problem the least since such de-
cisions are consistent across revisions. Even
where we would expect the most variance in behavior — independently-
developed code bases fed error inputs — implementations tend to behave sim-
ilarly. For example, in our experiments, checked routines typically crashed on
illegal pointer inputs rather than returning differing values.

Many of the differences uc-klee found illustrated needless ambiguities in the
underlying standard, which permitted divergent behavior without a subsequent
gain in speed, power, or simplicity. In future work, we plan to explore the use of
uc-klee as an automatic tool for finding such specification imprecisions.

In a sense, uc-klee inverts the typical work factor for checking code: a tra-
ditional specification-based approach requires specifying what behavior the user
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cares about (i.e., the functionality the code should implement), whereas uc-

klee infers this information “for free” by cross checking implementations. On
the other hand, uc-klee (may) require specifying the “don’t care” behaviors
(when code is allowed to differ), which typically takes orders of magnitude less
effort than specifying functionality. Further, users only need to specify these de-
tails on demand, after uc-klee detects an uninteresting mismatch. In contrast,
specification verification requires non-trivial work before doing any checking.

3 Implementation

In this section we discuss the trickiest part of implementing uc-klee: tracking
whether a piece of memory contains a pointer and if so, to which memory object.
We then describe how it uses this ability both to compare the results of two
procedure invocations (§ 3.2) and to lazily allocate memory when an unbound
pointer is dereferenced (§ 3.3). We then discuss limitations.

3.1 Referents: tracking which memory contains pointers

uc-klee tracks pointers using a referent-based approach similar to [15, 21], but
modified to support symbolic execution. Each register, stack location, global, and
heap object has a corresponding piece of shadow memory. Whenever code writes
a pointer to memory or a register, uc-klee writes the starting address of the
pointed-to object (its referent) to this shadow memory at the same offset. When
code writes a non-pointer value, uc-klee clears these shadow values, indicating
that the memory does not contain a pointer. The key advantage this approach
is that we can determine what object a pointer was intended to point to even if
the pointer’s actual value refers to an address outside the bounds of the object
(and potentially inside a different, allocated object).

For space reasons we elide most details of this tracking. It roughly mirrors
that of a concrete tool, with the one difference that we must reason about reads
and writes at symbolic locations — i.e., those calculated using symbolic expres-
sions and hence representing a set of values rather than a single concrete value (a
constant). For example, suppose variable i has the constraint 0 <= i < n where
n is the size of array a. Then the write a[i] = &p conceptually creates a set of
n possible (exclusive) arrays since the write of address &p could be to a[0] or
a[1] or ... a[n] depending on the value of i. Subsequent stores using symbolic
indices create more possibilities; reads cause similar explosions. Thus, we cannot
just trivially calculate which shadow location to propagate this information to
or read it from. Fortunately, the solution is easier to describe than the problem:
klee already has the ability to reason about the reads and writes checked code
performs at symbolic locations; by handling and representing shadow memory
in the same way as arrays in checked code, we can reuse this same machinery.

Low-level C code can egregiously violate any sensible notion of typing. To
handle such code we took the extreme position of completely ignoring static
types and treating all memory as potentially containing a pointer. (We may
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revisit this decision in the future.) While there are a variety of details to get
right, the most common problem is that given a dereference *(p+q), we do not
robustly know which value (p or q) holds the address, and which the offset.
We determine this information based on usage rather than type, and mark any
location as not holding a pointer if the code performs operations such as: bitwise
operations that lose upper bits (losing the lower few bits is okay), negation, left
shift, multiplication, division, modulus, and subtracting two pointer values. As a
result, we can reliably check code that does type debasements far beyond merely
casting between pointers and integers.

3.2 Object comparison

We define two routines as being equivalent on a path if they write identical values

to all memory transitively reachable from their return value and each of their

formal arguments. That is, pointer values (addresses) can differ as long as (1) the
objects they point to do not, and (2) the pointer is to the same offset within the
object. uc-klee checks this property by doing a mark and sweep of all reachable
memory and using the constraint solver to prove that all non-pointer bytes are
equal. In the concrete case, comparisons reduce to constants, avoiding expensive
satisfiability queries. For symbolic bytes that neither routine modifies, the values
in each address space snapshot contain identical symbolic expressions, which are
trivially equivalent. If uc-klee detects a pointer, it adds the referenced objects
(from each snapshot) to a queue for later traversal, rather than comparing the
objects’ addresses, which may differ between the two procedures. In the case of
pointers stored into memory at symbolic offsets, it is possible for a particular
value to resolve to multiple objects. In this case, uc-klee examines every pair
of objects to which the two pointers could resolve. If a single pair of objects
differs, uc-klee flags the error. Note that unless a function’s return value or one
of its formal arguments contains a pointer to a global variable, uc-klee does
not automatically compare global variables because multiple implementations
typically utilize an incompatible set of globals.

3.3 Lazy initialization

uc-klee uses a variation on lazy initialization [16] to dynamically allocate ob-
jects on an as-needed basis. This prior work was in the context of checking a
single class method in type-safe Java; our implementation aims at cross checking
non-type-safe C functions.

When the test harness marks function arguments as symbolic (the call to
klee make symbolic on lines 17–18 of Figure 1), uc-klee also sets an “un-
bound” bit in shadow memory. At each pointer dereference *p, uc-klee exam-
ines this shadow memory to check whether p is an unbound pointer and hence
must be lazily allocated. If a dereferenced pointer p is unbound, uc-klee:

1. Allocates an object of size n (discussed below) and marks it as contain-
ing unbound, symbolic bytes. Any dereference of this memory will similarly
(recursively) allocate an object.
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2. Constrains p’s referent to equal the addressm of the allocated object (pbase =
m), ensuring future dereferences map to the same object.

3. Constrains p’s “unbound” bit to false (bound). This prevents uc-klee from
unintentionally allocating a new object during a subsequent dereference of
the same pointer. Note that once a referent is bound, it can never become
unbound, even if the object is explicitly free’ed by the procedure.

4. Constrains p to point within the allocated object: m <= p < m+ n.

Each lazy allocation creates a unique memory object. A different approach
would allow unbound pointers to resolve to existing objects of the same type.
We did not use this method since it significantly increases the state space and
can lead to many false positives. The main drawback of our current approach is
that uc-klee cannot satisfy address constraints of code that specifically targets
pointers to overlapping memory blocks, which limits coverage. We plan to revisit
this decision as we encounter more real examples that require it.

Address constraints. Additional complexity arises when code compares
unbound pointers. Suppose we take the true path of an equality comparison x

== y and both y and x are unbound. If x is subsequently dereferenced and bound
to a new object, we want y to be bound to the same object (and vice versa).
We initially thought doing so would require constructing dynamic dependency
graphs to determine where a pointer comes from (difficult in the general case
given complex symbolic expressions). Fortunately, our shadow memory scheme
makes the solution simple: merely constrain x’s shadow memory to equal y’s
(xbase = ybase and xunbound = yunbound). A subsequent binding of one will make
the other bound as well. If only one pointer is unbound, we do the same thing,
with the same effect. Note that, on the false path (where x 6= y), we do not add
a constraint that their shadow memory differs because x and y may point to
different bytes in the same object (and thus may share a referent).

Code sometimes compares two pointers to different objects using greater-
than or less-than conditions (such as a binary tree sorted by address). While
not strictly legal, uc-klee must nonetheless support such comparisons in order
to be effective. Unlike equality, these comparisons add no additional constraints
on referents. Instead, when a subsequent dereference causes uc-klee to lazily
allocate an object, the object’s address must satisfy all existing path constraints.
To accomplish this, uc-klee allocates two large (e.g., 32 megabyte) memory
pools on startup at high and low address ranges. Each allocation searches both
of these pools for a block whose address does not violate the path constraints. If
it cannot find one, the path terminates and uc-klee reports a runtime error. The
most common cause we observed was code that specifically checks whether two
pointers overlap. As we mentioned above, uc-klee does not allocate overlapping
objects; thus, such constraints cannot be satisfied.

Allocation size. When uc-klee lazily allocates an object, it must choose a
fixed size for that object. When an unbound pointer references a type of known
size (e.g., an int or a struct), we simply allocate the exact size necessary to
store that type. However, we cannot do the same when the pointer might refer
to an array (since C arrays do not have statically known sizes). For example,
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when a ‘char *’ (string) is dereferenced, we do not know the size of the string.
Unfortunately, making it too small will limit statement coverage, since many (or
all) paths would terminate with out-of-bounds dereferences. Making it too large
will disguise legitimate out-of-bounds errors in the code. Our current solution is
a hack, but it seems to work well enough in practice. We first consider allocating
an object of a user-specified minimum size (for our experiments, we found that
a minimum size of 8 bytes works in most cases). uc-klee queries the constraint
solver to test whether this allocation size would satisfy the current memory
operation. If not, uc-klee iteratively doubles the guess. Within logarithmic
time, uc-klee either finds a satisfying allocation size or reaches a user-specified
maximum (e.g., 2 kilobytes). If the maximum fails, uc-klee terminates the path
and reports a runtime error to the user.

Depth limits. Lazy initialization allows uc-klee to dynamically support
hierarchical data structures such as linked lists and trees. To control the resulting
path explosion, our tool limits this type of allocation to a user-specified depth
limit, incrementing a counter on each nested allocation. If the depth counter
exceeds the limit, our tool terminates the path and outputs a warning. Without
a depth limit, the path space would quickly become unmanageably large.

3.4 Limitations

This section enumerates the known limitations of uc-klee. We are of course
vulnerable to bugs in uc-klee or its environment modeling code. We check at
the implementation level, which makes it easy to work with real code. However, it
makes any verification claims true only for the specific compiler and architecture
we used for our experiments. These guarantees may not hold on code where
the compiler must make a choice among several unspecified behaviors (such as
function argument evaluation order) or when running on a machine that differs
in some observable way (such as word size or endianness).

During cross checking we only invoke a routine a single time and check it
in isolation, missing behaviors that require multiple invocations or coordination
across routines. In general, we may miss behaviors for code that depends on the
values of addresses (e.g., greater-than or less-than relationships among objects
allocated by malloc). More specifically, as discussed § 3.3, there are several
limitations in our approach to lazy initialization. We assume that lazily allocated
objects cannot alias existing objects, so we will not exercise code that checks for
overlap (such as memmem) or expects an unbound pointer to point to the middle
of an existing object (e.g., a circular buffer). We will also miss paths that need
objects larger than our maximum size, since these will always terminate with an
error. Indirect calls to unbound function pointers are unsupported at this time.
On paths that have errors, uc-klee is unable to identify the root cause. Thus,
it will not detect when two checked routines terminate with the same error type,
but from different causes.

The underlying system, klee, must replace a symbolic value with a single
concrete example when used as an allocation size or in a floating point operation.
Thus, our tool may miss bugs exposed by different concrete values later in the
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execution path. In addition, klee cannot handle routines that return structures,
contain inline assembly, call unresolved external routines, or call external rou-
tines using symbolic arguments. When a path encounters one of these, uc-klee
flags the routine as unverified.

4 Evaluation

This section shows that uc-klee works well at verifying equivalence by cross
checking recent versions of two heavily-tested open source C libraries: uClibc,
an implementation of the C standard library targeted at embedded devices, and
Newlib, an embedded libc implementation by Red Hat used by Cygwin and
Google Native Client. We demonstrate its effectiveness on three common use
cases, cross checking: different implementations of the same interface, different
versions of the same code, and identical code to find errors in the verification
tool chain (in our case: the llvm compiler and uc-klee itself).

We measure the quality of cross checking in two ways: (1) crudely, by the
statement coverage it achieves, and (2) by whether checking exhausts all paths
and terminates, since that verifies that the routines are equivalent up to a fixed
input size when invoked a single time (modulo the limitations discussed in § 3.4).

It is a bit tricky to measure statement coverage for library code. We com-
pute coverage of a cross checked routine as a percentage of the total number
of llvm instructions reachable from it, with the exception that when routine
a calls another exported routine b that we will also cross check, we exclude b’s
instructions from a’s coverage statistics. Usually, such calls can only exercise a
small fraction of b’s code (e.g., when a calls printf with a format string that
just contains “hello world”). On the other hand, if a calls c and we do not

generate a test harness for c, we do count its instructions since we conservatively
assume it is an internal helper function that a should thoroughly exercise. Note:
every instruction is included in the coverage statistics for at least one procedure.

For all experiments, we ran uc-klee on each procedure for up to 10 minutes,
and allowed each procedure to read from up to 2 symbolic files of 10 bytes
each (klee argument --sym-files 2 10). This was in addition to the symbolic
arguments and environment generated by the cross checker. Our machine was a
quad-core 2.8 GHz Intel i7 machine with 12GB of RAM running Fedora Linux
12.

4.1 Different implementations: Newlib vs. uClibc

Our first experiment cross checks Newlib’s source repository from July 2010
against uClibc version 0.9.31. We modified both libraries to use uc-klee’s
memory allocator. We also disabled several uClibc internal startup and shut-
down tasks that interfered with uc-klee. Finally, to keep the experiments man-
ageable, we disabled optional features, such as wide character and locale support.

We automatically generated a test harness for each routine that both libraries
implemented with the exception of variadic routines or those whose prototypes
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differed. We could extend our system to support the former by generating mul-
tiple test cases for different numbers of arguments. Our experiment tested all
other exported procedures, even those that demonstrate weaknesses in our tool.
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Fig. 3. Instruction coverage reported by our cross checking experiments. Each vertical
bar represents a single procedure, sorted by coverage. The “incomplete” category in-
cludes routines whose analysis did not complete within 10 minutes or hit a limitation
in klee or uc-klee. The median statement coverage for the left graph was over 90%
(59 routines had 100%) and for the right was 100% (105 had 100%).

Figure 3 (left) shows the coverage reported by uc-klee. In the routines where
uc-klee found no differences, it checked 66 to termination (versus 15 where it
exceeded the time limit), thereby verifying equivalence for the given input size,
despite many having entirely different structure and overall appearance to the
human eye. The two implementations of ffs (“find first bit set”) in Figure 4
are a good example: uc-klee exhausted all 33 paths in the test harness and
terminated after 6.8 seconds, reaching 100% statement coverage.

1 : int ffs (int word) {
2 : int i=0;
3 : if (!word)
4 : return 0;
5 : for (;;)
6 : if (((1 << i++)&word) != 0)
7 : return i;
8 : }

(a) Newlib

1 : int ffs(int i) {
2 : char n = 1;
3 : if (!(i & 0xffff)) { n += 16; i >>= 16; }
4 : if (!(i & 0xff)) { n += 8; i >>= 8; }
5 : if (!(i & 0x0f)) { n += 4; i >>= 4; }
6 : if (!(i & 0x03)) { n += 2; i >>= 2; }
7 : return (i) ? (n+((i+1) & 0x01)) : 0;
8 : }

(b) uClibc

Fig. 4. Two implementations of ffs (“find first set bit”) uc-klee verifies as equivalent
despite their difference in appearance and approach.

uc-klee found differences in 57 of the 143 functions checked, at least 7
of which were real bugs—despite the code being heavily tested, actively used,
and designed to do well-understood tasks. One interesting example was an er-
ror in Newlib’s implementation of remove (Figure 5), which the POSIX stan-
dard mandates should work for both files and directories. uc-klee detects that
Newlib returns -1 (error) while uClibc returned 0 (success) when the symbolic
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input filename could refer to a directory. This error would be difficult to detect
statically.

1 : int remove r(struct reent *ptr,
2 : const char *filename) {
3 : if ( unlink r (ptr, path) == −1)
4 : return −1;
5 : return 0;
6 : }
7 :
8 : int remove(const char *filename) {
9 : return remove r( REENT,
10: filename);
11: }

(a) Newlib

1 : int remove(const char *filename)
2 : {
3 : int saved errno = errno;
4 : int rv;
5 : rv = rmdir(filename);
6 : if ((rv < 0) && (errno == ENOTDIR)) {
7 : set errno(saved errno);
8 : rv = unlink(filename);
9 : }
10: return rv;
11: }

(b) uClibc

Fig. 5. uc-klee detects that Newlib does not handle directory removal correctly.

We achieved high statement coverage in most but not all procedures. One
common cause of low coverage is that we only cross check code using a single
invocation. In certain cases, multiple invocations of a routine are required in
order to reach additional code. In other cases, one routine may write values to
globals or statics that are read by another. A good example of both is atexit,
which registers routines to be run on program termination by exit. A simple
extension would allow uc-klee to handle such cases.

4.2 Different versions of the same implementation: uClibc

To measure uc-klee’s effectiveness at cross checking different versions of the
same code, we used it to compare all functions that appeared in both uClibc

0.9.30.3 (March 2010) and uClibc 0.9.31 (April 2010) that were not byte-code
identical. This selection yielded 203 routines (out of 399 possible), each of which
uc-klee analyzed for up to 10 minutes.

Figure 3 (right) plots the instruction coverage. uc-klee revealed 2 previ-
ously unknown bugs and also detected 5 instances of bugs that were patched in
the newer release. We elide a detailed discussion for space reasons and instead
provide a brief example for each.

The newer version of uClibc introduced a bug in ctime (used to convert a
time record to a string). The older version used a persistent internal structure
(i.e., static) for storage that lacked thread safety. The newer version instead
used a stack-allocated buffer that it never initialized. A sufficiently large input
value caused the returned string to differ, which uc-klee detected.

uc-klee confirmed that a number of bugs present in uClibc 0.9.30.3 were
corrected in version 0.9.31. One example is unsetenv (below). The old code (left)
terminated with an out-of-bounds read when environ is NULL (e.g., after a call
to the function clearenv), while the new code (right) exited gracefully:

1 : char **ep = environ;
2 : while (*ep != NULL) { . . . }

(a) unsetenv: uClibc 0.9.30.3

1 : char **ep = environ;
2 : if (ep) while (*ep != NULL) { . . . }

(b) unsetenv: uClibc 0.9.31
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4.3 Checking the checker: finding bugs in UC-KLEE and LLVM

A standard caveat in verification papers is that their claims are contingent on
the correctness of the verifier and underlying compiler. One of our contributions
is the realization that one can detect errors in both by simply attempting to
prove the equivalence of identical code, thus turning the verification system on
itself.

Finding compiler optimizer bugs. We check that an optimizer has cor-
rectly transformed a program path by compiling the same routine both with and
without optimization and cross checking the results. With the usual caveats, if
any possible value exists that would cause the path to give different results, uc-
klee will detect it. If there is no such value, it has verified that the optimizer
worked correctly on the checked path. If it terminates, it has shown that the
optimizer transformed the entire routine correctly. Any discrepancies it finds are
due to either compiler bugs or the routine depending on unspecified behavior
(e.g., function evaluation order between sequence points). Because the library
code we checked intends to be portable, even use of unspecified compiler behavior
almost certainly constitutes an error.

We compared all 622 procedures in uClibc 0.9.31, compiled with no opti-
mization (-O0) versus high optimization (-O3). This check uncovered at least
one bug in llvm 2.6’s optimizer but did not expose its root cause. For memmem,
uc-klee reported a set of concrete inputs where the unoptimized code returned
an offset within haystack (the correct result), while the optimized code returned
NULL, indicating that needle was not found in haystack. We confirmed this bug
with a small program. Since llvm is a mature, production compiler, the fact that
we immediately found bugs in this simple way is a strong result. We found a total
of 70 differences, but because of time constraints could not determine whether
they were due to this bug or others. Future work will be necessary to test opti-
mization levels between these two extremes and attempt to automatically find
a minimal set of optimization passes that yield an observable difference.

Finding UC-KLEE bugs. In general, tool developers can detect verifier
bugs by simply cross checking a routine against another identical copy of itself
(i.e., compiled at the same optimization level). This check has been a corner-
stone of debugging uc-klee—it often turned up tricky errors after development
pushes.

The uc-klee bugs we found fell into two main categories: (1) unwanted non-
determinism in uc-klee and its environmental models, which makes it hard to
replay paths or get consistent results, and (2) bugs in our initial pointer tracking
approach. In fact, as a direct result of the tricky cases cross checking exposed
in this pointer tracking implementation, we threw it away and instead designed
the much simpler and robust method in Section 3.1.

4.4 Results summary

Figure 6 summarizes the results presented in this section. The “klee Limi-
tations” row describes procedures that resulted in incomplete testing due to
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limitations in the underlying klee tool: inline assembly (141 procedures), ex-
ternal calls with symbolic arguments (206), and unresolved external calls (17).
“uc-klee Limitations” are cases where the tool failed to lazily allocate objects
either because the required size of the object exceeded our specified maximum of
2KB (20 procedures) or uc-klee was unable to allocate an object whose address
satisfied the path constraints (117 procedures). Note that limitations resulted in
individual paths being terminated. As a result, certain procedures encountered
a variety of limitations on different paths. In particular, a procedure deemed
“klee limited” may have also encountered uc-klee limitations, although the
converse is not true.

Newlib/ uClibc llvm uc-klee
uClibc Versions Optimizer Self-check

Procedures Checked 143 203 622 622
Procedures Verified 66 84 335 335
Differences Detected 57 20 70 12
No Differences (timeout) 15 30 85 91
klee Limitations 4 56 94 147
uc-klee Limitations 1 13 38 37
100% Coverage 59 105 367 375
Mean Coverage 72.2% 80.7% 85.6% 85.6%
Median Coverage 90.1% 100.0% 100.0% 100.0%

Fig. 6. Breakdown of procedures checked in each experiment.

5 Related Work

This paper builds on the many recent research projects in symbolic execution,
such as [2, 3, 12, 16, 22], as well as several pieces of our past work. About a decade
ago, we showed how to avoid the need for manual specification by cross checking
multiple implementations in the context of static bug finding [9], an idea we
later used with symbolic execution [2, 3]. This latter work only handled complete
applications or routines run on manually constructed symbolic input; this paper
shows how to easily check code fragments with unbound inputs and how to use
cross checking to find bugs in the checking infrastructure itself. This paper is
related to under-constrained execution [8], but modified to support the cross
checking context, where many of the tricky issues are elided.

Many previous approaches to software checking have been specification based,
requiring extensive work on the part of the user. One example is the use of model
checking to find bugs in both the design and the implementation of software [1, 4,
5, 11, 13, 14], which requires manually building test harnesses. A second example
is recent verification work that checks code manipulating complex data structures
against manually constructed specifications [6, 7, 10, 18]. While both can exploit
their specifications to reduce the state space, they require far more user effort
than uc-klee.

Similar work has attempted to cross check largely identical code by using
over-approximation to filter out unchanged portions of Java code [20]. While
their technique is sound with respect to verification, a consequence of over-
approximation is that reported differences may not concretely affect the output.
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In contrast, uc-klee generates test cases that supply concrete inputs to expose
behavioral differences in the code.

Earlier work in cross checking has focused on combinational circuits in hard-
ware [4, 17, 19]. While an important milestone, hardware verification is simpler
than general purpose software equivalence checking, which includes loops, com-
plex pointer relationships, and other difficult constructs.

Smith and Dill [23] recently verified the correctness of real-world block cipher
implementations. Their work exploits the key properties that block ciphers have
fixed input sizes and loop iterations, enabling full loop unrolling. They developed
several constraint optimizations that we hope to adapt for cross-checking general-
purpose code.

6 Conclusion

We have presented uc-klee, a tool that often makes cross checking two im-
plementations of the same interface easier than writing even a single test case.
The preliminary results demonstrate the usefulness of our approach, which often
exhaustively explores all paths and verifies two procedures as equivalent up to a
given input size.

We are currently building an improved version of uc-klee that is capable
of cross checking individual code patches rather than complete routines, thereby
reducing the problems of path explosion. Further, by jumping to the start of a
patch, it will more robustly support code not easily checked by dynamic tools
(such as device driver code). We plan to use this ability to check that kernel
patches only remove errors or refactor code (for simplicity or performance) but
do not otherwise change existing functionality.
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