
Temporal property verification

as a program analysis task

Byron Cook1, Eric Koskinen2, and Moshe Vardi3

1 Microsoft Research and Queen Mary University of London
2 University of Cambridge

3 Rice University

Abstract. We describe a reduction from temporal property verification
to a program analysis problem. We produce an encoding which, with
the use of recursion and nondeterminism, enables off-the-shelf program
analysis tools to naturally perform the reasoning necessary for proving
temporal properties (e.g. backtracking, eventuality checking, tree coun-
terexamples for branching-time properties, abstraction refinement, etc.).
Using examples drawn from the PostgreSQL database server, Apache
web server, and Windows OS kernel, we demonstrate the practical via-
bility of our work.

1 Introduction

We describe a method of proving temporal properties of (possibly infinite-state)
transition systems. We observe that, with subtle use of recursion and nondeter-
minism, temporal reasoning can be encoded as a program analysis problem. All
of the tasks necessary for reasoning about temporal properties (e.g. abstraction
search, backtracking, eventuality checking, tree counterexamples for branching-
time, etc.) are then naturally performed by off-the-shelf program analysis tools.
Using known safety analysis tools (e.g. [2, 5, 8, 24, 32]) together with techniques
for discovering termination arguments (e.g. [3, 6, 17]), we can implement tem-
poral logic provers whose power is effectively limited only by the power of the
underlying tools.

Based on our method, we have developed a prototype tool for proving tem-
poral properties of C programs and applied it to problems from the PostgreSQL
database server, the Apache web server, and the Windows OS kernel. Our tech-
nique leads to speedups by orders of magnitude for the universal fragment of
CTL (∀CTL). Similar performance improvements result when proving LTL with
our technique in combination with a recently described iterative symbolic deter-
minization procedure [15].

Limitations. While in principle our technique works for all classes of transi-
tion systems, our approach is currently geared to support only sequential non-
recursive infinite-state programs as its input. Furthermore, we currently only
support the universal fragments of temporal logics (i.e. ∀CTL rather than CTL).

Existential reasoning would also be possible, but care is required to ensure that
the underlying program analysis tools appropriately use universal abstractions
(“may” transitions) as well as existential abstractions (“must” transitions). Fi-
nally, our method works best when properties do not involve deep and complex
nesting of temporal operators. In order to better support these more complex
properties our implementation would need to mix the construction of the pro-
gram analysis problem with the analysis itself in the spirit of Impact [27], as
invariants proved during a lazy unrolling could be used to prune away much of
the work. As presented here, our approach instead creates a single encoding up
front before performing program analysis.

2 From temporal logic to program analysis

In this section we introduce a reduction which, when given a transition system
M and an ∀CTL temporal logic property ϕ, generates a program that encodes
the search for the proof that ϕ holds of M . Existing program analysis tools can
then be used to reason about the validity of the property. We begin with some
definitions and terminology.

2.1 Preliminaries

Transition systems. A transition system M = (S,R, I) is a set of states S, a
transition relation R ⊆ S × S, and a set of initial states I ⊆ S. A trace of
a transition system is a sequence of states (s0, s1, ...) such that s0 ∈ I and
∀i ≥ 0. (si, si+1) ∈ R. For convenience, we do not allow finite traces. The
transition relation must be such that every state has at least one successor state:
∀s ∈ S. ∃s′. R(s, s′). This is without a loss of generality, as final states can be
encoded as states that loop back to themselves.

Ranking functions. For a state space S, a ranking function f is a total map
from S to a well ordered set with ordering relation ≺. A relation R ⊆ S × S is
well-founded if and only if there exists a ranking function f such that ∀(s, s′) ∈
R. f(s′) ≺ f(s). We denote a finite set of ranking functions (or measures) as
M. Note that the existence of a finite set of ranking functions for a relation
R is equivalent to containment of R within a finite union of well-founded rela-
tions [30]. That is to say that a set of ranking functions {f1, ..., fn} can denote the
disjunctively well-founded relation {(s, s′) | f1(s

′) ≺ f1(s)∨ ...∨ fn(s
′) ≺ fn(s)}.

Temporal logic. We are concerned with verifying temporal properties that may
be written either as trace-based properties in LTL or as state-based properties
in the universal fragment of computation tree logic (∀CTL). The encoding we
describe in this section is state-based in nature and, as such, is readily suitable
to ∀CTL properties. To prove LTL properties we use a recently described itera-
tive symbolic determinization technique [15] with the ∀CTL proving technique
described here.

The syntax of a ∀CTL formula is ϕ ::= α | ϕ∧ϕ | ϕ∨ϕ | AGϕ | AFϕ | A[ϕWϕ].
The standard semantics of ∀CTL are given in Fig. 1. α is an atomic proposi-
tion. ∀CTL’s temporal operators are state-based in structure. The operator AGϕ
specifies that ϕ globally holds in all reachable future states. The operator AFϕ
specifies that, across all computation sequences from the current state, a state
in which ϕ holds must be reached. Finally, the A[ϕ1Wϕ2] operator specifies that
ϕ1 holds in every state where ϕ2 does not yet hold.

α(s)

R, s � α

R, s � ϕ1 R, s � ϕ2

R, s � ϕ1 ∧ ϕ2

R, s � ϕ1 ∨ R, s � ϕ2

R, s � ϕ1 ∨ ϕ2

∀(s0, s1, ...). s0 = s⇒ ∃i ≥ 0. R, si � ϕ

R, s � AFϕ

∀(s0, s1, ...). s0 = s⇒ ∀i ≥ 0. R, si � ϕ

R, s � AGϕ

∀(s0, s1, ...). s = s0 ⇒ (∀i ≥ 0. R, si � ϕ1)∨
(∃j ≥ 0. R, sj � ϕ2 ∧ ∀i ∈ [0, j). R, si � ϕ1)

R, s � A[ϕ1Wϕ2]

Fig. 1: Semantics of ∀CTL: �

We use AF,AG,AW as our
base operators (as opposed to
the more standard U and R),
as each corresponds to a dis-
tinct form of proof: AF to ter-
mination, AG to safety, and
AW to sequencing. We omit
the next state operator AX.
Formulae with U and R can
be expressed in ∀CTL. We as-
sume that formulae are writ-
ten in negation normal form,
in which negation only occurs
next to atomic propositions
(we also assume that the do-
main of atomic propositions is closed under negation). A formula that is not in
negation normal form can be easily normalized. sub(ϕ) is defined to be the set
of all subformulae of ϕ.

2.2 Encoding

We now show that the problem of ∀CTL verification can be reduced to a program
analysis task. Our encoding E is given in Fig. 2. When given a transition relation
system M = (S,R, I) and an ∀CTL property ϕ, the program E encodes the
search for the proof that ϕ holds of M . The arguments (〈s, ψ〉,M, R) passed
to E are a pair consisting of the state s, a ϕ-subformula ψ of interest, a finite
set of ranking functions M and the transition relation R. Executions of the
procedure E explore the S × sub(ϕ) state space from an initial state s0 ∈ I

in a depth-first manner. At each recursive call, E is attempting to determine
whether ψ holds of s. Rather than explicitly tracking this information, however,
E returns false (recursively) whenever ψ does not hold of s. Consequently, if E
can be proved to never return false, it must be the case that the overall property
ϕ holds of the initial state s (we discuss the termination of E below). When
a program analysis is applied to E it is implementing what is needed to prove
branching-time behaviors of the original transition system (e.g. backtracking,
eventuality checking, tree counterexamples, abstraction, abstraction-refinement,
etc). Formally the relationship between E and � is: for a transition system M =
(S,R, I) and ∀CTL property ϕ,

[∃ finite M. ∀s ∈ I. E(〈s, ϕ〉,M, R) cannot return false] ⇒ ∀s ∈ I. R, s � ϕ

let rec E(〈s, ψ〉,M, R) : bool =
match(ψ) with
| α → return α(s)
| ψ′∧ψ′′ →

if (*) return E(〈s, ψ′〉,M, R)
else return E(〈s, ψ′′〉,M, R);

| ψ′∨ψ′′ →
if (E(〈s, ψ′〉,M, R)) return true;
else return E(〈s, ψ′′〉,M, R);

| AGψ′ →
while (true) {

if (¬ E(〈s, ψ′〉,M, R))
return false;

if (*) return true;
s := choose({s′ | R(s, s′)});

}

| AFψ′ → local dup := false; local ′s ;
while (true) {

if (E(〈s, ψ′〉,M, R)) return true;
if (dup ∧ ¬(∃f ∈ M. f(s) ≺ f(′s)))

return false;
if (¬ dup ∧ *) { dup := true; ′s := s; }
if (*) return true;
s := choose({s′ | R(s, s′)});

}
| A[ψ′Wψ′′] →

while(true) {
if (¬E(〈s, ψ′〉,M, R))
return E(〈s, ψ′′〉,M, R);

if (*) return true;
s := choose({s′ | R(s, s′)});

}

Fig. 2: The encoding E which takes a state s, a property ψ, a finite set of ranking
functions M, and a transition relation R, and constructs a recursive program which
can be used to prove ψ if M is sufficient. choose() nondeterministically selects an
element from the set given by its argument. * ≡ choose({true, false})

where M is, as described earlier, a finite set of ranking functions. We formally
define “cannot return false” by giving E as a guarded transition system in our
technical report [16], but informally it means there is no execution of E where
false is returned.

Completeness (i.e. ⇐) holds when equality over S can be determined in finite
time and the ranking functions are enumerable (e.g. represented as a possibly
infinite list of state/rank pairs). These results can be found in Section 3.

What remains is to understand how E determines whether a subformula ψ
holds of a state s. By passing the state on the stack, we can consider multiple
branching scenarios. When a particular ψ is a ∧ or AG subformula, then E ensures
that all possibilities are considered by establishing feasible paths to all of them.
When a particular ψ is a ∨ or AF subformula, E enables executions to consider
all of the possible cases that might cause ψ to hold of s. As soon as one is found,
true is returned. Otherwise, false will be returned if none are found. This is the
intuition behind the first invariant maintained by E :

INV1 : ∀s, ψ,M, R. if R, s 6� ϕ then E(〈s, ϕ〉,M, R) can return false

Consider this case from the definition of E :

| ψ ∨ ψ′ → if (E(〈s, ψ〉,M, R)) return true;
return E(〈s, ψ′〉,M, R);

Imagine that ψ ≡ x 6= 1, and ψ′ ≡ AG(x = 0). In this case we want to know that
one of the subformulae (i.e. x 6= 1 or AG(x = 0)) holds. A recursive call is made
with the current state s to explore whether x 6= 1 as well as a separate recursive
call with the same current state s to explore AG(x = 0). During a symbolic
execution of this program, all executions will be considered in a search for a way
to cause the program to fail. If it is possible for both recursive calls to return
false (i.e. they abide INV1), then there will be an execution in which the current
call can return false (also abiding INV1). A standard program analysis tool (e.g.
SLAM [2]) will find this case. By maintaining this invariant recursively, a proof
that the outermost level of E cannot return false implies that the outermost
property holds of the original system.

Because we want to consider every state that is reachable from a finite prefix
of an infinite path, it must be possible for the recursive calls to return from
every state. If it were possible for the checking of a subformula like AG(x = 0) to
diverge (thus never returning false) then the above code fragment would never
return false, and thus the top-level call to E would never return false. To this
end, E maintains a second invariant:

INV2 : ∀s, ψ,M, R. E(〈s, ψ〉,M, R) can return true

It is this requirement that necessitates the additional nondeterministic “if (*)
return true” commands found within each loop in E . One can think of “if (*) return
true” as a form of backtracking. In our encoding, a nondeterministic return of
true is not declaring that the property holds (we must always return true to
do that). Instead, a nondeterministic return of true in the encoding means that
a program analysis can freely backtrack and switch to other possible scenarios
during its search for a proof.

In the AF case, our encoding must allow a program analysis to demonstrate
that all paths must eventually reach a state where the subformula holds. While
exploring the reachable states in R the encoding may, at any point, nondeter-
ministically decide to capture the current state (setting dup to true and saving
s as ′s). When each subsequent state s is considered, a check is performed that
there is some rank function that witnesses the well-foundedness of this partic-
ular subset of the transitive closure of the transition system (we will precisely
say which subset in Section 3). This is an adaptation of a known technique [17].
However, rather than using assert to check that one of the ranking functions in
M holds, our encoding instead returns false, allowing other possibilities to be
considered (if any exist) in outer disjunctive or AF formulae.

Partial evaluation. In practice, if the input transition system is implemented as
a program, then we can perform a number of static optimizations from abstract
interpretation and partial evaluation that facilitates the application of current
program analysis tools. Our procedure PEval implements this mixture. For lack
of space, we only briefly describe these transformations. Some additional details
about PEval’s optimizations are provided in our technical report [16].

PEval uses the following facts: (a) the input ∀CTL formula ϕ is always
finite (b) the structure of E is unchanged and (c) the program and initial state

are fixed. Thus we can partially evaluate E on ϕ and the input program and
obtain a first-order program for which modern program analysis techniques can
be effective. For example, consider the näıve implementation of AG given in
Fig. 2 which, in essence, is interpreting the cross product of R together with the
following program:

while true do
if (¬ E((s, ψ′),M, R)) return false;
if (∗) return true;

done

Since we are considering programs as our input systems, we can build an en-
coding where the following fragment is instrumented in each line of a procedure
based on the original input program:

if (¬ E((s, ψ′),M, R)) return false;
if (∗) return true;

We will see an example of this in Section 4.

Because the program state is passed on the stack, recursive calls to E will not
modify variables in the outer scope, and thus can be treated as skip statements
when analyzing the iterations of R. Invariants within a given subprocedure can
be vital to the pruning, simplification, and partial evaluation required to prepare
the output of E for program analysis.

2.3 Looking for M

let prove(P,ϕ) =
let Eϕ = PEval(E , ϕ, P) in
M := ∅
while (Eϕ(M) can return false) do

let χ be a counterexample in
if ∃ lasso path fragment χ′ from χ then
if ∃ witness f showing χ′ w.f. then
M := M ∪ {f}

else
return χ

else
return χ

done
return Success

Fig. 3: Rank function refinement procedure
where the input transition system P is assumed
to be a program.

Finally, recall that we must
ultimately find a finite set
of ranking functions M such
that a program analysis can
prove for every s ∈ I

that E(〈s, ϕ〉,M, R) does not
return false. Our top-level
procedure adapts a known
method [17] in order to it-
eratively find a sufficient M.
See Fig. 3. This procedure first
constructs an Eϕ, which is a
version of E that has been spe-
cialized on P and ϕ. Then, in
our implementation, new rank-
ing functions are automati-
cally synthesized by examin-
ing counterexamples. A coun-
terexample in ∀CTL is tree-

like as follows:

χ ::= CEXα of s | CEX∧ of χ | CEX∨ of χ× χ

| CEXAG of π × χ | CEXAF of π × π × χ | CEXW of π × χ× χ

where π is a trace through the transformed program E . Note that often tools
will not report a concrete trace but rather a path, i.e. a sequence of program
counter values corresponding to a class of traces (in rare instances paths may
be reported that are spurious). The counterexample structure for an atomic
proposition CEXα is simply a state in which α does not hold. Counterexamples
for conjunction and disjunction are as expected. A counterexample to an AG
property is a path to a place where there is a counterexample to the sub-property.
A counterexample to an AF property is a “lasso”—a stem path to a particular
program location, then a cycle which returns to the same program location,
and a sub-counterexample along that cycle in which the sub-property does not
hold. Finally, an AW counterexample is a path to a place where there is a sub-
counterexample to the first property as well as a sub-counterexample to the
second property.

In our encoding we obtain these tree-shaped counterexamples effectively for
free with program analysis tools like SLAM that report stack-based traces for
assertion failures. Information about the stack depth available in the counterex-
amples allows us to re-construct the tree counterexamples. That is, by walking
backward over the stack trace, we can determine the tree-shape of the coun-
terexample. Consider, for example, the case of AF. The counterexample found
by the underlying tool will visit commands through the encoding of E , including
points where dup is set to true. The commands from the input program can be
used to populate an instance of χ.

When a counterexample is reported that contains an instance of CEXAF

(i.e. a “lasso fragment”) it is possible that the property still holds, but that we
have simply not found a sufficient ranking function to witness the termination
of the lasso. In this case our procedure finds the lasso fragments and attempts
to enlarge the set of ranking functions M. One source of incompleteness of our
implementation comes from our reliance on lassos: some non-terminating pro-
grams have only well-founded lassos, meaning that in these cases our refinement
algorithm will fail to find useful refinements. The same problem occurs in [17].
In industrial examples these programs rarely occur.

3 Correctness

Theorem 1 (Soundness and completeness). For a transition system M =
(S,R, I) and ∀CTL property ϕ,

[∃ finite M. ∀s ∈ I. E(〈s, ϕ〉,M, R) cannot return false] ⇒ ∀s ∈ I. R, s � ϕ

where M is a finite set of ranking functions. Completeness (i.e. ⇐) holds when
equality over S can be determined in finite time and the ranking functions are
enumerable (e.g. represented as a possibly infinite list of state/rank pairs).

I ⊆ {s | α(s)}

〈R, I〉 ⊢ α

〈R, I〉 ⊢ ϕ1 〈R, I〉 ⊢ ϕ2

〈R, I〉 ⊢ ϕ1 ∧ ϕ2

∃I1, I2. I = I1 ∪ I2 ∧ 〈R, I1〉 ⊢ ϕ1 ∧ 〈R, I2〉 ⊢ ϕ2

〈R, I〉 ⊢ ϕ1 ∨ ϕ2

〈R, {s′ | ∃s ∈ I.reach (s, s′)}〉 ⊢ ϕ

〈R, I〉 ⊢ AGϕ

∃F .walkFI is w.f. ∧ 〈R,F〉 ⊢ ϕ

〈R, I〉 ⊢ AFϕ

∃F .∀(s, s′) ∈ walkFI .〈R, {s}〉 ⊢ ψ ∧ 〈R,F〉 ⊢ ϕ

〈R, I〉 ⊢ A[ψWϕ]

reach0 (s, s)

reachn (s, s′) ∧R(s′, s′′)

reachn+1 (s, s′′)

R(s, s′) ∧ s /∈ F ∧ s ∈ I

walkFI (s, s′)

R(s′, s′′) ∧ s′ /∈ F ∧ walkFI (s, s′)

walkFI (s′, s′′)

We write reach (s, s′)
to mean ∃n ≥ 0.reachn (s, s′).

Fig. 4: Relational formulation of ∀CTL: ⊢

Using the Coq theorem prover we have proved the above theorem. Details can be
found in the Coq proof script listed in our technical report [16]. In this section
we discuss the structure of the proof and state some of the key lemmas.

For convenience, in the proof we introduce an alternative relational formu-
lation of ∀CTL, ⊢. This formulation more closely matches our definition of E in
that it is given over sets of states, AG is defined in terms of reachability, and AF
is defined in terms of well-foundedness. In effect the encoding E is characterizing
these sets with nondeterminism and by returning true or false. Our proof starts
by showing that ⊢ is equivalent to � and then showing that

[∃ finite M. ∀s ∈ I. E(〈s, ϕ〉,M, R) cannot return false] ⇒ 〈R, I〉 ⊢ ϕ

from which point soundness directly follows.

Relational formulation of ∀CTL semantics. Our relational formulation of ∀CTL
is displayed in Fig. 4. Unlike the standard formulation, ours is more amenable
to reasoning about infinite-state systems because proof trees are based on par-
titioning the state space rather than enumerating the state space. We use the
notation 〈R, I〉 ⊢ ϕ to denote that a property ϕ is valid for a transition system.
This entailment relation is then defined inductively.

An atomic proposition α involves a simple check to see if I is contained within
the set of states in which α holds. The conjunction rule requires that both ϕ1

and ϕ2 hold of all states in I and the disjunction rule splits the states into two
sets, one in which ϕ1 holds and one in which ϕ2 holds. The semantics of the
property AGϕ says that for every reachable state s′, that s′ entails ϕ.

Frontiers. The property AFϕ depends on the existence of a set of states which
we will call a frontier F . Intuitively, the frontier F of a set of initial states I, is
a set of states through which every trace originating at a state in I must pass.

We use frontiers in our formulation of AFϕ to characterize the places where
ϕ holds, requiring that all paths from I eventually reach a frontier. We formalize
this idea by defining the inductive relation walkFI given on the right in Fig. 4.
walkFI is a subset of R that includes every possible transition along every trace
from I up to F . In our characterization of AF we require that walkFI be well-
founded. In this way, we recast the ∀CTL semantics of AF in terms of the well-
foundedness of a relation, rather than the existence of an i-th state in every
trace. This formulation allows us to more efficiently prove AF properties because
we can discover well-founded relations that are over-approximations of walkFI
rather than searching for per-trace ranking functions. The final rule in the left
of Fig. 4 is for the AW operator, which also uses a frontier and the relation walkFI
representing the arcs along the way to the frontier F . To prove A[ϕ1Wϕ2], all
states along the path to the frontier must satisfy ϕ1 and states at the frontier—
should one ever get there—all must satisfy ϕ2.

The following lemma shows that if a property holds in our relational semantics,
then it also holds in the standard semantics of ∀CTL.

Lemma 1. For every ϕ, I,R, 〈R, I〉 ⊢ ϕ ⇐⇒ ∀s ∈ I. R, s � ϕ.

In our technical report [16] we formalize E as a guarded transition system. Since
ϕ is finite, we can partially evaluate E with respect to ϕ, and represent E as a
finite graph. The stack and return values are encoded in the configurations of
the graph. Executions and the notion “cannot return false” are then defined in
the natural way.

Lemma 2. For a transition system M = (S,R, I) and ∀CTL property ϕ,

[∃M. ∀s ∈ I. E(〈s, ϕ〉,M, R) cannot return false] ⇒ 〈R, I〉 ⊢ ϕ.

Completeness (i.e. ⇐) holds when equality over S can be determined in finite
time and each of the ranking functions are enumerable (e.g. represented as a
possibly infinite list of state/rank pairs).

Proof. By induction on ϕ.

From these lemmas we can prove Theorem 1.

4 Example

Consider the example in Fig. 5. After applying E and PEval we obtain the
program given in Fig. 6. The intermediate output without partial evaluation is
given in the technical report [16]. The encoding has been partially evaluated
with respect to ϕ, and with respect to the program counter. For every ψ ∈
sub(ϕ) and pc valuation, there is a corresponding method E“ψ” pc. Since we
are working with a linear arithmetic program where ranking functions can be
given as linear inequalities, integer < is a sufficient ordering for ≺. The main

procedure in the encoding initializes the program state (i.e. x,n) and then asserts
that E“AG((x 6=1)∨AF(x=0))” 0 cannot return false.

1 while(*) {
2 x := 1;

3 n := *;

4 while(n>0) {
5 n := n - 1;

6 }
7 x := 0;

8 }
9 while(1) {}

Fig. 5: Example where ϕ =
AG[(x = 1) ⇒ AF(x = 0)]
and initially x = 0.

An execution of this program consists of a cas-
cade of calls down the hierarchy of sub-procedures.
Each procedure for a subformula maintains invari-
ants INV1 and INV2. This encoding allows us to
ask questions of the form “starting now (i.e. from
this state) does there exist an execution that vio-
lates my property,” and answer them using stan-
dard analysis tools.

For example, procedure E“AG((x 6=1)∨AF(x=0))”

corresponds to the property AG((x 6= 1) ∨ AF(x =
0)) and returns false if there is a reachable state
where ((x 6= 1) ∨ AF(x = 0)) does not hold. It
accomplishes this by calling E“((x 6=1)∨AF(x=0))” on
each line and passing the current state.

If ((x 6= 1)∨AF(x = 0)) does not hold from the
current state, then there will be a way for E“((x 6=1)∨AF(x=0))” to return false, in
which case E“AG((x 6=1)∨AF(x=0))” immediately returns false (leading to an assertion
failure in main). The procedures for disjunction (E“((x 6=1)∨AF(x=0))”) and atomic
propositions (E“x 6=1” and E“x=0”) are straight-forward following Fig. 2, and also
maintain INV1.

The procedure E“AF(x=0)” is, in some sense, the complement of AG. It is
designed to return true whenever there is a path to a state where x = 0 holds,
and will return false if there is an infinite execution that never reaches such a
state. This is accomplished by checking at each state (i.e. on each line of the
program) whether E“x=0” returns true, and returning false if a location is reached
multiple times and there is no ranking function in M that is decreasing.

With the transformation in hand, we can now apply the algorithm in Fig. 3.
What remains is the task of finding a finite M such that in E“AF(x=0)” the check
that ∃f ∈ M. f(x5, n5) > f(x,n) always holds. Initially we let M ≡ ∅. Running
a refinement-based safety prover will yield a counterexample pertaining to line

lab 5 of E“AF(x=0)”, where we denote a state as
[

x
n
pc

]

and we denote transition

relations as
[[

’x=x
’n=n

′pc=pc.

]]

:

(CEXAG

([

0
n
1

]

::
[

1
n
2

]

::
[

1
n
3

]

::
[

1
n
4

]

::
[

1
n
5

])

,

(CEX∨ (CEXα

[

1
n
5

]

)

(CEXAF

[

1
n
5

]

,
[[x5=x

n5=n+1
pc5=pc

]]

, (CEXα

[

1
n
5

]

))))

In our implementation we then use a rank function synthesis tool on this coun-
terexample (as described by Cook et al. [17]), find that ranking can be done on n,
and obtain a newM ≡ {λs. s(n)}. With this newM in place, E“AG((x 6=1)∨AF(x=0))”

always returns true, and consequently, by Theorem 1, ϕ holds of the original pro-
gram.

void main {
bool x; nat n;
x := 0; n := *;
assert(E“AG((x 6=1)∨AF(x=0))” 0(x,n) 6= false);

}

bool E“AG((x 6=1)∨AF(x=0))” 0(bool x, nat n) {
while(*) {

x := 1;

if (¬ E“(x 6=1)∨AF(x=0)” 3(x,n))
{ return false; }
if (*) return true;

n := *;
while(n>0) {

if (*) return true;

n--;
}
x := 0;

}
while(1) { if (*) return true; }

}

bool E“(x 6=1)∨AF(x=0)” 3(bool x, nat n) {
if (x 6= 1) return true;
return E“AF(x=0)” 3(x,n);

}

bool E“AF(x=0)” 3(bool x, nat n) {
dup2 := dup5 := dup9 := false;
goto lab 3;

while(*) {

if(x==0) return true;
if(dup2 && ∄f ∈ M.f(x2, n2) > f(x,n))
{ return false; }
if(¬dup2∧*){dup2:=1;x2:=x;n2:= n;}
if(*) return true;

x := 1;
lab 3:

if (x==0) return true;

n := *;
while(n>0) {
lab 5:

if(x==0) return true;
if(dup5 && ∄f ∈ M.f(x5, n5) > f(x,n))
{ return false; }
if(¬dup5∧*){dup5:=1;x5:=x;n5:= n;}
if(*) return true;

n--;
}
x := 0;
if (x==0) return true;

}
while(1) {

if(x==0) return true;
if(dup9 && ∄f ∈ M.f(x9, n9) > f(x,n))
{ return false; }
if(¬dup9∧*){dup9:=1;x9:=x;n9:= n;}
if(*) return true;

}
}

Fig. 6: The encoding E of property AG[(x = 1) ⇒ AF(x = 0)] and the program
given in Fig. 5 after PEval has been applied.

5 Related work

There is a relationship between temporal logic verification and the problem of
finding winning strategies in games or game-like structures such as alternating
automata [4, 25, 34]. These previous results do not directly apply because they
are geared toward finite state spaces. However, the technique presented in this
paper can be viewed as a generalization of prior work to games over infinite state
spaces. We explore this generalization in our technical report [16]. Specifically,
we first show that the existence of solutions to infinite-state games (such as
those used to represent the ∀CTL model checking problem) is equivalent to the
existence of a solution to a mix of safety and liveness games, when those games
have a certain structure. We then show that our encoding described here can be
generalized to games that meet this constraint.

Other previous tools and techniques are known for proving temporal proper-
ties of finite-state systems (e.g. [7, 11, 25]) or classes of infinite-state systems with
specific structure (e.g. pushdown systems [36, 37] or parameterized systems [19]).
Our proposal works for arbitrary transition systems, including programs.

A previous tool proves only trace-based (i.e. linear-time) properties of pro-
grams [14] using an adaptation of the traditional automata-theoretic approach [35].
In contrast, our reduction to program analysis promotes a state-based (e.g.
branching-time) approach. Trace-based properties can be proved with our tool
using a recently described iterative symbolic determinization technique [15]. In
most cases our new approach is faster for LTL verification than [14] by several
orders of magnitude.

When applying traditional bottom-up based methods for state-based logics
(e.g. [12, 18, 20]) to infinite-state transition systems, one important challenge is
to track reachability when considering relevant subformulae from the property.
In contrast to the standard method of directly tracking the valuations of sub-
formulae in the property with additional variables, we instead use recursion to
encode the checking of subformulae as a program analysis problem. As an inter-
procedural analysis computes procedure summaries it is in effect symbolically
tracking the valuations of these subformulae depending on the context of the
encoded system’s state. Thus, in contrast to bottom-up techniques, ours only
considers reachable states (via the underlying program analysis).

Chaki et al. [9] attempt to address the same problem of subformulae and
reachability for infinite-state transition systems by first computing a finite ab-
straction of the system a priori that is never refined again. Then standard finite-
state techniques are applied. In our approach we reverse the order: rather than
applying abstraction first, we let the underlying program analysis tools perform
abstraction after we have encoded the search for a proof as a new program. The
approach due to Schmidt and Steffen [33] is similar.

The tool Yasm [23] takes an alternative approach: it implements a refinement
mechanism that examines paths which represent abstractions of tree counterex-
amples (using multi-valued logic). This abstraction loses information that limits
the properties that Yasm can prove (e.g. the tool will usually fail to prove
AFAGp). With our encoding the underlying tools are performing abstraction-
refinement over tree counterexamples. Moreover, Yasm is primarily designed to
work for unnested existential properties [22] (e.g. EFp or EGp), whereas our focus
is on precise support for arbitrary (possibly nested) universal properties.

Our encoding shares some similarities with the finite-state model checking
procedure CEX from Figure 6 in Clarke et al. [13]. The difference is that a
symbolic model checking tool is used as a sub-procedure within CEX, making
CEX a recursively defined model checking procedure. The finiteness of the state-
space is crucial to CEX, as in the infinite-state case it would be difficult to find a
finite partitioning a priori from which to make a finite number of model checking
calls when treating temporal operators such as AG and AF.

6 Experiments

In this section we report on experiments with a prototype tool that implements
E from Fig. 2 as well as the refinement procedure from Fig. 3. In our tool we
have implemented E as a source-to-source translation using the CIL compiler

infrastructure. We use SLAM [2] as our implementation of the safety prover,
and RankFinder [29] as the rank function synthesis tool.

We have drawn out a set of both ∀CTL and LTL liveness property challenge
problems from industrial code bases. Examples were taken from the I/O subsys-
tem of the Windows OS kernel, the back-end infrastructure of the PostgreSQL
database server, and the Apache web server. In order to make these examples
self-contained we have, by hand, abstracted away the unnecessary functions and
struct definitions. We also include a few toy examples, as well as the example
from Fig. 8 in [14]. Sources of examples can be found in our technical report [16].
Heap commands from the original sources have been abstracted away using the
approach due to Magill et al. [26]. This abstraction introduces new arithmetic
variables that track the sizes of recursive predicates found as a byproduct of a
successful memory safety analysis using an abstract domain based on separation
logic [28]. Support for variables that range over the natural numbers is crucial
for this abstraction.

As previous mentioned in Section 5, there are several available tools for verify-
ing state-based properties of general purpose (infinite-state) programs. Neither
the authors of this paper, nor the developer of Yasm [23] were able to apply
Yasm to the challenge problems in a meaningful way, due to bugs in the tool.
Note that we expect Yasm would have failed in many cases [22], as it is primarily
designed to work for unnested existential properties (e.g. EGp or EFp). We have
also implemented the approach due to Chaki et al. [9]. The difficulty with ap-
plying this approach to the challenge problems is that the programs must first be
abstracted to finite-state before branching-time proof methods are applied. Be-
cause the challenge problems focus on liveness, we have used transition predicate
abstraction [31] as the abstraction method. However, because abstraction must
happen first, predicates must be chosen ahead of time either by hand or using
heuristics. In practice we found that our heuristics for choosing an abstraction
a priori could not be easily tuned to lead to useful results.

Because the examples are infinite-state systems, popular CTL-proving tools
such as Cadence SMV [1] or NuSMV [10] are not directly applicable. When
applied to finite instantiations of the programs these tools run out of memory.

The tool described in Cook et al. [14] can be used to prove LTL properties if
used in combination with an LTL to Büchi automata conversion tool (e.g. [21]).
To compare our approach to this tool we have used two sets of experiments:
Fig. 7 displays the results on challenge problems in ∀CTL verification; Fig. 8
contains results on LTL verification. Experiments were run using Windows Vista
and an Intel 2.66GHz processor.

In both figures, the code example is given in the first column, and a note as to
whether it contains a bug. We also give a count of the lines of code and the shape
of the temporal property where p and q are atomic propositions specific to the
program. For both the tools we report the total time (in seconds) and the result
for each of the benchmarks. A X indicates that a tool proved the property, and χ
is used to denote cases where bugs were found (and a counterexample returned).

Prev. tool [14] Our tool (Sec. 2)
Program LOC Property Time Result Time Result

Acq/rel 14 AG(a⇒ AFb) 103.48 X 14.18 X

Ex from Fig. 8 of [14] 34 AG(p⇒ AFq) 209.64 X 27.94 X

Toy linear arith. 1 13 p⇒ AFq 126.86 X 34.51 X

Toy linear arith. 2 13 p⇒ AFq >14400.00 ??? 6.74 X

PostgreSQL smsrv 259 AG(p⇒ AFAGq) >14400.00 ??? 9.56 X

PostgreSQL smsrv+bug 259 AG(p⇒ AFAGq) 87.31 χ 47.16 χ

PostgreSQL pgarch 61 AFAGp 31.50 X 15.20 X

Apache progress 314 AG(p⇒(AF∨AF)) 685.34 X 684.24 X

Windows OS 1 180 AG(p⇒ AFq) 901.81 X 539.00 X

Windows OS 4 327 AG(p⇒ AFq) >14400.00 ??? 1,114.18 X

Windows OS 4 327 (AFa) ∨ (AFb) 1,223.96 X 100.68 X

Windows OS 5 648 AG(p⇒ AFq) >14400.00 ??? >14400.00 ???

Windows OS 7 13 AGAFp >14400.00 ??? 55.77 X

Fig. 7: Comparison between our tool and Cook et al. [14] on ∀CTL verification
benchmarks. All of the above ∀CTL properties have equivalent corresponding
LTL properties so they are suitable for direct comparison with the LTL tool [14].

In the case that a tool exceeded the timeout threshold of 4 hours, “>14400.00”
is used to represent the time, and the result is listed as “???”.

When comparing approaches on ∀CTL properties (Fig. 7) we have chosen
properties that are equivalent in ∀CTL and LTL and then directly compared
our procedure from Fig. 3 to the tool in Cook et al. [14]. When comparing
approaches on LTL verification problems (Fig. 8) we have used an iterative
symbolic determinization strategy [15] which calls our procedure in Fig. 3 on
successively refined ∀CTL verification problems. The number of such iterations is
given as column “#.” in Fig. 8. For example, in the case of benchmark Windows
OS 3, our procedure was called twice while attempting to prove a property of
the form FGp.

Our technique was able to prove or disprove all but one example, usually in
a fraction of a minute. The competing tool fails on over 25% of the benchmarks.

7 Conclusions

We have introduced a novel temporal reasoning technique for (potentially infinite-
state) transition systems, with an implementation designed for systems described
as programs. Our approach shifts the task of temporal reasoning to a program
analysis problem. When an analysis is performed on the output of our encoding,
it is effectively reasoning about the temporal and possibly branching behaviors
of the original system. Consequently, we can use the wide variety of efficient
program analysis tools to prove properties of programs. We have demonstrated
the practical viability of the approach using industrial code fragments drawn

Prev. tool [14] Our tool (Sec. 2)
Program LOC Property Time Result Time # Result

Ex. from [15] 5 FGp 2.32 X 1.98 2 X

PostgreSQL dropbuf 152 G(p⇒ Fq) 53.99 X 27.54 3 X

Apache accept liveness 314 Gp⇒ GFq >14400.00 ??? 197.41 3 X

Windows OS 2 158 FGp 16.47 X 52.10 4 X

Windows OS 2+bug 158 FGp 26.15 χ 30.37 1 χ

Windows OS 3 14 FGp 4.21 X 15.75 2 X

Windows OS 6 13 FGp 149.41 X 59.56 1 X

Windows OS 6+bug 13 FGp 6.06 χ 22.12 1 χ

Windows OS 8 181 FGp >14400.00 ??? 5.24 1 X

Fig. 8: Comparison between our tool and Cook et al. [14] on LTL benchmarks.
For our tool, we use a recently described iterative symbolic determinization
strategy [15] to prove LTL properties by using Fig. 3 as the underlying ∀CTL
proof technique. The number of iterations is reported in the # column.

from the PostgreSQL database server, the Apache web server, and the Windows
OS kernel.

Acknowledgments. We would like to thank Josh Berdine, Michael Greenberg,
Daniel Kroening, Axel Legay, Rupak Majumdar, Peter O’Hearn, Joel Ouaknine,
Nir Piterman, Andreas Podelski, Noam Rinetzky, and Hongseok Yang for valu-
able discussions regarding this work. We also thank the Gates Cambridge Trust
for funding Eric Koskinen’s Ph.D. degree program.

References

1. Cadence SMV. http://www.kenmcmil.com/smv.html.
2. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey,

C., Ondrusek, B., Rajamani, S. K., and Ustuner, A. Thorough static analysis
of device drivers. In EuroSys (2006), pp. 73–85.

3. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., and O’Hearn, P. W.
Variance analyses from invariance analyses. In POPL (2007), pp. 211–224.

4. Bernholtz, O., Vardi, M. Y., and Wolper, P. An automata-theoretic ap-
proach to branching-time model checking (extended abstract). In CAV (1994),
pp. 142–155.

5. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné,
A., Monniaux, D., and Rival, X. A static analyzer for large safety-critical
software. In PLDI (2003), pp. 196–207.

6. Bradley, A., Manna, Z., and Sipma, H. The polyranking principle. Automata,
Languages and Programming (2005), 1349–1361.

7. Burch, J., Clarke, E., et al. Symbolic model checking: 1020 states and beyond.
Information and computation 98, 2 (1992), 142–170.

8. Calcagno, C., Distefano, D., O’Hearn, P., and Yang, H. Compositional
shape analysis by means of bi-abduction. In POPL (2009), pp. 289–300.

9. Chaki, S., Clarke, E. M., Grumberg, O., Ouaknine, J., Sharygina, N.,
Touili, T., and Veith, H. State/event software verification for branching-time
specifications. In IFM (2005), pp. 53–69.

10. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M.,
Roveri, M., Sebastiani, R., and Tacchella, A. Nusmv 2: An opensource tool
for symbolic model checking. In CAV (2002), pp. 241–268.

11. Clarke, E., Emerson, E., and Sistla, A. Automatic verification of finite-state
concurrent systems using temporal logic specifications. TOPLAS 8, 2 (1986), 263.

12. Clarke, E., Grumberg, O., and Peled, D. Model checking. 1999.
13. Clarke, E., Jha, S., Lu, Y., and Veith, H. Tree-like counterexamples in model

checking. In LICS (2002), pp. 19–29.
14. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., and Vardi, M. Y.

Proving that programs eventually do something good. In POPL (2007), pp. 265–
276.

15. Cook, B., and Koskinen, E. Making prophecies with decision predicates. In
POPL (2011), pp. 399–410.

16. Cook, B., Koskinen, E., and Vardi, M. Branching-time reasoning for programs.
Tech. Rep. UCAM-CL-TR-788, University of Cambridge, Computer Laboratory,
Jan. 2011. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-788.html.

17. Cook, B., Podelski, A., and Rybalchenko, A. Termination proofs for systems
code. In PLDI (2006), pp. 415–426.

18. Delzanno, G., and Podelski, A. Model checking in CLP. TACAS (1999),
223–239.

19. Emerson, E., and Namjoshi, K. Automatic verification of parameterized syn-
chronous systems. In CAV (1996), pp. 87–98.

20. Fioravanti, F., Pettorossi, A., Proietti, M., and Senni, V. Program spe-
cialization for verifying infinite state systems: An experimental evaluation. In
LOPSTR’10 (2010).

21. Gastin, P., and Oddoux, D. Fast LTL to Büchi automata translation. In CAV
(July 2001).

22. Gurfinkel, A. Personal communication. 2010.
23. Gurfinkel, A., Wei, O., and Chechik, M. Yasm: A software model-checker for

verification and refutation. In CAV (2006), pp. 170–174.
24. Henzinger, T. A., Jhala, R., Majumdar, R., Necula, G. C., Sutre, G.,

and Weimer, W. Temporal-safety proofs for systems code. In CAV (2002),
pp. 526–538.

25. Kupferman, O., Vardi, M., and Wolper, P. An automata-theoretic approach
to branching-time model checking. J. ACM 47, 2 (2000), 312–360.

26. Magill, S., Berdine, J., Clarke, E., and Cook, B. Arithmetic strengthening
for shape analysis. In SAS (2007), vol. 4634, p. 419.

27. McMillan, K. Lazy abstraction with interpolants. In CAV (2006), pp. 123–136.
28. O’Hearn, P., Reynolds, J., and Yang, H. Local reasoning about programs

that alter data structures. In Computer Science Logic (2001), pp. 1–19.
29. Podelski, A., and Rybalchenko, A. A Complete Method for the Synthesis of

Linear Ranking Functions. In VMCAI (2004), pp. 239–251.
30. Podelski, A., and Rybalchenko, A. Transition invariants. In LICS (2004),

pp. 32–41.
31. Podelski, A., and Rybalchenko, A. Transition predicate abstraction and fair

termination. In POPL (2005).
32. Reps, T., Horwitz, S., and Sagiv, M. Precise interprocedural dataflow analysis

via graph reachability. In POPL (1995), pp. 49–61.
33. Schmidt, D., and Steffen, B. Program analysis as model checking of abstract

interpretations. Static Analysis (1998), 351–380.
34. Stirling, C. Games and modal mu-calculus. In TACAS (1996), pp. 298–312.
35. Vardi, M. Y. An automata-theoretic approach to linear temporal logic. In Banff

Higher Order Workshop (1995), pp. 238–266.
36. Walukiewicz, I. Pushdown processes: Games and model checking. In CAV

(1996), pp. 62–74.
37. Walukiewicz, I. Model checking CTL properties of pushdown systems. FST TCS

(2000), 127–138.

