
Precondition Inference from Intermittent Assertions
and Application to Contracts on Collections

Patrick Cousot 2,3, Radhia Cousot 1,3, and Francesco Logozzo 4

1 Centre National de la Recherche Scientifique, Paris
2 Courant Institute of Mathematical Sciences, New York University

3 École Normale Supérieure, Paris
4 MSR, Redmond

Abstract. Programmers often insert assertions in their code to be optionally checked
at runtime, at least during the debugging phase. In the context of design by contracts,
these assertions would better be given as a precondition of the method/procedure
which can detect that a caller has violated the procedure’s contract in a way which
definitely leads to an assertion violation (e.g., for separate static analysis). We define
precisely and formally the contract inference problem from intermittent assertions
inserted in the code by the programmer. Our definition excludes no good run even
when a non-deterministic choice (e.g., an interactive input) could lead to a bad one
(so this is not the weakest precondition, nor its strengthening by abduction, since
a terminating successful execution is not guaranteed). We then introduce new ab-
stract interpretation-based methods to automatically infer both the static contract
precondition of a method/procedure and the code to check it at runtime on scalar
and collection variables.

1 Introduction

In the context of compositional/structural static program analysis for design by con-
tract [23,24], it is quite frequent that preconditions for the code (i.e. a program/mod-
ule/method/procedure/function/assembly/etc) have been only partially specified by
the programmer (or even not at all for legacy code) and need to be automatically
strengthened or inferred by taking into account the implicit language assertions (e.g.,
runtime errors) and the explicit programmer assertions (e.g., assertions and contracts
of called methods/procedures). Besides the methodological advantage of anticipating
future inevitable requirements when running a code, precise contracts are neces-
sary in the context of a separate program analysis as e.g., in Clousot, an abstract
interpretation-based static contract checker for .NET [18]. We work in the context of
contracts embedded in the program code [4] so that specification conditions are ex-
pressed in the programming language itself (and extracted by the compiler for use in
contract related tools). The precondition inference problem for a code is twofold [4]:

– Static analysis problem: infer the entry semantic precondition from control flow
dependent language and programmer assertions embedded in the code to guard,
whenever possible, against inevitable errors;

– Code synthesis problem: generate visible side-effect free code checking for that
precondition. This checking code must be separable from the checked code and
should only involve elements visible to all callers of the checked code.

Example 1 The problem is illustrated by the following AllNotNull procedure where
the precondition that the array A and all array elements should not be null A 6=

in
ria

-0
05

43
88

1,
 v

er
si

on
 1

 -
6

D
ec

 2
01

0
Author manuscript, published in "Proceedings of the 12th Conference on Verification, Model Checking and Abstract Interpretation

(VMCAI'11) (2011)"

http://hal.inria.fr/inria-00543881/fr/
http://hal.archives-ouvertes.fr

null∧∀i ∈ [0, A.length) : A[i] 6= null is checked by the implicit language assertions
while iterating over the array.

void AllNotNull(Ptr[] A) {
/* 1: */ int i = 0;
/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {
/* 4: */ assert((A != null) && (A[i] != null));
/* 5: */ A[i].f = new Object();
/* 6: */ i++;
/* 7: */ }
/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modified
at program point 5:.

ut
On one hand, a solution to the contract inference problem could be to infer the pre-
condition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposed e.g.,
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondi-
tion to be easily understandable and that efficient code can be generated to check
it. Moreover this is stronger than strictly required (e.g., the code x = random();

assert(x ==0) is not guaranteed to terminate properly, but has at least one execu-
tion without failure, so should not be rejected). On the other hand, the precondition
checking code could be a copy of the method body where all code with random or
visible side effect (including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get the straw man

bool CheckAllNotNull(Ptr[] A) {
int i = 0;
while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))
{ return false };

i++ }
return true }

Modifications of i have no visible side effects while those of elements of A do have,
so the assignment A[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. ut

However, these simple solutions may not provide a simple precondition both eas-
ily understandable by the programmer, easily reusable for separate modular static
analysis, and efficiently checkable at runtime, if necessary.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantifiers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. ut

The semantics of code is formalized in Sect. 2 and that of specifications by runtime
assertions in Sect. 3. The contract precondition inference problem is defined in Sect. 4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect. 5 and used in Sect. 6 to provide a fixpoint solution to
the contract precondition inference problem. Several effective contract precondition
inference are then proposed, by data flow analysis in Sect. 7, for scalar variables both
by forward symbolic analysis in Sect. 8 and by backward symbolic analysis in Sect. 9,
for collections by forward analysis in Sect. 10. Sect. 11 has a comparison with related
work, suggestions for future work, and conclusions.

in
ria

-0
05

43
88

1,
 v

er
si

on
 1

 -
6

D
ec

 2
01

0

2 Program semantics

Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by a transition system 〈Σ, τ, I〉 where Σ is a
set of states, τ ∈ ℘(Σ×Σ) is a non-deterministic transition relation between a state
and its possible successors, and I ∈ ℘(Σ) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write τ(s, s′) for 〈s, s′〉 ∈ τ . The final
or blocking states without any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) are B , {s ∈ Σ | ∀s′ : ¬τ(s, s′)}.
If the code must satisfy a global invariant G ∈ ℘(Σ) (e.g., class invariant for a
method), we assume this to be included in the definition of the transition relation τ
(e.g., τ ⊆ G×G). We use a map π ∈ Σ → Γ of states of Σ into control points in Γ
which is assumed to be of finite cardinality. The program has scalar variables x ∈ x,
collection variables X ∈ X and visible side effect free expressions e ∈ E, including
Boolean expressions b ∈ B ⊆ E. Collection variables X have elements X[i] ranging
from 0 to X.count− 1 (A.length− 1 for arrays A). The value of e ∈ E in state s ∈ Σ
is JeKs ∈ V. The values V include the Booleans B , {true, false} where the complete
Boolean algebra 〈B, ⇒〉 is ordered by false ⇒ true. The value JXKs of a collection X
in a state s ∈ Σ is a pair JXKs = 〈n, X〉 where n = JX.countKs > 0 is a non-negative
integer and X ∈ [0, n)→ V denotes the value X(i) of i-th element, i ∈ [0, n), in the
collection. When i ∈ [0, n), we define JXKs[i] , X(i) (= JX[e]Ks where JeKs = i) to
denote the i-th element in the collection.

Traces. We let traces be sequences of states in Σ. ~Σn is the set of non-empty finite
traces ~s = ~s0 . . . ~sn−1 of length |~s | , n > 0 including the empty trace ~ε of length
|~ε | , 0. ~Σ+ ,

⋃
n>1

~Σn is the set of non-empty finite traces and ~Σ ∗ , ~Σ+ ∪ {~ε}.
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential composition of traces is ~ss ◦ s~s ′ , ~ss~s ′ when ~s,~s ′ ∈ ~Σ ∗ and
s ∈ Σ, and is otherwise undefined. ~S ◦ ~S ′ , {~ss~s ′ | ~ss ∈ ~S ∩ ~Σ+ ∧ s~s ′ ∈ ~S ′}. The
partial execution traces or runs of 〈Σ, τ, I〉 are prefix traces generated by transitions,
as follows

~́τ n , {~s ∈ ~Σn | ∀i ∈ [0, n− 1) : τ(~si, ~si+1)} partial runs of length n > 0
~́τ + ,

⋃
n>1

~́τ n non-empty finite partial runs

~τ n , {~s ∈ ~́τ n | ~sn−1 ∈ B} complete runs of length n > 0
~τ + ,

⋃
n>1

~τ n non-empty finite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are ~́τ +
I ,

{~s ∈ ~́τ + | ~s0 ∈ I} (resp. ~τ +
I , {~s ∈ ~τ + | ~s0 ∈ I}). Given S ⊆ Σ, we let ~Sn , {~s ∈

~Σn | ~s0 ∈ S}, n > 1. Partial and maximal finite runs have the following fixpoint
characterization [11]

~́τ +
I = lfp

⊆
∅ λ ~T .~I1 ∪ ~T ◦ ~́τ 2

~τ + = lfp
⊆
∅ λ ~T . ~B1 ∪ ~́τ 2 ◦ ~T = gfp

⊆
~Σ+ λ ~T . ~B1 ∪ ~́τ 2 ◦ ~T . (1-a,1-b)

3 Specification semantics

The specification includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

in
ria

-0
05

43
88

1,
 v

er
si

on
 1

 -
6

D
ec

 2
01

0

A = {〈cj , bj〉 | j ∈ ∆}

whenever a runtime check assert(bj) is attached to a control point cj ∈ Γ , j ∈ ∆. A
is computed by a syntactic pre-analysis of the code. The Boolean expressions bj are
assumed to be both visible side effect free and always well-defined when evaluated in a
shortcut manner, which may have to be checked by a prior assert (e.g., assert((A!=
null) && (A[i] == 0))). For simplicity, we assume that bj either refers to a scalar
variable (written bj(x)) or to an element of a collection (written bj(X, i)). This
defines

EA , {s ∈ Σ | ∃〈c, b〉 ∈ A : πs = c ∧ ¬JbKs} erroneous or bad states
~́EA , {~s ∈ ~Σ+ | ∃i < |~s | : ~si ∈ EA} erroneous or bad runs.

As part of the implicit specification, and for the sake of brevity, we consider that pro-
gram executions should terminate. Otherwise the results are similar after revisiting
(1-a,1-b) for infinite runs as considered in [11].

4 The contract precondition inference problem

Definition 4 Given a transition system 〈Σ, τ, I〉 and a specification A, the contract
precondition inference problem consists in computing PA ∈ ℘(Σ) such that when
replacing the initial states I by PA ∩ I, we have

~τ +
PA∩I ⊆ ~τ +

I (no new run is introduced) (2)

~τ +
I\PA

= ~τ +
I \ ~τ

+
PA
⊆ ~́EA (all eliminated runs are bad runs). (3) ut

The following lemma shows that, according to Def. 4, no finite maximal good run is
ever eliminated.

Lemma 5 (3) implies ~τ +
I ∩ ¬~́EA ⊆ ~τ +

PA
.

Choosing PA = I so that I \ PA = ∅ hence ~τ +
I\PA

= ∅ is a trivial solution, so
we would like PA to be minimal, whenever possible (so that ~τ +

I\PA
is maximal).

Please note that this is not the weakest (liberal) precondition [17], which yields the
weakest condition under which the code (either does not terminate or) terminates
without assertion failure, whichever non-deterministic choice is chosen. So this is not
either the problem of strengthening a precondition to a weaker one by abduction for
specification synthesis [7].

Theorem 6 The strongest (5) solution to the precondition inference problem in Def. 4
is PA , {s | ∃s~s ∈ ~τ + ∩ ¬~́EA}. (4) ut

Instead of reasoning on the set PA of states from which there exists a good run
without any error, we can reason on the complement PA that is the set of states
from which all runs are bad in that they always lead to an error. Define PA to be
the set of states from which any complete run in ~τ + does fail.

PA , ¬PA = {s | ∀s~s ∈ ~τ + : s~s ∈ ~́EA}.

(5) Following [17], P is said to be stronger than Q and Q weaker than P if and only if P ⊆ Q.

in
ria

-0
05

43
88

1,
 v

er
si

on
 1

 -
6

D
ec

 2
01

0

5 Basic elements of abstract interpretation

Galois connections. A Galois connection 〈L, 6〉 −−−→←−−−α
γ
〈L, v〉 consists of posets 〈L,

6〉, 〈L, v〉 and maps α ∈ L→ L, γ ∈ L→ L such that ∀x ∈ L, y ∈ L : α(x) v y ⇔
x 6 γ(y). The dual is 〈L, w〉 −−−→←−−−γ

α 〈L, >〉. In a Galois connection, the abstraction
α preserves existing least upper bounds (lubs) hence is monotonically increasing
so, by duality, the concretization γ preserves existing greatest lower bounds (glbs)
and is monotonically increasing. If 〈L, 6〉 is a complete Boolean lattice with unique
complement ¬ then the self-dual complement isomorphism is 〈L, 6〉 −−−→−→←←−−−−

¬
¬ 〈L, >〉

(since ¬x 6 y ⇔ x > ¬y).

Fixpoint abstraction. Recall from [13, 7.1.0.4] that

Lemma 7 If 〈L, 6, ⊥〉 is a complete lattice or a cpo, F ∈ L→ L is monotonically
increasing, 〈L, v〉 is a poset, α ∈ L→ L is continuous (6),(7), F ∈ L→ L commutes
(resp. semi-commutes) with F that is α ◦ F = F ◦ α (resp. α ◦ F v F ◦ α) then
α(lfp 6

⊥ F) = lfp
v
α(⊥)

F (resp. α(lfp 6

⊥ F) v lfp
v
α(⊥)

F).

Applying Lem. 7 to 〈L, 6〉 −−−→−→←←−−−−
¬
¬ 〈L, >〉, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park [26, Sect. 2.3]) If F ∈ L → L is monotonically in-
creasing on a complete Boolean lattice 〈L, 6, ⊥, ¬〉 then ¬ lfp

6

⊥ F = gfp
6

¬⊥ ¬ ◦ F ◦ ¬ .

Corollary 9 If 〈L,v,>〉 is a complete lattice or a dcpo, F ∈ L→ L is monotonically
increasing, γ ∈ L → L is co-continuous (8), F ∈ L → L commutes with F that is
γ ◦ F = F ◦ γ then γ(gfp

v
> F) = gfp

6

γ(>)
F .

6 Fixpoint strongest contract precondition

Following [11], let us define the abstraction generalizing [17] to traces

wlp[~T] , λ ~Q .{s ∣∣ ∀s~s ∈ ~T : s~s ∈ ~Q
}

wlp−1[~Q] , λP .{s~s ∈ ~Σ+
∣∣ (s ∈ P)⇒ (s~s ∈ ~Q)

}
such that 〈℘(~Σ+), ⊆〉 −−−−−−−−−−→←−−−−−−−−−−

λ ~T .wlp[~T]~Q

wlp−1[~Q]
〈℘(Σ), ⊇〉 and PA = wlp[~τ +](~́EA). By fixpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 PA = gfp
⊆
Σ

λP .EA ∪ (¬B ∩ p̃re[τ]P) and PA = lfp
⊆
∅ λP .¬EA ∩

(B∪pre[τ]P) where pre[τ]Q , {s | ∃s′ ∈ Q : 〈s, s′〉 ∈ τ} and p̃re[τ]Q , ¬pre[τ](¬Q) =
{s | ∀s′ : 〈s, s′〉 ∈ τ ⇒ s′ ∈ Q}. ut

If the set Σ of states is finite, as assumed in model-checking [2], the fixpoint definition
of PA in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s ∈ PA can proceed by exhaustive enumeration. In case
this does not scale up or for infinite state systems, bounded model-checking [5] is an

(6) α is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for α can be restricted to the iterates F 0 , ⊥, Fn+1 , F (Fn),

Fω ,
⊔

n> F
n of the least fixpoint of F .

(8) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.

in
ria

-0
05

43
88

1,
 v

er
si

on
 1

 -
6

D
ec

 2
01

0

alternative using
⋃k
i=0 ~τ

i instead of ~τ + but, by Th. 6, the bounded prefix abstraction
αk(~T) ,

{
~s0 . . . ~smin(k,|~s |)−1

∣∣ ~s ∈ ~T
}

is unsound for approximating both PA and
PA.

7 Contract precondition inference by symbolic flow analysis

Instead of state-based reasonings, as in Sect. 4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
effect is the same. This can be done by a sound data flow analysis [21] when
1. the value of the visible side effect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in an assert on
all paths that can be taken from the program entry.

We propose a backward data flow analysis to check for both sufficient conditions 1
and 2.

Backward expression propagation. Let c ∈ Γ be a control point and b be
a Boolean expression. For example b can contain ForAll or Exists assertions on
unmodified collections without free scalar variables and no visible side effect (see
Sect. 10 otherwise). P (c, b) holds at program point c when Boolean expression b will
definitely be checked in an assert(b) on all paths from c without being changed up
to this check. P = gfp

⇒̇
BJτK is the ⇒̇-greatest solution of the backward system of

equations (9),(10){
P (c, b) = BJτK(P)(c, b)
c ∈ Γ, b ∈ Ab

where the expressions of asserts are Ab , {b | ∃c : 〈c, b〉 ∈ A} and the transformer
B ∈ (Γ ×Ab → B)→ (Γ ×Ab → B) is

BJτK(P)(c, b) = true when 〈c, b〉 ∈ A (assert(b) at c)

BJτK(P)(c, b) = false when ∃s ∈ B : πs = c ∧ 〈c, b〉 6∈ A (exit at c)

BJτK(P)(c, b) =
∧

c′ ∈ succJτK(c)

unchangedJτK(c, c′, b) ∧ P (c′, b) (otherwise)

the set succJτK(c) of successors of the program point c ∈ Γ satisfies

succJτK(c) ⊇ {c′ ∈ Γ | ∃s, s′ : πs = c ∧ τ(s, s′) ∧ πs′ = c′}

(succJτK(c) , Γ yields a flow-insensitive analysis) and unchangedJτK(c, c′, b) implies
than a transition by τ from program point c to program point c′ can never change
the value of Boolean expression b

unchangedJτK(c, c′, b) ⇒ ∀s, s′ : (πs = c ∧ τ(s, s′) ∧ πs′ = c′)⇒ (JbKs = JbKs′).

unchangedJτK(c, c′, b) can be a syntactic underapproximation of its semantic definition
[3]. Define

(9) ⇒̇ is the pointwise extension of logical implication ⇒
(10) The system of equations ~X = ~F (~X) where ~X = X1, . . . , Xn is written

{
Xi = Fi(X1, . . . , Xn) .
i = 1, . . . , n

in
ria

-0
05

43
88

1,
 v

er
si

on
 1

 -
6

D
ec

 2
01

0

RA , λ b . {〈s, s′〉 | 〈πs′, b〉 ∈ A ∧ JbKs = JbKs′}
~RA , λ b . {~s ∈ ~Σ+ | ∃i < |~s | : 〈~s0, ~si〉 ∈ RA(b)}

and the abstraction

~αD(~T)(c, b) , ∀~s ∈ ~T : π~s0 = c⇒ ~s ∈ ~RA(b)

~γD(P) , {~s | ∀b ∈ Ab : P (π~s0, b)⇒ ~s ∈ ~RA(b)}

such that 〈 ~Σ+, ⊆〉 −−−−→←−−−−
~αD

~γD 〈Γ ×Ab → B, ⇐̇〉. By (1-a) and Lem. 7, we have

Theorem 11 ~αD(~τ +) ⇐̇ lfp
⇐̇
BJτK = gfp

⇒̇
BJτK , P . ut

Precondition generation. The syntactic precondition generated at entry control
point i ∈ Iπ , {i ∈ Γ | ∃s ∈ I : πs = i} is (assuming && ∅ , true)

Pi , &&
b∈Ab, P (i,b)

b

The set of states for which the syntactic precondition Pi is evaluated to true at
program point i ∈ Γ is Pi , {s ∈ Σ | πs = i ∧ J PiKs} and so for all program entry
points (in case there is more than one) PI , {s ∈ Σ | ∃i ∈ Iπ : s ∈ Pi}. We have

Theorem 12 PA ∩ I ⊆ PI. ut

By Th. 6 and 12, the precondition generation is sound: a rejected initial state would
inevitably have lead to an assertion failure.

Example 13 Continuing Ex. 1, the assertion A != null is checked on all paths and
A is not changed (only its elements are), so the data flow analysis is able to move the
assertion as a precondition. ut

However, the data flow abstraction considered in this Sect. 7 is rather imprecise
because a precondition is checked on code entry only if
1. the exact same precondition is checked in an assert (since scalar and collection

variable modifications are not taken into account, other than by annihilating the
backward propagation);

2. and this, whichever execution path is taken (conditions are not taken into account).

We propose remedies to 1 and 2 in the following Sect. 8 and 9.

8 Contract precondition inference for scalar variables by
forward symbolic analysis

Let us define the cmd, succ and pred functions mapping control points to their com-
mand, successors and predecessors (∀c, c′ ∈ Γ : c′ ∈ pred(c) ⇔ c ∈ succ(c′)).

c: x:=e; c′:... cmd(c, c′) , x:=e succ(c) , {c′} pred(c′) , {c}
c: assert(b); c′:... cmd(c, c′) , b succ(c) , {c′} pred(c′) , {c}
c: if b then cmd(c, c′t) , b succ(c) , {c′t, c′f}
c′t:...c

′′
t : cmd(c, c′f) , ¬b pred(c′t) , {c}

else cmd(c′′t , c′) , skip succ(c′′t) , {c′}
c′f:...c

′′
f: cmd(c′′f , c′) , skip succ(c′′f) , {c′} pred(c′f) , {c}

in
ria

-0
05

43
88

1,
 v

er
si

on
 1

 -
6

D
ec

 2
01

0

fi; c′... pred(c′) , {c′′t , c′′f}
c :while c′: b do cmd(c, c′) , skip succ(c) , {c′} pred(c′) , {c, c′′b }
c′b:...c

′′
b : cmd(c′, c′b) , b succ(c′) , {c′b, c

′′} pred(c′b) , {c′}
od; c′′... cmd(c′, c′′) , ¬b succ(c′′b) , {c′} pred(c′′) , {c′}

cmd(c′′b , c) , skip

For programs with scalar variables ~x , we denote by ~x (or −→x0) their initial values
and by ~x their current values. Following [9, Sect. 3.4.5], the symbolic execution [22]
attaches invariants Φ(c) to program points c ∈ Γ defined as the pointwise ⇒̇-least
fixpoint of the system of equations Φ = F (Φ) with F (Φ)c =

∨
c′ ∈ pred(c)

F(cmd(c′, c), Φ(c′)) ∨
∨

c∈Iπ

(~x = ~x)

c ∈ Γ

where pred(c) = ∅ for program entry points c ∈ Iπ and the forward transformers are
in Floyd’s style (the predicates φ depends only on the symbolic initial ~x and current
~x values of the program variables ~x)

F(skip, φ) , φ

F(x:=e, φ) , ∃~x ′ : φ[~x := ~x ′] ∧ dom(e, ~x ′) ∧ ~x = ~x ′[x := e[~x := ~x ′]]

F(b, φ) , φ ∧ dom(b, ~x) ∧ b[~x := ~x]

where dom(e, ~x) is the condition on ~x for evaluating e as a function of ~x without
runtime error. By allowing infinitary disjunctions, we have [9, Sect. 3.4.5]

Theorem 14 Φ = lfp
⇒̇
F has the form Φ(c) =

∨
i∈∆c

pc,i(~x) ∧ ~x = ~ec,i(~x) where
pc,i(~x) is a Boolean expression defining the condition for control to reach the current
program point c as a function of the initial values ~x of the scalar variables ~x and
~ei(~x) defines the current values ~x of the scalar variables ~x as a function of their
initial values ~x when reaching program point c with path condition pc,i(~x) true. ut

The soundness follows from ∀~s ∈ ~τ + : ∀j < |~s | : φ(c)[~x := J~xK~s0][~x := J~xK~sj] =
∀~s ∈ ~τ + : ∀j < |~s | : ∀i ∈ ∆π~sj

: pπ~sj ,i[~x := J~xK~s0] ⇒ J~xK~sj = ~eπ~sj ,i[~x := J~xK~s0]
where J~xKs is the value of the vector ~x of scalar variables in state s.

This suggests a method for calculating the precondition by adding for each as-
sertion c:assert(b) the condition

∧
i∈∆c

pc,i[~x := ~x]⇒ b[~x := ~ec,i[~x := ~x]] which is
checked on the initial values of variables.

Example 15 For the program

/* 1: x=x0 & y=y0 */ if (x == 0) {

/* 2: x0=0 & x=x0 & y=y0 */ x++;

/* 3: x0=0 & x=x0+1 & y=y0 */ assert(x==y);

}

the precondition at program point 1: is (!(x==0)||(x+1==y)). ut

Of course the iterative computation of lfp
⇒̇
F will in general not terminate so that

a widening [12] is needed. A simple one would bound the number of iterations and
widen

∨
i∈∆c

pc,i(~x) ∧ ~x = ~ec,i(~x) to
∧
i∈∆c

pc,i(~x)⇒ ~x = ~ec,i(~x).

in
ria

-0
05

43
88

1,
 v

er
si

on
 1

 -
6

D
ec

 2
01

0

9 Contract precondition inference by backward symbolic
analysis

Backward symbolic precondition analysis of simple assertions. The symbolic
relation between entry and assert conditions can be also established backwards,
starting from the assert conditions and propagating towards the entry points taking
assignments and tests into account with widening around unbounded loops. We first
consider simple assertions involving only scalar variables (including e.g., the size of
collections as needed in Sect. 10 where the case of collections is considered).

Abstract domain. Given the set B of visible side effect free Boolean expressions on
scalar variables, we consider the abstract domain B/≡ containing the infimum false
(unreachable), the supremum true (unknown) and equivalence classes of expressions
[b]/≡ for the abstract equivalence of expressions ≡ abstracting semantic equality that
is b ≡ b′ ⇒ ∀s ∈ Σ : JbKs = Jb′Ks. The equivalence classes are encoded by choosing
an arbitrary representative b′ ∈ [b]/≡. The abstract equivalence ≡ can be chosen
within a wide range of possibilities, from syntactic equality, to the use of a simplifier,
of abstract domains, or that of a SMT solver. This provides an abstract implication
b Z⇒ b′ underapproximating the concrete implication ⇒ in that b Z⇒ b′ implies that
∀s ∈ Σ : JbKs ⇒ Jb′Ks. The equivalence is defined as b ≡ b′ , b Z⇒ b′ ∧ b′ Z⇒ b. The
basic abstract domain is therefore 〈B/≡, Z⇒〉.

We now define the abstract domain functor

B
2

, {bp ; ba | bp ∈ B ∧ ba ∈ B ∧ bp 6Z⇒ ba}

Notice that bp ; ba denotes the pair 〈[bp]/≡, [ba]/≡〉 of B/≡ ×B/≡. The interpre-
tation of bp ; ba is that when the path condition bp holds, an execution path will
be followed to some assert(b) and checking ba at the beginning of the path is the
same as checking this b later in the path when reaching the assertion. We exclude
the elements such that bp Z⇒ ba which implies bp ⇒ ba so that no precondition is
needed. An example is if (bp) { assert(ba) } where the assertion has already
been checked on the paths leading to that assertion. The abstract ordering on 〈B2

,
Z⇒〉 is bp ; ba Z⇒ b′p ; b′a , b′p Z⇒ bp ∧ ba Z⇒ b′a.

Different paths to different assertions are abstracted by elements of 〈℘(B
2
), ⊆〉,

each bp ; ba corresponding to a different path to an assertion. The number of paths
can grow indefinitely so 〈℘(B

2
), ⊆〉 must be equipped with a widening.

Finally our abstract domain will be 〈Γ → ℘(B
2
), ⊆̇〉 ordered pointwise so as to

attach an abstract property ρ(c) ∈ ℘(B
2
) to each program point c ∈ Γ .

Example 16 The program on the left has abstract properties given on the right.

/* 1: */ if (odd(x)) {

/* 2: */ y++;

/* 3: */ assert(y > 0);

} else {

/* 4: */ assert(y < 0); }

/* 5: */

ρ(1) = {odd(x) ; y >= 0,¬odd(x) ; y < 0}
ρ(2) = {true ; y >= 0}
ρ(3) = {true ; y > 0}

ρ(4) = {true ; y < 0}
ρ(5) = ∅ ut

Because the abstraction is syntactic, there may be no best abstraction, so we define
the concretization (recall that A is the set of pairs 〈c, b〉 such that assert(b) is
checked at program point c and define A(c) ,

∧
〈c, b〉∈A b)

in
ria

-0
05

43
88

1,
 v

er
si

on
 1

 -
6

D
ec

 2
01

0

γ̇ ∈ (Γ → ℘(B
2
))→ ℘(~Σ+), γ̇(ρ) ,

⋃
c ∈ Γ
{~s ∈ γc(ρ(c)) | π~s0 = c}

γc ∈ ℘(B
2
)→ ℘({~s ∈ ~Σ+ | π~s0 = c}), γc(C) ,

⋂
bp ; ba ∈ C

γc(bp ; ba)

γc ∈ B
2 → ℘({~s ∈ ~Σ+ | π~s0 = c})

γc(bp ; ba) , {~s ∈ ~Σ+ | π~s0 = c ∧ JbpK~s0 ⇒ (∃j < |~s | : JbaK~s0 = JA(π~sj)K~sj)}.

Observe that γ̇ is decreasing which corresponds to the intuition that an analysis
finding no path precondition bp ; ba defines all possible executions in ~Σ+.

Backward path condition and checked expression propagation. The system
of backward equations ρ = B(ρ) is (recall that

⋃
∅ = ∅) B(ρ)c =

⋃
c′ ∈ succ(c), b; b′ ∈ ρ(c′)

B(cmd(c, c′), b ; b′) ∪ {true ; b | 〈c, b〉 ∈ A}

c ∈ Γ

where (writing e[x := e′] for the substitution of e′ for x in e)

B(skip, bp ; ba) , {bp ; ba}
B(x:=e, bp ; ba) , {bp[x := e] ; ba[x := e]} if bp[x := e] ∈ B ∧ ba[x := e] ∈ B

∧ bp[x := e] 6Z⇒ bc[x := e]
, ∅ otherwise

B(b, bp ; ba) , {b && bp ; ba} if b && bp ∈ B ∧ b && bp 6Z⇒ ba
, ∅ otherwise

By Cor. 9 and (1-b), the analysis is sound, i.e.

Theorem 17 If ρ ⊆̇ lfp
⊆̇
B then ~τ + ⊆ γ̇(ρ). ut

Observe that B can be ˙Z⇒ -overapproximated (e.g., to allow for simplifications of the
Boolean expressions).

Example 18 The analysis of the following program

/* 1: */ while (x != 0) {

/* 2: */ assert(x > 0);

/* 3: */ x--;

/* 4: */ } /* 5: */

leads to the following iterates at program point 1: ρ0(1) = ∅, ρ1(1) = {x 6= 0 ; x >
0}, which is stable since the next iterate is (x 6= 0∧ x > 0∧ x− 1 6= 0) ; (x− 1 > 0)
≡ x > 1 ; x > 1, which is trivially satisfied hence not added to ρ2(1) = ρ1(1). ut

Example 19 The backward symbolic analysis of Ex. 1 moves the checks (A !=
null) to the precondition. ut

A simple widening to enforce convergence would limit the size of the elements of
℘(B

2
), which is sound since eliminating a pair bp ; ba would just lead to ignore

some assertion in the precondition, which is always correct.

in
ria

-0
05

43
88

1,
 v

er
si

on
 1

 -
6

D
ec

 2
01

0

Precondition generation. Given an analysis ρ ⊆̇ lfp
⊆
B, the syntactic precondi-

tion generated at entry control point i ∈ Iπ , {i ∈ Γ | ∃s ∈ I : πs = i} is

Pi , &&
bp ; ba ∈ ρ(i)

(!(bp) || (ba)) (again, assuming && ∅ , true)

Example 20 For Ex. 18, the precondition generated at program point 1 will be !(x
!= 0) || (x > 0) since the static analysis was able to show that only the first assert
in the loop does matter because when passed successfully it implies all the following
ones. ut

The set of states for which the syntactic precondition Pi is evaluated to true at
program point i ∈ Γ is Pi , {s ∈ Σ | πs = i ∧ J PiKs} and so for all program entry
points (in case there is more than one) PI , {s ∈ Σ | ∃i ∈ Iπ : s ∈ Pi}.

Theorem 21 PA ∩ I ⊆ PI. ut

So, by Th. 6, the data flow analysis is sound, a rejected initial state would inevitably
have lead to an assertion failure.

10 Contract precondition inference for collections by forward
static analysis

Symbolic execution as considered in Sect. 8 and 9 for scalars is harder for data
structures since all the elements of the data structure must be handled individually
without loss of precision. We propose a simple solution for collections (including
arrays). The idea is to move to the precondition the assertions on elements of the
collection which can be proved to be unmodified before reaching the condition.

Abstract domain for scalar variables. For scalar variables x ∈ x, we assume that
we are given abstract properties in η ∈ Γ → R with concretization γx(η) ∈ ℘(Σ).
Moreover, we consider a dataflow analysis with abstract properties ζ ∈ Γ → x→ A
and pointwise extension of the order 0 � 0 ≺ 1 � 1 on A , {0, 1} where 0 means
“unmodified” and 1 “unknown”. The concretization is

γ(η, ζ) , {~s ∈ ~Σ+ | ∀j < |~s | : ~sj ∈ γx(η) ∧
∀x ∈ x : ζ(π~sj)(x) = 0⇒ JxK~s0 = JxK~sj}

Segmentation abstract domain. For collections X ∈ X, we propose to use seg-
mentation as introduced by [16]. A segmentation abstract property in S(A) depends
on abstract properties in A holding for elements of segments. So

S(A) , {(B ×A)× (B ×A× { , ?})k × (B × { , ?}) | k > 0} ∪ {⊥}

and the segmentation abstract properties have the form

{e11 ... e1m1}A1 {e21 ... e2m2}[?2]A2 . . . An−1 {en1 ... enmn}[?n]

where
– We let E be a set of symbolic expressions in normal form depending on variables.

Here, the abstract expressions E are restricted to the normal form v + k where
v ∈ x ∪ {v0} is an integer variable plus an integer constant k ∈ Z (an auxiliary
variable v0 6∈ x is assumed to be always 0 and is used to represent the integer
constant k as v0 + k);

in
ria

-0
05

43
88

1,
 v

er
si

on
 1

 -
6

D
ec

 2
01

0

– the segment bounds {ei1 ... eimi} ∈ B, i ∈ [1, n], n > 1, are finite non-empty sets of
symbolic expressions in normal form eij ∈ E , j = 1, . . . ,mi;

– the abstract predicates Ai ∈ A denote properties that are valid for all the elements
in the collection between the bounds; and

– the optional question mark [?i] follows the upper bound of a segment. Its presence
? means that the segment might be empty. Its absence means that the segment
cannot be empty. Because this information is attached to the segment upper bound
(which is also the lower bound of the next segment), the lower bound {e11 . . . e1m1}
of the first segment never has a question mark. 〈{ , ?}, 4, g, f〉 is a complete
lattice with ≺ ?.

Segmentation modification and checking analyses. We consider a segmen-
tation modification analysis with abstract domain S(M) where M , {e, d} with
e v e < d v d. The abstract property e states that all the elements in the segment
must be equal to their initial value (so γM(e) , {〈v, v〉 | v ∈ V}) and the abstract
property d means that some element in the segment might have been modified hence
might be different from its initial value (in which case we define γM(d) , V × V).

For each assert in the program, we also use a segmentation checking analysis
with abstract domain C , {⊥, n, c.>} where ⊥ < n < > and ⊥ < c < > to collect the
set of elements of a collection that have been checked by this assert. The abstract
property ⊥ is unreachability, c states that all the elements in the segment have
definitely been checked by the relevant assert, n when none of the elements in the
segment have been checked, and > is unknown.

Example 22 The analysis of Ex. 1 proceeds as follows (the first segmentation in
S(M) collects element modifications for A while the second in segmentation S(C)
collects the set of elements A[i] of A checked by the assertion at program point 4:
while equal to its initial value. The classical analyses for A (not null whenever used)
and i are not shown.).

(a) 1: {0}e{A.length}? - {0}n{A.length}?
no element yet modified (e) and none checked (n), array may be empty

(b) 2: {0,i}e{A.length}? - {0,i}n{A.length}? i = 0
(c) 3: ⊥ t ({0,i}e{A.length}? - {0,i}n{A.length}?) join

= {0,i}e{A.length}? - {0,i}n{A.length}?
(d) 4: {0,i}e{A.length} - {0,i}n{A.length}

last and only segment hence array not empty (since A.length > i = 0)
(e) 5: {0,i}e{A.length} - {0,i}c{1,i+1}n{A.length}?

A[i] checked while unmodified
(f) 6: {0,i}d{1,i+1}e{A.length}? - {0,i}c{1,i+1}n{A.length}?
A[i] appears on the left handside of an assignment, hence is potentially modified

(g) 7: {0,i-1}d{1,i}e{A.length}? - {0,i-1}c{1,i}n{A.length}?
invertible assignment iold = inew − 1

(h) 3: {0,i}e{A.length}? t {0,i-1}d{1,i}e{A.length}? - join
{0,i}n{A.length}? t {0,i-1}c{1,i}n{A.length}?

= {0}e{i}?e{A.length}? t {0}d{i}e{A.length}? - segment unification
{0}⊥{i}?n{A.length}? t {0}c{i}n{A.length}?

= {0}d{i}?e{A.length}? - {0}c{i}?n{A.length}?
segmentwise join e t d = d, e t e = e, ⊥ t c = c, n t n = n

in
ria

-0
05

43
88

1,
 v

er
si

on
 1

 -
6

D
ec

 2
01

0

(i) 4: {0}d{i}?e{A.length} - {0}c{i}?n{A.length} last segment not empty
(j) 5: {0}d{i}?e{A.length} - {0}c{i}?c{i+1}n{A.length}?

A[i] checked while unmodified
(k) 6: {0}d{i}?d{i+1}e{A.length}? - {0}c{i}?c{i+1}n{A.length}?

A[i] potentially modified
(l) 7: {0}d{i-1}?d{i}e{A.length}? - {0}c{i-1}?c{i}n{A.length}?

invertible assignment iold = inew − 1
(m) 3: {0}d{i}?e{A.length}? t {0}d{i-1}d{i}e{A.length}? - join

{0}c{i}?n{A.length}? t {0}c{i-1}c{i}n{A.length}?
= {0}d{i}?e{A.length}? t {0}d{i}?e{A.length}? - segment unification

{0}c{i}?n{A.length}? t {0}c{i}?n{A.length}?
= {0}d{i}?e{A.length}? - {0}c{i}?n{A.length}?

segmentwise join, convergence
(n) 8: {0}d{i,A.length}? - {0}c{i,A.length}?

i 6 A.length in segmentation and > in test negation so i = A.length.

To generate code for the precondition, the information {0}c{i,A.length}? in (n) is
valid at program 8: dominating the end of the program, so assert(A[i] != null)
has been checked on all the elements of the array before they where changed in the
program. Hence the generated precondition is Forall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic
bounds in a collection can change from one program point to another. So these
expressions in the final segmentation must be expressed in terms of values on entry,
a problem solved in Sect. 8. ut

Abstract domain for collections. The abstract properties are

ξ ∈ Γ → X ∈ X 7→ S(M)×A(X)→ S(C)

At program point c ∈ Γ , the collection X ∈ X has the collection segmentation ab-
stract property ξ(c)(X) which is a pair 〈ξ(c)(X)M, ξ(c)(X)C〉. The abstract relational
invariance property ξ(c)(X)M specifies which elements of the collection are for sure
equal to their initial values. For each assertion in 〈c, b(X,i)〉 ∈ A(X) (where c is
a program point designating an assert(b) and b(X,i) is a side effect free Boolean
expression checking a property of element X[i] of collection X (11)), the abstract
trace-based property ξ(c)(X)C〈c, b(X,i)〉 specifies which elements of the collection
have been checked for sure by b at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization γXS of a seg-
mentation B1A1B2[?2]A2 . . .An−1Bn[?n] ∈ S(A) for a collection X is the set of
prefixes ~s = ~s0 . . . ~s` of the program run describing how the elements A[k], k ∈
[0, A.count) of the collection X have been organized into consecutive, non-overlapping
segments, covering the whole collection.

(b) All the elements of the collection in each segment BkAkBk+1[?k] have the
property described by Ak. The values of expressions in segment bounds B1, . . . , Bn
should be understood as evaluated in this last state ~s` while the properties Ak may
refer to some or all of the states ~s0, . . . , ~s`.

(11) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]),
the modification analysis must check that the array A has not been modified for all these indexes.

in
ria

-0
05

43
88

1,
 v

er
si

on
 1

 -
6

D
ec

 2
01

0

(c) The segmentation should fully cover all the elements of the collection X. So
all the expressions in B1 should be equal and have value 0, ∀e1 ∈ B1 : Je1K~s` = 0
while all the expressions in Bn should be equal to the number JX.countK~s` of the
elements in the collection, so ∀en ∈ Bn : JenK~s` = JX.countK~s`.

(d) The segment bounds Bk, k ∈ [0, n] are sets of equal expressions when evalu-
ated in the last state ~s` of the prefix trace, so ∀e1, e2 ∈ Bk : Je1K~s` = Je2K~s`.

(e) In a segment segment Bk[?k]MkBk+1[?k+1], k ∈ [0, n), the marker [?k], k ∈
[1, n) is relevant to the previous segment, if any. [?k+1] specifies the possible emptiness
of the segment. If [?k+1] = ? then the segment is possibly empty (in which case <?
stands for 6). If [?k+1] = then the segment is definitely not empty (in which
case there is no question mark and < stands for <). The upper bound h of the
segment is therefore greater (for non-empty segments) or greater or equal (for possibly
empty segments) than its lower bound l and within the limit of the collection size so
∀e1, e2 ∈ Bk, ∀e′1, e′2 ∈ Bk+1, 0 ≤ l = Je1K~s` = Je2K~s` <[?k+1] Je′1K~s` = Je′2K~s` = h <
JX.countK~s`. (a—e) explains the following definition of segmentation concretization.

γXS(B1A1B2[?2]A2 . . . An−1Bn[?n]) , {~s | ` = |~s | − 1 : ∀e1 ∈ B1 : Je1K~s` = 0 ∧
∀en ∈ Bn : JenK~s` = JX.countK~s` ∧ ∀k ∈ [0, n) : ∀e1, e2 ∈ Bk : ∀e′1, e′2 ∈ Bk+1 :

0 ≤ l = Je1K~s` = Je2K~s` <[?k+1] Je′1K~s` = Je′2K~s` = h < JX.countK~s`}
and γXS(⊥) = ∅.

Segmented modification analysis concretization. The concretization γXM of a
segmentation B1M1B2[?2]M2 . . .Mn−1Bn[?n] ∈ S(M) for a collection X is the set of
prefixes ~s = ~s0 . . . ~s` of the program run describing how the collection X has been
modified in the last state ~s` compared to the initial state ~s0.

The abstract value Mk = d of segment Bk[?k]MkBk+1[?k+1] provides no informa-
tion while Mk = e states that the values of the all the elements X[i] of the collection
X have not changed between the initial state ~s0 and the current state ~s` (which is
the last of the prefix trace). So ∀i ∈ [`, h) : JXK~s0[i] = JXK~sj [i].

The size of the collections may change monotonically. If the collection size only
decreased, then all the elements X[i], i ∈ [`, h) did exist in the initial collection. If the
collection size only increased, its current size JX.countK~s` is larger than the initial
size JX.countK~s0 so the comparison of elements can only be done for the elements
X[i], i ∈ min(h, JX.countK~s0) existing in both in the initial and current states.

γXM (B1M1B2[?2]M2 . . .Mn−1Bn[?n]) , {~s ∈ γXS(B1M1B2[?2]M2 . . .Mn−1Bn[?n]) |
` = |~s | − 1 ∧ ∀k ∈ [0, n) : ∃e ∈ Bk, l : l = JeK~s` ∧ ∃e′ ∈ Bk+1, h : h = Je′K~s` ∧
∀i ∈ [l,min(h, JX.countK~s0)) : 〈JXK~s0[i], JXK~sj [i]〉 ∈ γM(Mk)}.

Segmented checking analysis concretization. The concretization γXC of a seg-
mentation B1C1B2[?2]C2 . . .Cn−1Bn[?n] ∈ S(C) of a collection X for an assertion
check 〈c, b(X,i)〉 ∈ A(X) is the set of prefixes of traces such that, at the end of the
prefix, the elements of the collection in all segments [Bk, Bk+1), k = 1, . . . , n−1 with
Ck = c have been submitted to the check 〈c, b(X,i)〉 ∈ A(X) when Ck = c while the
situation is unknown when Ck = n.

γXC(B1C1B2[?2]C2 . . . Cn−1Bn[?n])(〈c, b(X,i)〉) , {~s ∈ γXS(B1C1B2[?2]C2 . . . Bn[?n]) |
` = |~s | − 1 ∧ ∀k ∈ [0, n) : ∃e ∈ Bk, l : l = JeK~s` ∧ ∃e′ ∈ Bk+1, h : h = Je′K~s` ∧

(Ck = c)⇒ (∀i ∈ [l,min(h, JX.countK~s0)) : ∃j 6 ` :
π~sj = c ∧ JiK~sj = i ∧ JXK~s0[i] = JXK~sj [i])}.

in
ria

-0
05

43
88

1,
 v

er
si

on
 1

 -
6

D
ec

 2
01

0

The modification analysis must be used to determine that JXK~s0[i] = JXK~sj [i].

Segmented modification and checking analysis concretization. The con-
cretization is

γ ∈ (Γ → X ∈ X 7→ S(M)×A(X)→ S(C)) 7→ ~Σ+

γ(ξ) ,
{
~s ∈ ~Σ+

∣∣ ∀j < |~s | : ∀X ∈ X : ∀〈c, b(X,i)〉 ∈ A(X) :
~s0 . . . ∈ ~sj ∈ γXC

(
ξ(π~sj)(X)C(〈c, b(X,i)〉)

)}
The soundness of the result ξ ∈ Γ → X ∈ X 7→ S(M) ×A(X) → S(C) of collection
segmentation modification and checking static analysis is stated by ~τ + ⊆ γ(ξ). The
details of the segmentation analysis are those of [16] for the specific abstract domains
M and C.

Precondition generation. Let f be the exit program point (assumed to be unique
for simplicity and corresponding to a blocking state ∀s ∈ Σ : πs = f ⇒ s ∈ B).
Let X ∈ X be any of the collection variables in the program. Let 〈c, b(X,i)〉 ∈ A(X)
by any assertion check for element X[i] of collection X. let ξ(f)(X)C(〈c, b(X,i)〉) =
B1C1B2[?2]C2 . . .Cn−1Bn[?n] ∈ S(C) be the information collected by the checking
analysis (using the modification analysis no longer useful for the precondition gener-
ation). Let ∆ ⊆ [1, n) be the set of indices k ∈ ∆ for which Ck = c. The precondition
code is
&&
X∈X

&&
〈c, b(X,i)〉∈A(X)

&&
k∈∆

ForAll(lk, hk, i => b(X, i)) (4)

where ∃ek ∈ Bk, e′k ∈ Bk+1 such that the value of ek (resp. e′k) at program point f
is always equal to that of lk (resp. hk) on program entry and is less that the size of
the collection on program entry.

Theorem 23 The precondition (4) based on a sound modification and checking static
analysis ξ is sound.

11 Related work, future work, and conclusions

The problem of calculating (weakest)-preconditions has been intensively studied since
[17] e.g., [19] using assisted theorem proving. In the context of static analysis by ab-
stract interpretation, the problem can be handled by backward analysis [13, Sect. 3.2]
including in symbolic form [15,8], a combination of forward and backward analyzes [9]
(see also [14]), and overapproximation of negated properties to get underapproxima-
tions [10] followed by [6,27]. Most often the precondition inference problem is consid-
ered in the context of partial or total correctness, including for procedure summary
[7,12,20], contract inference [1] or specification abduction [7], where no bad behavior
is allowed at all [17] so one has to consider under-approximations to ensure that any
assertion that exists in the code holds when reached [25,28]. Our point of view for
non-deterministic programs is different and, to our knowledge, our formalization of
the precondition inference problem is the first in the context of design by contracts.
The derived precondition never excludes a bad run when a non-deterministic choice
could alternatively yield a good run. So the program is not checked for partial/total
correctness, but the intentions of the programmer, as only expressed by his code and
assertions within this code, are preserved, since only definite failures are prohibited.
Future work includes the implementation, the combination of Sect. 10 with path-
conditions as in Sect. 8, the study of the relation between forward and backward

in
ria

-0
05

43
88

1,
 v

er
si

on
 1

 -
6

D
ec

 2
01

0

analyzes (using [10, Th. 10.13]), of infinite behaviors and of expressive abstract do-
mains than segmentation to express relations between values of components of data
structures in asserts and on code entry while preserving scalability.

References
[1] Arnout, K., Meyer, B.: Uncovering hidden contracts: The .NET example. IEEE Computer

36(11), 48–55 (2003)

[2] Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

[3] Barnett, M., Fähndrich, M., Garbervetsky, D., Logozzo, F.: Annotations for (more) precise
points-to analysis. IWACO ’07. Stockholm U. and KTH (2007)

[4] Barnett, M., Fähndrich, M., Logozzo, F.: Embedded contract languages. SAC’10. 2103–2110.
ACM (2010)

[5] Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking. Advances
in Computers 58, 118–149 (2003)

[6] Bourdoncle, F.: Abstract debugging of higher-order imperative languages. PLDI ’93. 46–55.
ACM (1993)

[7] Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by means of
bi-abduction. 36th POPL. 289–300. ACM (2009)

[8] Chandra, S., Fink, S., Sridharan, M.: Snugglebug: a powerful approach to weakest preconditions.
PLDI. 363–374. ACM (2009)

[9] Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes d’opérateurs

monotones sur un treillis, analyse sémantique de programmes (in French). Thèse d’État ès
sciences mathématiques, Université scientifique et médicale de Grenoble (1978)

[10] Cousot, P.: Semantic foundations of program analysis. Muchnick, S., Jones, N. (eds.) Program
Flow Analysis: Theory and Applications, ch. 10, 303–342. Prentice-Hall (1981)

[11] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation. TCS 277(1—2), 47–103 (2002)

[12] Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive procedures.
Neuhold, E. (ed.) IFIP Conf. on Formal Description of Programming Concepts. 237–277. North-
Holland (1977)

[13] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. 6th POPL. 269–282.
ACM (1979)

[14] Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs. Journal of
Logic Programming 13(2–3), 103–179 (1992),

[15] Cousot, P., Cousot, R.: Modular static program analysis. CC 2002. 159–178. LNCS 2304,
Springer, Grenoble, France (2002)

[16] Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully automatic
and scalable array content analysis. POPL ’2011. ACM Press (2011)

[17] Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of programs. CACM
18(8), 453–457 (1975)

[18] Fähndrich, M., Logozzo, F.: Clousot: Static contract checking with abstract interpretation.
FoVeOOS. Springer (2010)

[19] Flanagan, C., Leino, K., Lillibridge, M., Nelson, G., Saxe, J., Stata, R.: Extended Static Check-
ing for Java. PLDI. 234–245. ACM (2002)

[20] Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural analysis. ESOP ’07,
253–267. LNCS 4421, Springer (2007)

[21] Hecht, M.: Flow Analysis of Computer Programs. Elsevier North-Holland (1977)

[22] King, J.: Symbolic execution and program testing. CACM 19(7), 385–394 (1976)

[23] Meyer, B.: Eiffel: The Language. Prentice Hall (1991)

[24] Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10), 40–51 (1992)

[25] Moy, Y.: Sufficient preconditions for modular assertion checking. VMCAI 08. 188–202. LNCS
4905, Springer (2008)

[26] Park, D.: Fixpoint induction and proofs of program properties. Meltzer, B., Michie, D. (eds.)
Machine Intelligences, vol. 5, 59–78. Edinburgh University Press (1969)

[27] Rival, X.: Understanding the origin of alarms in Astrée. SAS ’05, 303–319. LNCS 3672,
Springer (2005)

[28] T.Lev-Ami, Sagiv, M., Reps, T., Gulwani, S.: Backward analysis for inferring quantified pre-
conditions. Tr-2007-12-01, Tel Aviv University (2007)

in
ria

-0
05

43
88

1,
 v

er
si

on
 1

 -
6

D
ec

 2
01

0

	toPrecondition Inference from Intermittent Asserttoionsand Application to Contracts on Collections

