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Abstract
The success of software verification depends on the ability to find
a suitable abstraction of a program automatically. We propose a
method for automated abstraction refinement which overcomes
some limitations of current predicate discovery schemes. In cur-
rent schemes, the cause of a false alarm is identified as an infeasi-
ble error path, and the abstraction is refined in order to remove that
path. By contrast, we view the cause of a false alarm —thespurious
counterexample— as a full-fledged program, namely, a fragment of
the original program whose control-flow graph may contain loops
and represent unbounded computations. There are two advantages
to using suchpath programsas counterexamples for abstraction
refinement. First, we can bring the whole machinery of program
analysis to bear on path programs, which are typically smallcom-
pared to the original program. Specifically, we use constraint-based
invariant generation to automatically infer invariants ofpath pro-
grams —so-calledpath invariants. Second, we use path invariants
for abstraction refinement in order to remove not one infeasibility
at a time, but at once all (possibly infinitely many) infeasible er-
ror computations that are represented by a path program. Unlike
previous predicate discovery schemes, our method handles loops
without unrolling them; it infers abstractions that involve universal
quantification and naturally incorporates disjunctive reasoning.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Verification, Reliability, Languages

Keywords Formal Verification, Software Model Checking, Predi-
cate Abstraction, Abstraction Refinement, Invariant Synthesis

1. Introduction
Even the most experienced programmers make mistakes while pro-
gramming, and they spend much time on testing their programs
and fixing bugs. Although mature syntax and type checkers are
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available today, automatic proof- and bug-finding tools on the se-
mantic level are required to produce robust and reliable code. Pro-
gram verification has been a central topic of research since the early
days of computer science. While it has long been known thatas-
sertions(program invariants) are the key to proving a program cor-
rect [20,27], the available techniques for automatically finding use-
ful assertions are still rather limited.

We can broadly classify the techniques for deriving provable as-
sertions into two categories. The first class of methods relies on the
user to set up a verification framework —i.e., anabstract interpre-
tation [13]— within which algorithms, often based on constraint
solving, can efficiently search for program invariants. Examples of
such verification frameworks include abstract domains (e.g., nu-
merical [4, 15], shapes [39]) and invariant templates (e.g., linear
arithmetic [43], uninterpreted functions [3]). With thesemethods,
much care must be spent on choosing, for a given program, a suit-
able framework which is both sufficiently expressive to limit the
number of false alarms and sufficiently inexpensive to compute in-
variants efficiently.

More recently, an ambitious approach that originated within
model checking [8] has been transferred to program verification
[2, 26]. This approach, calledcounterexample-guided abstraction
refinement(CEGAR), attempts to automatically tune the verifica-
tion framework to the necessary degree of precision. In CEGAR, a
false alarm —called acounterexample— is analyzed for informa-
tion how to refine the abstract interpretation in order to remove the
false alarm. This process is iterated until either a proof ora bug
is found. The persuasive simplicity of CEGAR has also been its
main limitation: a counterexample is an infeasible programpath,
and to remove that path one adds a predicate on program vari-
ables [2,25] —i.e., apredicate abstraction[22]— to be tracked by
the abstract interpretation. However, a verification framework that
consists solely of tracking predicates based on individualinfeasi-
ble program paths is woefully inadequate for many applications.
For example, loops are often unrolled iteration by iteration, only
to find and remove longer and longer counterexamples. Common
loops over arrays cannot be handled at all, as the invariant requires
universal quantifiers (rather than quantifier-free predicates) whose
finite instantiations are added by each successive refinement step.

We overcome these limitations of CEGAR by generalizing the
notion of counterexample. For us, a counterexample is not just a
single infeasible program path, but a full-fledged program,namely,
the smallest syntactic subprogram of the original program which
produces the infeasibility. Such a program is called apath pro-
gram. Since a path program may contain loops, it often represents
not a single infeasibility, but a whole family of infeasibilities —all
those obtained from unrolling the loops. Hence, by refining the ab-



straction in order to remove the counterexample, we remove many
(potentially infinitely many) false alarms in one step. However,
such a refinement may require more than the addition of a simple,
quantifier-free predicate expressing a relationship between program
variables: in general, it requires the addition of a preciseinvariant
for the path program —the so-calledpath invariant. Thus, instead
of relying on heuristics for discovering relevant information about
counterexamples, we can bring to bear the entire well-developed
machinery for synthesizing program invariants.

A path program exhibits only a small portion of the original
program, which is controlled by the property of interest. Hence, in-
variant generation for path programs is more likely to scalethan
for the original program. We can apply existing methods and tools,
e.g., abstract interpreters based on widening, or constraint-based
invariant generation methods. The use of path programs as coun-
terexamples shifts the focus from heuristics for discovering rele-
vant information, to heuristics for efficiently discovering informa-
tion (relevance is guaranteed). In other words, path programs de-
compose a program verification problem into a series of simpler
problems about fragments of the original program.

While we are free to apply any program analysis to path pro-
grams, we use template-based invariant generation for the com-
bined theories of linear arithmetic, uninterpreted functions, and
universal quantification over arrays [3] to derive invariants of path
programs. This allows us to overcome two major limitations of
previous CEGAR-based schemes. First, by synthesizing invariants
for path programs with loops, we avoid the iterative unwinding of
loops suffered by CEGAR tools like SLAM [2] and BLAST [26].
These approaches, by using finite paths as counterexamples,can
never guarantee that the next counterexample would not be a simple
variation of the current one, where some of the loops are traversed
some more times. Path program-based refinement solves this prob-
lem. Second, by synthesizing universally quantified assertions, we
can handle a considerably larger class of programs, such as pro-
grams whose correctness depends on the contents of arrays. Again,
by using finite paths as counterexamples, which look only at finite
numbers of array cells, it is fundamentally impossible to make jus-
tified universally quantified statements that hold for an unbounded
number of array indices. Path programs solve also this problem.

Our approach combines the strengths of predicate abstraction
and invariant generation. Predicate abstraction performswell for
case analysis-based reasoning, e.g., reasoning that depends on
aliasing between pointer variables, or on boolean flags thatcon-
trol the program flow. Invariant generation, by contrast, isstrong in
arithmetic reasoning and capable of quantified reasoning. Our re-
finement method is modular, in that it can be easily integrated into
existing CEGAR-based software model checkers. We simply need
to replace the predicate discovery module by a call to an invariant
synthesizer for path programs.

Related Work. Our work is a synthesis of two approaches to pro-
gram analysis: counterexample-guided abstraction refinement and
invariant synthesis. Our work unifies these approaches by general-
izing counterexamples from paths (as they are usually formulated
in CEGAR) to program fragments (path programs) on which we
apply invariant-synthesis techniques. As a result, we obtain a pro-
gram analysis that can automatically generate richer relationships
between program variables without paying the high cost of search-
ing through the space of program invariants for the originalpro-
gram.

There has been much recent interest inpredicate abstraction-
based software model checking [16,22], where the set of predicates
is extended as the analysis proceeds by analyzing spurious coun-
terexamples [2,7,25,26,28,37]. The incompleteness of traditional
implementations of CEGAR-based predicate abstraction is well-
known [10, 14], and there have been several attempts to suggest

procedures that, in the limit, gain completeness: through carefully
choosing widening operations [1], or through carefully orchestrat-
ing the proof search in the underlying decision procedures [29]. In
contrast, our technique is parameterized by the invariant generation
to apply on path programs. There exist invariant generatorsthat are
sound and complete modulo the template language, but the invari-
ants required to prove a program may not exist within the template
language.

There are several techniques for invariant synthesis, mostno-
tably by abstract fixpoint computation on a suitably constructed
abstract domain [13, 39], or by a constraint-based analysisthat in-
stantiates the parameters of an invariant template [30, 41]. While
in our concrete instantiation of path invariants, we have chosen the
latter algorithm, our framework can equally well be instantiated
with an algorithm based on abstract interpretation. Invariants for
arithmetic abstract domains have been studied extensivelyin both
styles of analysis: in the abstract interpretation style [15, 32, 38],
and using constraint-based methods [5,9,12]. For quantified invari-
ants involving arrays, there are algorithms that compute fixpoints
using a carefully constructed array domain [11,21]. The main draw-
back of abstract interpretation methods is a high rate of false alarms
(due to a lack of precision for efficient analyses), and the main ob-
stacle to applying constraint-based methods is their high compu-
tational cost. Constraint-based algorithms often do not scale well
to large programs, and therefore most of their applicationshave
been limited to tricky but small programs. Path invariants automat-
ically produce small subproblems, making the application of these
techniques feasible by restricting attention to small programs. The
overall CEGAR loop combines these subproblems into a proof of
correctness of the entire program.

The need foruniversally quantifiedassertions in the analysis
of programs that manipulate unbounded data structures suchas ar-
rays is well-known, and several approaches have been suggested to
use quantified assertions for predicate abstraction. However, these
techniques either require the user to specify the assertions (often
with Skolem constants for the quantified variables) [19], oruse
heuristics to derive quantifiers by generalization from finite exam-
ples [34]. In contrast, we apply an invariant-generation technique
that is sound and complete for a class of invariant templates[3].
The language of our invariants is the combined theory of linear
arithmetic and uninterpreted functions, extended with a universally
quantified array fragment [6]. For templates outside the given tem-
plate language, we can still apply our algorithm and generate sound
invariants, but as expected, there is no completeness guarantee.

Treatment of disjunction can be incorporated into the abstract
interpretation framework by suitable manipulation of the control-
flow graph of the program [36, 40]. We can use path invariants
to implement such a manipulation in a property-guided way; see
Section 5.

2. Examples
We illustrate the use of path invariants for automatic refinement on
three examples. The formal exposition of the method shall begiven
in the subsequent sections.

The first example is a program FORWARD, whose correctness
argument depends on the interplay between values of counterand
data variables during the loop execution. The example showsthat
path invariants identify relevant predicates that eliminate not only
a given counterexample pathπ , but also all counterexample paths
that can be obtained fromπ by unwinding loops.

The second example is a program INITCHECK, which manipu-
lates arrays. Its correctness proof requires loop invariants that con-
tain universal quantifiers, and the automatic discovery of such in-
variants has been posed as a challenge in previous work on predi-
cate abstraction and discovery [29,37]. Path invariants identify rel-



void forward(int n) {
int i, n, a, b;

A: assume( n >= 0 );
i = 0; a = 0; b = 0;

B: while( i < n ) {
if( ... ) {

C: a = a+1;
b = b+2;

} else {
D: a = a+2;

b = b+1;
}

E: i = i+1;
}

F: assert( a+b == 3*n );
}

(a)

ℓA

ℓB

ℓC

ℓE

ℓB

ℓF

ℓE

[n ≥ 0]
i := 0
a := 0
b := 0

[i < n]

a := a+1
b := b + 2

i := i + 1

[i ≥ n]

[a + b 6= 3n]

(b)

ℓA

ℓB

ℓC

ℓE

ℓF

ℓE

[n ≥ 0]
i := 0
a := 0
b := 0

[i < n]

a := a+1
b := b + 2

i := i + 1
[i ≥ n]

[a + b 6= 3n]

(c)

ℓA ℓB

ℓC

ℓEℓB

ℓC

ℓE ℓB

ℓF

ℓE

(d)

Figure 1. Program FORWARD illustrates the discovery of relevant predicates that prevent loop unwinding:(a) program;(b) counterexample
path;(c) CFG of the path program that is extracted from the counterexample path; and(d) potential new counterexample path resulting from
loop unrolling when path invariants are not tracked. In the path and CFG representation, we use[·] to denote assumptions that represent
conditional control statements of the program. As usual, updates are denoted by:=. Double circles denote locations at entry points of nested
blocks of a program, i.e., entry points of loops.

evant universally quantified formulas together with predicates over
the loop counter.

The third example program, PARTITION, addresses the diffi-
culty of dealing with global invariants. Since path programs capture
only some of the computations of the original program, the corre-
sponding path invariants may be smaller, and represent onlyparts
of the set of reachable program states. The corresponding global
invariants, which cover all reachable states, can be derived from a
combination of several path invariants. Thus, path invariants allow
us to implement a lazy construction of program invariants, which
is guided by counterexamples.

2.1 Example FORWARD :
Capture Arbitrary Loop Unwinding

Our first example is program FORWARD from Figure 1(a), whose
correctness argument depends on the interplay between values of
counter and data variables during the loop execution. The program
executes a loopn times, and in each iteration, depending on some
(unmodeled) condition, either increments the variablea by 1 andb
by 2, or incrementsa by 2 andb by 1. At the end of the loop, we
want to assert the claim that the suma+ b must be equal to3n.
Abstraction Refinement.First, let us briefly describe how current
techniques attempt to prove the assertion, and thus set up a back-
ground for demonstrating the advantages of using path invariants
over existing methods. A standard counterexample-guided abstrac-
tion refinement (CEGAR) algorithm implemented in a tool like
BLAST attempts to prove the program FORWARD in the follow-
ing way. The initial abstraction discards all data relationships (that
is, no predicates are tracked), and the reachability analysis (first
phase of CEGAR) checks if there is a path in the control-flow graph
(CFG) that leads to an error location, where the assertion isvio-
lated. There are such paths in the CFG, and Figure 1(b) shows one
such counterexample path, which traverses thewhile-loop once,
takes thethen-branch in the body of the loop, and then violates the

assertion after leaving the loop. Notice that while this is asyntac-
tic path in the CFG, the counterexample path isspurious, that is, it
cannot be executed by the program.

The second phase of CEGAR is to check if the produced coun-
terexample path is genuine or spurious, and if spurious, to proceed
with abstraction refinement, i.e., to find additional predicates that
rule out the path. The counterexample path is translated into a log-
ical formula called thepath formula, which is satisfiable iff the
counterexample path can be executed in the program [33]. Thepath
formula is the conjunction of constraints derived from the opera-
tions along the path when the path is written in static singleassign-
ment form, that is, where each assignment to a variable is given a
fresh name. The path formula for the counterexample in Figure 1(b)
is the following conjunction, where each line corresponds to a tran-
sition between control locations:

n0 ≥ 0 ∧ i1 = 0 ∧ a1 = 0 ∧ b1 = 0 ∧ ℓA → ℓB

i1 < n0 ∧ ℓB → ℓC

a2 = a1 + 1 ∧ b2 = b1 + 2 ∧ ℓC → ℓE

i2 = i1 + 1 ∧ ℓE → ℓB

i2 ≥ n0 ∧ ℓB → ℓF

a2 + b2 6= 3n0 ℓF → ℓE

The formula is unsatisfiable, because there is no initial valuation
of program variables that leads to a program execution alongthe
counterexample path.

In the third phase of CEGAR, predicates are extracted from the
unsatisfiable path formula, and added to the predicate abstraction.
This refined abstraction ensures that the new predicates aretracked
during subsequent reachability analyses, and that therefore the cur-
rent counterexample path will not reoccur. One way to discover
predicates is to extract all atomic predicates that appear in a proof
of unsatisfiability of the path formula. (In practice, toolsimple-



ment a more complicated scheme based on interpolants [25, 37],
but this does not change our argument below.) For our counterex-
ample path, a possible set of such predicates is

{i = 0, i = 1, a = 0, a = 1, b = 0, b = 2},

which tracks the variablesi, a, andb along the path. While this set
of predicates eliminates the given counterexample path, the next
round of reachability analysis encounters a longer counterexample
path which is obtained by unwinding the loop one more time,
namely, the path shown in Figure 1(d). This new counterexample
path is eliminated by tracking in addition the predicates inthe set

{i = 2, a = 2, b = 4}.

In general, in thek-th refinement round, we find the set of predi-
cates{i = k, a = k, b = 2k}, and the method does not terminate.
Path Invariants. Our new refinement approach is based on iden-
tifying path invariants. Path invariants are not inferred from path
formulas, but from specialpath programs, whose construction is
guided by the statements that appear along a counterexamplepath.
The path program for the counterexample path in Figure 1(b) is
shown in Figure 1(c). We observe that the path program contains
only control locations that are traversed by the counterexample
path. Its statements are taken from the counterexample path, and
its CFG captures the counterexample path as well as its unwind-
ings. We shall define formally how path programs are constructed
in Section 3. The counterexample path passes two times through
the control locationℓB, which labels the loop entry. So the path
program has a loopℓB → ℓC → ℓE → ℓB in its CFG at locationℓB.

To refine the analysis so that thefamily of counterexample
paths represented by the path program are all refuted at once, we
apply invariant-generation techniques. Since there are loops in the
program, we can no longer construct a path formula that is linear
in the length of the counterexample. Instead, we look forinvariant
maps. A path-invariantmap is a mapping from the locations of a
path program to formulas such that the following two conditions
hold: (initiation) the initial location of the path programis mapped
to the formulatrue , and (inductiveness) for each pair of locationsℓ
andℓ′ with an edge(ℓ, ρ, ℓ′) in the path program, the successor of
the formula atℓ with respect to the program operationρ implies the
formula atℓ′. The path-invariant map issafeif the error location
(i.e., the location that violates the assertion that is to beproved)
is mapped to the formulafalse. Notice that an invariant map of a
path program need not be an invariant map of the original program
when the set of locations is extended, because it may violatethe
inductiveness requirement.

In our example we can generate invariants in arithmetic do-
mains, e.g., by applying methods described in [9, 43], and obtain
the following path-invariant map:

η.ℓA = true

η.ℓB = 3i = a+ b ∧ a+ b ≤ 3n

η.ℓC = 3i = a+ b ∧ a+ b ≤ 3n

η.ℓE = 3i+ 3 = a+ b ∧ a+ b− 3 ≤ 3n

η.ℓF = a+ b = 3n

η.ℓE = false

The map is safe asℓE is mapped tofalse. A subsequent reachability
analysis that tracks the truth of these formulas at the corresponding
locations is guaranteed to eliminate the original counterexample.

Furthermore, any spurious counterexample path that is obtained
by traversing the path program is eliminated by tracking these for-
mulas. For example, consider a potential unwinding of the original
counterexample path, which traverses the loop twice, as shown in
Figure 1(d). When following this path and reaching the control lo-
cationℓB for the first time, a program analysis tracking the formulas

from the path-invariant map computes an overapproximationof the
reachable states atℓB that is at least as strong as the formula defined
by the map atℓB. Since the path-invariant map is inductive and safe,
we conclude that the overapproximation computed for the second
visit to the locationℓB is again as strong as the formula assigned
to ℓB. This means that the path shown in Figure 1(d) cannot appear
as a spurious counterexample.

We can use similar reasoning to show that any unwinding of the
original counterexample within the CFG of the path program will
not produce a new (spurious) counterexample. This means that any
path whose sequence of visited control locations is in the language
defined by the regular expressionℓAℓB(ℓCℓEℓB)∗ℓFℓE can never be
reported as a spurious counterexample, once the formulas from the
path-invariant map determine the abstraction. The formal justifi-
cation of this statement, which characterizes the relevance of the
formulas obtained from path invariants, relies on the completeness
of abstract interpretation [10].

2.2 Example INIT CHECK : Universally Quantified Predicates

The previous example showed how path programs can be used to
refute a family of counterexample paths arising from unrolling a
loop. The next example shows how the same technique may be
used to inferquantified invariants about the program state. Rea-
soning about many programs that manipulate unbounded data,e.g.,
data stored in container data structures like arrays, requires univer-
sally quantified formulas. Usually, these formulas containuniver-
sal quantification over indices, positions, or keys, which provide
reference to data values stored in the data structure. Thereexist
a fundamental obstacle that prevents the systematic discovery of
universally quantified invariants based on (finite) counterexample
paths. Namely, such paths can expose only a bounded number of
data items that are stored in the data structure. Thus, it is difficult to
derive and formally justify universal quantification over discovered
predicates. However, from path programs we can infer quantified
invariants by simultaneously considering all unrollings of a loop.
The next example demonstrates how an invariant-synthesis algo-
rithm for inferring quantified invariants [3] can be appliedto path
programs.

Consider the program INITCHECK from Figure 2(a), which
initializes an array to0, and then checks that all elements in the
array are0. We wish to prove that all assertions hold.

Abstraction Refinement. The path shown in Figure 2(b) repre-
sents a spurious counterexample that would be found by a veri-
fication tool that does not track the array contents precisely. The
path contains a statement that corresponds to the assertionviola-
tion, which appears after traversing each loop once. From the first
part of the counterexample path (traversal of the first loop)we can
conclude that the first element in the array is initialized to0, and
discover the predicatea[0] = 0. Then, by considering this fact
in the second part in the counterexample path, where the equality
a[i] = 0 is checked fori = 0, we conclude that the predicate
a[0] = 0 is sufficient to eliminate the given counterexample.

However, tracking the predicatea[0] = 0 eliminates only this
particular counterexample path. It does not eliminate the longer
counterexample path which traverses each loop twice; this would
require tracking the predicatea[1] = 0. In fact, counterexample-
based predicate-abstraction refinement is likely to generate an in-
finite family of predicatesa[i] = 0, one for eachi ≥ 0. Since
the number of array elements being initialized and subsequently
checked by INITCHECK is determined by the variablen, and hence
is arbitrary, no finite number of predicates obtained from finite
counterexample paths created by loop unwinding will sufficeto
prove the program correct. We need the universally quantified for-
mula∀k : 0 ≤ k < n→ a[k] = 0 to verify INITCHECK.



void init_check(int *a, int n) {
int i;

A:
B: for( i = 0; i < n; i++ ) {
C: a[i] = 0;

}
D: for( i = 0; i < n; i++ ) {
E: assert( a[i] == 0 );

}
}

(a)

ℓA ℓB

ℓC

ℓBℓD

ℓE

ℓD ℓE

ℓE

i := 0

[i < n]

a[i] := 0
i := i+1[i ≥ n]

i := 0

[i < n]

[a[i] = 0]
i := i + 1

[i < n]

[a[i] 6= 0]

(b)

ℓA

ℓB ℓC

ℓD ℓE

ℓE

i := 0

[i < n]

a[i] := 0
i := i+1[i ≥ n]

i := 0

[i < n]

[a[i] = 0]
i := i + 1

[a[i] 6= 0]

(c)

Figure 2. Program INITCHECK illustrates the discovery of universally quantified invariants for the challenge example from [29, 37]:
(a) program;(b) counterexample path;(c) CFG of the path program that is extracted from the counterexample path.

Path Invariants. Justification of the universal quantification re-
quires consideration of all possible paths that traverse the initial-
ization and checking loops located atℓB and ℓD, respectively. We
use a path program to represent this family of paths. The pathpro-
gram extracted from the original counterexample path is shown in
Figure 2(c). Using this path program, we can provide a systematic
justification of universal quantification by deriving path invariants.
The technical complication is that we have to infer invariant maps
that map certain locations to universally quantified formulas.

An inductive invariant map, sayη, for our path program needs
to assert that at locationℓE the contents ofa[i] is 0. Note that the
transition to the error locationℓE , which is taken fromℓE if a[i] 6= 0
holds, appears within a loop that iteratively increments the value
of i. Hence, the formula assigned byη to the locationℓE must imply
a[i] = 0 for all values ofi that are reachable fromℓE, that is, all
values ofi in the interval from0 to n − 1. We observe that the
first loop assigns 0 to an array cella[i] for each value ofi that is
subsequently checked in the second loop.

We compute the path-invariant mapη that formalizes the above
reasons for the non-reachability of the error location in the path
program. (See [3] for a discussion of algorithms for computing
invariants that contain universal quantification.) The formulas in
η restrict the value of the counter variablei and contain universally
quantified statements about the contents of the initializedcells of
the arraya. The formulas for the locations in the first loop refer
only to the array contents up to the positioni, whereas the formulas
for the second loop refer to each array element between0 andn−1:

η.ℓA = true

η.ℓB = ∀k : 0 ≤ k < i→ a[k] = 0

η.ℓC = ∀k : 0 ≤ k < i→ a[k] = 0

η.ℓD = ∀k : 0 ≤ k < n→ a[k] = 0

η.ℓE = ∀k : i ≤ k < n→ a[k] = 0

η.ℓE = false.

By tracking the four formulas in the range of the path-invariant
map, we are guaranteed that all potential counterexample paths that
visit a sequence of control locations from the set defined by the
regular expressionℓAℓB(ℓCℓB)∗ℓD(ℓEℓD)∗ℓEℓE are eliminated.

2.3 Example PARTITION : Incremental Construction

Path invariants identifylocal reasons that refute a family of coun-
terexample paths. To prove an assertion in the program, though,
an analysis may have to iterate through several different path pro-
grams, each of which presents a different family of paths to aviola-
tion of the assertion. We now illustrate how path invariantscan be
used within a CEGAR framework to incrementally construct global
invariant maps, using path programs derived from differentcoun-
terexample paths to learn additional information.

Consider the program PARTITION in Figure 3, which partitions
the elements of an input arraya into two arraysge andlt, which
contain, respectively, the elements ofa greater or equal to 0, and
less than 0. In order to prove the assertions, we need a loop invariant
at locationB which is the conjunction of

∀k : 0 ≤ k < gelen → ge[k] ≥ 0 (1)

∀k : 0 ≤ k < ltlen → lt [k] < 0 (2)

Instead of applying invariant generation on the entire program at
once, CEGAR with path invariants will find the two conjuncts of
the loop invariant atB one at a time. For example, consider first a
spurious counterexample path that traverses thethen-branch of the
conditional in thefor-loop. The corresponding path program looks
almost identical the path program for example INITCHECK from
Figure 2(c), except that instead of a direct write toge[i], the coun-
terexample path contains the operationsassume( a[i]>=0 ) and
ge[i] = a[i]. Performing invariant synthesis on this path pro-
gram leads to a path-invariant map similar to the one for Exam-
ple INITCHECK. In particular, at the locationB, we obtain the in-
variant from Equation (1).

These invariants, however, are not enough to prove the asser-
tions, and a second counterexample path is found. This path tra-
verses theelse-branch of the conditional in thefor-loop. Again,
the path program is similar to the path program from Exam-
ple INITCHECK. This time, the path-invariant map generates the
second conjunct of the loop invariant, i.e., Equation (2). Together,
the conjuncts suffice to prove the assertions. Thus, the CEGAR al-
gorithm breaks the search for global program invariants (asper-
formed by invariant synthesis techniques) into several searches for
individual components of the invariant, thus restricting the searches
to smaller spaces.



void partition(int *a, int n) {
int i, gelen, ltlen;
int ge[n], lt[n];

A: gelen = 0; ltlen = 0;
B: for( i = 0; i < n; i++ ) {

if( a[i] >= 0 ) {
C: ge[gelen] = a[i];

gelen++;
} else {

D: lt[ltlen] = a[i];
ltlen++;

}
}

E: for( i = 0; i < gelen; i++ ) {
F: assert( ge[i] >= 0 );

}
G: for( i = 0; i < ltlen; i++ ) {
H: assert( lt[i] < 0 );

}
}

Figure 3. Program PARTITION illustrates how reasoning over sev-
eral path programs can be combined.

3. Path Programs and Invariants

Programs. We assume an abstract representation of programs by
transition systems [35]. AprogramP = (X,L, ℓ0, T , ℓE) consists
of a setX of variables, a setL of control locations, an initial
locationℓ0 ∈ L, a setT of transitions, and an error locationℓE ∈ L.
Each transitionτ ∈ T is a tuple(ℓ, ρ, ℓ′), whereℓ, ℓ′ ∈ L are
control locations, andρ is a constraint over free variables from
X ∪X ′. The variables fromX denote values at control locationℓ,
and the variables fromX ′ denote the values of the variables fromX
at control locationℓ′. We assume that the error locationℓE does not
have any outgoing transitions. The sets of locations and transitions
naturally define a directed graph, called thecontrol-flow graph
(CFG) of the program. (Note that we put the transition constraints
at the edges of the graph.)

A stateof the programP is a valuation of the variables fromX.
The set of all states is denotedval.X. We shall represent sets of
states using constraints. For a constraintρ overX ∪X ′ and a val-
uation(s, s′) ∈ val.X × val.X ′, we write(s, s′) |= ρ if the valu-
ation satisfies the constraintρ. A computationof the programP
is a sequence〈ℓ0, s0〉, 〈ℓ1, s1〉, . . . , 〈ℓk, sk〉 ∈ (L × val.X)∗,
whereℓ0 is the initial location and for eachi ∈ {0, . . . , k − 1},
there is a transition(ℓi, ρ, ℓi+1) ∈ T such that(si, si+1) |= ρ.
A state s is reachableat location ℓ if 〈ℓ, s〉 appears in some
computation. The program issafe if the error locationℓE ap-
pears in no computation. Apath of the programP is a sequence
π = (ℓ0, ρ0, ℓ1), (ℓ1, ρ1, ℓ2), . . . , (ℓk−1, ρk−1, ℓk) of transitions,
where ℓ0 is the initial location. The pathπ is feasible if there
is a computation〈ℓ0, s0〉, . . . , 〈ℓk, sk〉 such that for eachi ∈
{0, . . . , k − 1}, we have(si, si+1) |= ρi. If the pathπ ends at
the error location, i.e.,lk = ℓE , then we callπ an error path (or
counterexample path). Feasible counterexample paths are referred
to asgenuine; infeasible ones, asspurious.

Invariants. An invariant of P at a locationℓ ∈ L is a set of
states containing the states reachable atℓ. An invariant mapis a
functionη from L to formulas over program variables fromX such
that the following conditions hold:

Initiation: For the initial locationℓ0, we haveη.ℓ0 = true .
Inductiveness:For eachℓ, ℓ′ ∈ L such that(ℓ, ρ, ℓ′) ∈ T ,

the formulaη.ℓ ∧ ρ implies(η.ℓ′)′. Here,(η.ℓ′)′ is the

formula obtained by substituting variables fromX ′ for
the variables fromX in η.ℓ′.

Safety:For the error locationℓE , we haveη.ℓE = false.

The invariant-synthesisproblem is to construct an invariant map
for a given program. For ease of exposition, we assume that an
invariant map assigns an invariant to each program location. For
efficiency, one can require invariants to be defined only overa
programcutset, i.e., a set of program locations such that every
syntactic cycle in the CFG passes through some location in the
cutset.

Path Programs.We consider a programP = (X,L, ℓ0, T , ℓE) to-
gether with an error pathπ = (ℓ0, ρ0, ℓ1), . . . , (ℓk−1, ρk−1, ℓE).
Given P and π, we construct thepath program P π =
(Xπ,Lπ, ℓπ0 , T

π, ℓπE) such that

• the set of variables remains the same:Xπ = X;

• the program locations are exactly those that are visited by the
path:Lπ = {ℓ1, . . . , ℓk−1, ℓE};

• the initial and error locations remain the same:ℓπ0 = ℓ0 and
ℓπE = ℓE ;

• the set of transitions is restricted to the transitions thatare taken
along the path:T π = {(ℓ0, ρ0, ℓ1), . . . , (ℓk−1, ρk−1, ℓE)}.

Intuitively, the paths of the path programP π include the error
pathπ, and in addition all paths that result fromπ by unrolling
it following the control-flow graph ofP . Hence the path program
P π may traverse some loops that are traversed byπ more often, but
it contains no transitions that do not occur inπ.

An invariant mapηπ for a path programP π is called apath-
invariant map.

Computation of Path Invariants. There are several methods to
generate path invariants for a path program, e.g., via abstract inter-
pretation with specialized domains (cf. [4, 15, 21, 32, 38, 39]), and
via reduction to constraint solving (cf. [3, 5, 9, 12, 30, 41,42, 43]).
In our implementation of path invariants, we have usedtemplate-
based invariant generation[5, 9]. By exploiting recent advances in
reasoning about the hierarchical combination of theories [6,31,44],
our algorithm [3] is able to generate invariants over the combined
theory of arithmetic and uninterpreted function symbols with uni-
versal quantification. This combined theory is known to be ex-
pressive enough for a wide variety of software verification prob-
lems [2,18,19,24,26], including reasoning about arrays [6].

In template-based invariant synthesis, we assume that for each
control location in the domain of the mapη, we have a so-called
invariant template, which is a parametric constraint over program
variables. An example for a simple template constraint overthe
program variablesi andn is

pi · i+ pn · n ≤ p,

wherepi, pn, andp are unknown parameters whose values need
to be determined. This template denotes a set of formulas that can
be obtained by giving values to the parameters, e.g.,2i− 3n ≤ 5.
The crux of the template-based approach consists in definingand
solving a system of constraints over the template’s parameters such
that the resulting values yield an inductive invariant map.

The constraints over the parameters of the template encode the
initiation, inductiveness, and safety conditions of invariant maps.
For example, for each transition(ℓ, ρ, ℓ′) of a program, we gen-
erate the constraint that states that the invariant template atℓ con-
joined with the transition relationρ implies the invariant template
at ℓ′. This constrains the values of the parameters of the templates
at ℓ andℓ′ to values that ensure the inductiveness of the generated
invariants. In addition, we add constraints that the template at the
initial locationℓ0 is true , and the template at the error locationℓE



impliesfalse. A solution to the constraints then provides values for
the template parameters. For the combined theory of linear arith-
metic and uninterpreted function symbols, all constraintsfall into
a class that can be solved using the constraint solving techniques
described in [9].

In our implementation, we use the algorithm from our previous
work [3] to infer universally quantifiedinvariants for array pro-
grams, in addition to linear arithmetic and uninterpreted function
symbols. We construct a suitable template by analyzing a given
path program. If the program contains an assertion that is itera-
tively checked within a loop, then we add a universally quantified
implication to the template. The right-hand-side of the implication
contains a generalization of the assertion. The position atwhich the
assertion reads from the array becomes a fresh, universallyquan-
tified variable. For the left-hand-side of the implication we choose
a conjunction of linear inequalities over the program variables and
the fresh variable. For example, given the program INITCHECK and
the path program from Figure 2(c), we construct the templatesϕ
andψ for the locationsℓB andℓD, respectively, as

ϕ = (∀k : p1(i, n) ≤ k ≤ p
2(i, n) → a[k] = p

3(i, n)),

ψ = (∀k : q1(i, n) ≤ k ≤ q
2(i, n) → a[k] = q

3(i, n)),

where

p
r(i, n) = p

r
i · i+ p

r
n · n+ p

r for eachr ∈ {1, . . . , 3},

q
r(i, n) = q

r
i · i+ q

r
n · n+ q

r for eachr ∈ {1, . . . , 3}.

Our implementation of the quantified invariant generator finds an
instantiation of the parameters that yields the path-invariant map
shown in Section 2.2.

4. CEGAR with Path Invariants
We apply path invariants in a predicate abstraction-based CEGAR
loop, where path invariants are used to suggest formulas to refine
the predicate abstraction. However, our technique to considerpath
programs(instead of paths) as counterexamples can be used in any
CEGAR-based program analysis.

A predicate abstractionΠ is a function that maps each control
location to a set of formulas over the program variables, namely,
those formulas whose truth values are tracked by the programanal-
ysis. Conceptually, the CEGAR algorithm has three phases [2, 8]:
abstract reachability, counterexample analysis, and abstraction re-
finement. Theabstract-reachabilityphase tries to construct a safety
proof for the program by unwinding the CFG into a labeled tree,
where each node of the unwinding is annotated with an abstract
state. Theabstract stateat a node with locationℓ is a boolean
combination of the formulas inΠ.ℓ, which represents an overap-
proximation of the set of reachable states of the program when it
executes the path from the root of the tree to the current node. The
root is labeled with the abstract statetrue . If an abstract state at
a nodev implies the abstract state at another node with the same
location, then the unwinding stops at the nodev. This unwinding
process produces anabstract reachability tree(ART); see [26] for
a formal definition.

If the abstract reachability tree does not contain the errorloca-
tion, then a safety proof is found, and the algorithm terminates.
Otherwise, the algorithm moves to thecounterexample-analysis
phase. In this phase, acounterexample path(i.e., a path from the
root to the error location) is chosen from the ART, and the algo-
rithm checks if this counterexample is genuine (i.e., if theerror
path is feasible). For implementing this check, a logical formula
is constructed from the counterexample path which is satisfiable
iff the path is feasible. If the formula is satisfiable, then abug is
found and the algorithm stops. Otherwise, the algorithm proceeds
with the abstraction-refinementphase. Now, instead of discover-

void disj() {
int x, y;

A: x = 0; y = 50;
B: while( x < 100 ) {

if ( x < 50 ) {
C: x = x+1;

} else {
D: x = x+1;

y = y+1;
}

}
E: assert( y >= 100 );
F: assert( y <= 100 );

}

ℓA

ℓB

ℓE

τa

τcτb

τeτd

Figure 4. Program DISJ, which requires reasoning with disjunc-
tive invariants (cf. [23]), and its CFG. We omit intermediate (non-
cutpoint) locations. The transitionτa initializes the variables before
entering the loop. The transitionsτb andτc traverse the loop by tak-
ing the positive and negative branch, respectively. The transitions
τd andτe exit the loop and violate the first and second assertion,
respectively.

ing new predicates for the predicate abstraction from the spuri-
ous counterexample path, using for example interpolation-based
approaches [17, 25, 37], we construct the path programP π from
the counterexample pathπ. Then we use an invariant-synthesis al-
gorithm to produce a path-invariant mapηπ for P π [3]. This in-
variant map is used to refine the predicate abstraction: we add all
atomic predicates that appear inη.ℓ to the predicate abstractionΠ.ℓ
at each locationℓ, in this process treating universally quantified
formulas as atomic predicates. Note that if some unwinding of the
error pathπ is feasible, then no invariant mapηπ can be found.

After abstraction refinement, the algorithm proceeds with an-
other abstract-reachability phase, this time tracking more predi-
cates (including universally quantified formulas). The three phases
are repeated until either a proof or a bug is found (or, since the
problem is undecidable, the loop does not terminate).

The key property of the refinement step using path invariantsis
that formulas that appear in path-invariant maps rule outall coun-
terexample paths that arise from arbitrary unwindings of loops in
the path program. This is in contrast to the existing implementa-
tions of CEGAR, where each refinement step only guarantees to
remove a single counterexample path, and hence, may get stuck
in removing infinitely many counterexample paths that result from
unrolling a loop. In the following theorem, letReach.Π denote the
set of all rooted paths in the abstract reachability tree that is con-
structed for a predicate abstractionΠ.

THEOREM1 (Refinement Progress).Consider an error pathπ of
the programP , and an invariant mapηπ for the corresponding
path programP π. For every predicate abstractionΠ such that for
eachℓ ∈ Lπ we haveηπ.ℓ ⊆ Π.ℓ, the setReach.Π of paths in
the abstract reachability tree does not contain any paths that are
constructed only from transitions inP π.

5. Disjunctive Reasoning with Path Invariants
In this section, we show that path invariants can facilitatedisjunc-
tive reasoning when dealing with program invariants. We illus-
trate the need for disjunctive reasoning using the example program
DISJ from Figure 4. When attempting to verify this program, our
invariant-generation algorithm fails to compute an invariant map
for the path program extracted from a counterexample path that
traverses both branches of the loop and violates the second asser-



A: while(...) {
...
if(...) {
...

B: break;
} else {

C: ...
D: while(...) {

...
}

E: ...
}

F: ...
}

G: ...

ℓA ℓD

ℓG

τa

τb

τc

τeτd

Figure 5. Control-flow graph that contains two nested blocks (we
omit intermediate, non-cutpoint locations). The inner block corre-
sponds to thewhile-loop at locationℓD. Its entry/exit point is the
locationℓD. The outer block corresponds to thewhile-loop at lo-
cationℓA. Its entry point is the locationℓA, and its exit points areℓA
andℓB.

tion. Any attempts to increase the number of conjuncts in thetem-
plate fail. This is because proving the validity of the assertions re-
quires an invariant mapη that assigns a disjunctive linear invariant
(x ≤ 50 ∧ y = 50) ∨ (50 < x ≤ 100 ∧ x = y) to loca-
tion ℓB. Such a disjunctive invariant is not captured by the conjunc-
tive templates used in [3]. We proposedisjunctive path programs,
an extension of path programs, to support disjunctive reasoning.

Disjunctive Path Programs.We assume that control-flow graphs
are structured into blocks. Eachblock is a strongly connected com-
ponent of the CFG. Each block is induced by a control-flow state-
ment that allows code to be executed repeatedly; examples ofsuch
statements includewhile-loop andfor-loop statements. We ex-
clude goto-statements from consideration to simplify the expo-
sition. Thus, each blockB has a single entry location, denoted
by Entry.B, which is also an exit location. The blockB con-
tains all nodes and edges of the CFG that are strongly connected
to Entry.B. A block may have additional exit locations, which
correspond tobreak-statements. Nested loop statements induce
nested blocks, i.e., strongly connected components that are not
maximal. We illustrate blocks, nesting, and entry/exit locations in
Figure 5. The control-flow graph shows transitionτa, which con-
nects the locationsℓA andℓD by following the negative branch of the
if-statement and traversing the non-cutpoint locationℓC. The body
of the inner loop corresponds toτc, which is a self-loop at the loca-
tion ℓD. The transitionτb connects the inner loop withℓA. The tran-
sition τd exits the outerwhile-loop by violating its condition. The
transitionτe exits the outer loop by taking thebreak-statement.

Before giving a formal definition of disjunctive path programs
(DPPs), we informally describe how they differ from (plain)path
programs, as introduced in Section 3. In DPPs, each control loca-
tion visited by a path appears several times, indexed by its position
in the path. Thus, the invariant map for DPPs can assign different
formulas to the same location at different positions. Furthermore,
DPPs contain copies of transitions that are repeatedly reachable
from a given location (i.e., lie within a common block) at each po-
sition of the location. See Figures 6 and 7 for examples of DPPs
that are constructed according to the definition below.

We consider a programP = (X,L, ℓ0, T , ℓE) together with an
error pathπ = (ℓ0, ρ0, ℓ1), . . . , (ℓk−1, ρk−1, ℓE). We write L.π
for the set{ℓ0, . . . , ℓk−1, ℓE} of locations visited by the pathπ,
andT .π for the set{(ℓ0, ρ0, ℓ1), . . . , (ℓk−1, ρk−1, ℓE)} of transi-
tions in π. Let Blocks.π be the set of blocks of the control-flow
graph of the programP which contain the set of locationsL.π.

GivenP andπ, we construct thedisjunctive path programP∨π =
(X∨π,L∨π, ℓ0

∨π, T ∨π, ℓE
∨π) such that

• the set of variables remains the same:X∨π = X;

• the program locations contain two copies for each location
to model loop unwindings, and are paired with labels for the
positions in the path:L∨π = {ℓ, ℓ̂ | ℓ ∈ L.π} × {0, . . . , k};

• the initial location is the first location in the pathπ, labeled
with 0, that is,ℓ0∨π = (ℓ0, 0);

• for each positioni ∈ [0..k − 1] of the pathπ, the disjunctive
path program contains the transition((ℓi, i), ρi, (ℓi+1, i+ 1));
moreover, ifπ.i is a back-edge in the CFG, i.e., if there is a
blockB ∈ Blocks.π such thatℓi ∈ B andℓi+1 = Entry.B,
then the DPP contains also the following transitions:

((ℓi+1, i+ 1), ρX′=X , (ℓ̂i+1, i+ 1)),

((ℓ̂j , i+1), ρj , (ℓ̂j+1, i+1)) for each(ℓj , ρj , ℓj+1) ∈ T .π
such thatj ≤ i and bothℓj andℓj+1 are inB,

((ℓ̂i+1, i+ 1), ρX′=X , (ℓi+1, i+ 1)),

whereρX′=X denotes the constraint that preserves the valua-
tion of all variables, i.e.,ρX′=X =

V

x∈X
x′ = x;

• the error location isℓE∨π = (ℓE , k).

Intuitively, the paths of the disjunctive path programP∨π include
the error pathπ, and in addition all paths that result fromπ by
staying within some nested blocks ofπ for some additional un-
windings of loops. Hence, the path programP∨π may iterate some
loops that are traversed byπ more often, but it contains no transi-
tion that does not occur inπ. Consider, e.g., an error pathπ of the
program from Figure 5 that first traverses thewhile-loop without
going into the innerwhile-loop, then traverses the innerwhile-
loop once, and finally leaves the outerwhile-loop by executing
thebreak-statement (we writeℓE for ℓG):

ℓA → ℓC → ℓD → ℓE → ℓF →

ℓA → ℓC → ℓD → ℓD → ℓE → ℓF →

ℓA → ℓB → ℓE

This counterexample path and the corresponding disjunctive path
program are shown in Figure 6. The nested blocks of this path are
B1 = {ℓA, . . . , ℓF} andB2 = {ℓD}, with B2 being nested inB1.
The complete set of transitions of the DPPP∨π is

((ℓA, 0), ρa, (ℓD, 1)),
((ℓD, 1), ρb, (ℓA, 2)),

((ℓA, 2), ρX′=X , (ℓ̂A, 2)),
((ℓ̂A, 2), ρa, (ℓ̂D, 2)),
((ℓ̂D, 2), ρb, (ℓ̂A, 2)),
((ℓ̂A, 2), ρX′=X , (ℓA, 2)),

((ℓA, 2), ρa, (ℓD, 3)),
((ℓD, 3), ρc, (ℓD, 4)),

((ℓD, 4), ρX′=X , (ℓ̂D, 4)),
((ℓ̂D, 4), ρc, (ℓ̂D, 4)),
((ℓ̂D, 4), ρX′=X , (ℓD, 4)),

((ℓD, 4), ρb, (ℓA, 5)),

((ℓA, 5), ρX′=X , (ℓ̂A, 5)),
((ℓ̂A, 5), ρa, (ℓ̂D, 5)),
((ℓ̂D, 5), ρc, (ℓ̂D, 5)),
((ℓ̂D, 5), ρb, (ℓ̂A, 5)),
((ℓ̂A, 5), ρX′=X , (ℓA, 5)),

((ℓA, 5), ρe, (ℓE , 6)).
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Figure 6. Counterexample and CFG of the corresponding DPP.
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Figure 7. Disjunctive path program for the example from Figure 4
and a path that traverses the locationsℓA, ℓB, ℓC, ℓB, ℓD, ℓB, ℓE, ℓF, ℓE .

By viewingP∨π instead ofπ as a counterexample, we can simul-
taneously handle an unbounded number of error paths (similarly
to a path program forπ), namely, all error paths that extendπ by
loop unwindings of the blocksB1 andB2 for an arbitrary number
of iterations. In contrast to a path program forπ (whose control-
flow graph is almost identical to the one shown in Figure 5 with
an exception that the transitionτd is removed), the DPPP∨π con-
tains several copies of the locationsℓA andℓD, as well as additional
loops at these locations. They induce a finer partition of theset of
reachable states ofP∨π, which is reflected by a disjunctive path
invariant.

Disjunctive Path Invariants. An invariant mapη∨π for a disjunc-
tive path programP∨π may contain several formulas for a control
locationℓ ∈ L of the programP . LetLℓ andL̂ℓ be the set ofP∨π-
locations that correspond to aP -locationℓ at different positions in
the control-flow graph and their additional copies:

Lℓ = {(ℓ, i1), . . . , (ℓ, im)}, andL̂ℓ = {(ℓ̂, j1), . . . , (ℓ̂, jn)}.

We can use the disjunction of formulas in the mapη∨π over all
copies ofℓ, which is

_

(ℓ,i)∈Lℓ

η
∨π(ℓ, i) ∨

_

(ℓ̂,j)∈L̂ℓ

η
∨π(ℓ̂, j),

to refine the abstraction at locationℓ as proposed in Section 4.

Locations traversed by the path Time
FORWARD ℓA, ℓB, ℓC, ℓE, ℓB, ℓF, ℓE 0.05 s

ℓA, ℓB, ℓD, ℓE, ℓB, ℓF, ℓE 0.12 s
INITCHECK ℓA, ℓB, ℓC, ℓB, ℓD, ℓE, ℓD, ℓE, ℓE 0.27 s
PARTITION ℓA, ℓB, ℓC, ℓB, ℓE, ℓF, ℓE, ℓF, ℓE 1.2 s

ℓA, ℓB, ℓD, ℓB, ℓE, ℓG, ℓH, ℓG, ℓH, ℓE 2.4 s
DISJ ℓA, ℓB, ℓC, ℓB, ℓD, ℓB, ℓE, ℓE 0.43 s

ℓA, ℓB, ℓC, ℓB, ℓD, ℓB, ℓE, ℓF, ℓE 2.8 s

Table 1. Experiments with computing path invariants. “Time”
gives the time taken by the invariant generator (on a 1.7 GHz laptop
running SICSTUS Prolog). We computed a disjunctive path invari-
ant for the last error path.

For example, we recall the program DISJ from Fig-
ure 4. Given the error pathπ that traverses the locations
ℓA, ℓB, ℓC, ℓB, ℓD, ℓB, ℓE, ℓF, ℓE , we obtain the DPPP∨π shown in
Figure 7. We compute an invariant mapη∨π such that

η
∨π(ℓB, 1) = x = 0 ∧ y = 50

η
∨π(ℓB, 3) = y ≤ 50 ∧ 0 ≤ 1

η
∨π(ℓB, 5) = x ≤ 100 ∧ y ≤ x

together with initiation and safety conditionsη∨π(ℓA, 0) = true
andη∨π(ℓE , 7) = false. This map instantiates an invariant tem-
plate that assigns two conjuncts to each location. Any attempt to
instantiate a simpler template with a single conjunct per location
failed. (Although, it would suffice to have a single conjunctat the
location(ℓB, 3), namely,y ≤ 50.) Thus, for the locationℓB of P we
obtain the disjunctive assertion

(x = 0 ∧ y = 50) ∨ (y ≤ 50) ∨ (x ≤ 100 ∧ y ≤ x),

which we use to compute a predicate abstraction of the program P
that is precise enough to rule out all spurious counterexamples that
violate the second assertion.

6. Conclusion
We proposed a new approach to counterexample-guided abstrac-
tion refinement, which does not consider finite program paths, but
path programs as counterexamples. Path programs are full-fledged
programs, performing possibly unbounded (looping) computations.
However, path programs are usually small fragments of the origi-
nal program, thus permitting more efficient analyses. We automati-
cally generate invariants for path programs, which deliverproperty-
dependent information used to refine the analysis of the original
program. The path invariants eliminate all infeasible error paths
that remain within the control-flow structure of the path program,
i.e., which result from an arbitrary unwinding of the loops within
the path program. Furthermore, by considering unbounded com-
putations of path programs, unlike previous predicate abstraction-
based CEGAR methods, we can infer universally quantified predi-
cates. This is necessary for reasoning about unbounded datastruc-
tures such as arrays.

We have applied our algorithm, as outlined in Section 4, to small
examples involving arithmetic and array reasoning, including the
examples from Sections 2 and 5. The initial experiments withour
prototype implementation are promising; see Table 1. We show the
computation times for the synthesis of the most interestingpath
invariants (i.e., those with loops). We used the obtained predicates
in the CEGAR loop, which on the listed examples required onlya
few refinement steps for each program. We note that none of these
examples could be proved by BLAST [26], which analyzes longer
and longer counterexample paths without terminating.
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