Path Invariants

Dirk Beyer Thomas A. Henzinger Rupak Majumdar
SFU EPFL UCLA
Andrey Rybalchenko
EPFL and MPI

Abstract

The success of software verification depends on the abdlifintl

a suitable abstraction of a program automatically. We psep@
method for automated abstraction refinement which oversome
some limitations of current predicate discovery schemesur-
rent schemes, the cause of a false alarm is identified as easinf
ble error path, and the abstraction is refined in order to ventizat
path. By contrast, we view the cause of a false alarm -situgious
counterexample- as a full-fledged program, namely, a fragment of
the original program whose control-flow graph may contaopk
and represent unbounded computations. There are two adyesnt
to using suchpath programsas counterexamples for abstraction
refinement. First, we can bring the whole machinery of pnogra
analysis to bear on path programs, which are typically sowat-
pared to the original program. Specifically, we use constia@sed
invariant generation to automatically infer invariantspatth pro-
grams —so-calleghath invariants Second, we use path invariants
for abstraction refinement in order to remove not one infBkityi

at a time, but at once all (possibly infinitely many) infedsibr-
ror computations that are represented by a path progranikeJnl
previous predicate discovery schemes, our method hanoibgs |
without unrolling them; it infers abstractions that inveluniversal
guantification and naturally incorporates disjunctivesgaang.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.L¢gics and Meanings
of Program$. Specifying and Verifying and Reasoning about Pro-
grams

General Terms Verification, Reliability, Languages
Keywords Formal Verification, Software Model Checking, Predi-
cate Abstraction, Abstraction Refinement, Invariant Sgaih

1. Introduction
Even the most experienced programmers make mistakes whie p

available today, automatic proof- and bug-finding tools o $e-
mantic level are required to produce robust and reliable cBdo-
gram verification has been a central topic of research sirecedarly
days of computer science. While it has long been known dbat
sertions(program invariants) are the key to proving a program cor-
rect [20,27], the available techniques for automaticatidifig use-

ful assertions are still rather limited.

We can broadly classify the techniques for deriving progats-
sertions into two categories. The first class of methodsseln the
user to set up a verification framework —i.e.,astract interpre-
tation [13]— within which algorithms, often based on constraint
solving, can efficiently search for program invariants. fagées of
such verification frameworks include abstract domains. (eg-
merical [4, 15], shapes [39]) and invariant templates {digear
arithmetic [43], uninterpreted functions [3]). With thesethods,
much care must be spent on choosing, for a given programt-a sui
able framework which is both sufficiently expressive to tithie
number of false alarms and sufficiently inexpensive to campu
variants efficiently.

More recently, an ambitious approach that originated withi
model checking [8] has been transferred to program veridioat
[2, 26]. This approach, calledounterexample-guided abstraction
refinement{CEGAR), attempts to automatically tune the verifica-
tion framework to the necessary degree of precision. In CRGA
false alarm —called aounterexample- is analyzed for informa-
tion how to refine the abstract interpretation in order togeethe
false alarm. This process is iterated until either a prooé doug
is found. The persuasive simplicity of CEGAR has also been it
main limitation: a counterexample is an infeasible progneth,
and to remove that path one adds a predicate on program vari-
ables [2,25] —i.e., @redicate abstractiofi22]— to be tracked by
the abstract interpretation. However, a verification frevor that
consists solely of tracking predicates based on individui@asi-
ble program paths is woefully inadequate for many applcesti
For example, loops are often unrolled iteration by iterationly
to find and remove longer and longer counterexamples. Common

gramming, and they spend much time on testing their programs |ops over arrays cannot be handled at all, as the invarapiires
and fixing bugs. Although mature syntax and type checkers are ynjversal quantifiers (rather than quantifier-free preigawhose

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titisenand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI'07 June 11-13, 2007, San Diego, California, USA.
Copyright© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00

finite instantiations are added by each successive refirtestem

We overcome these limitations of CEGAR by generalizing the
notion of counterexample. For us, a counterexample is reitgu
single infeasible program path, but a full-fledged prograamely,
the smallest syntactic subprogram of the original progratniciv
produces the infeasibility. Such a program is calledash pro-
gram Since a path program may contain loops, it often represents
not a single infeasibility, but a whole family of infeasitigs —all
those obtained from unrolling the loops. Hence, by refinimgab-

straction in order to remove the counterexample, we remagym
(potentially infinitely many) false alarms in one step. Hoesw
such a refinement may require more than the addition of a simpl
quantifier-free predicate expressing a relationship betvpeogram
variables: in general, it requires the addition of a pregisariant
for the path program —the so-callgath invariant Thus, instead
of relying on heuristics for discovering relevant informoat about
counterexamples, we can bring to bear the entire well-dpesl
machinery for synthesizing program invariants.

A path program exhibits only a small portion of the original
program, which is controlled by the property of interestnklg in-
variant generation for path programs is more likely to s¢hén
for the original program. We can apply existing methods adst
e.g., abstract interpreters based on widening, or consthaised
invariant generation methods. The use of path programs &as co
terexamples shifts the focus from heuristics for discogeriele-
vant information, to heuristics for efficiently discovegimforma-
tion (relevance is guaranteed). In other words, path progrde-
compose a program verification problem into a series of gmpl
problems about fragments of the original program.

While we are free to apply any program analysis to path pro-
grams, we use template-based invariant generation for dhe c
bined theories of linear arithmetic, uninterpreted fuos, and
universal quantification over arrays [3] to derive invat&aof path
programs. This allows us to overcome two major limitatiofis o
previous CEGAR-based schemes. First, by synthesizingianta
for path programs with loops, we avoid the iterative unwirgdof
loops suffered by CEGAR tools likeL@m [2] and BLAST [26].
These approaches, by using finite paths as counterexancples,
never guarantee that the next counterexample would notibeptes
variation of the current one, where some of the loops aretsad
some more times. Path program-based refinement solvegdis p
lem. Second, by synthesizing universally quantified assestwe
can handle a considerably larger class of programs, sucloas p
grams whose correctness depends on the contents of argsis, A
by using finite paths as counterexamples, which look onlynétefi
numbers of array cells, it is fundamentally impossible tkenjais-
tified universally quantified statements that hold for anauntded
number of array indices. Path programs solve also this gnobl

Our approach combines the strengths of predicate abstnacti
and invariant generation. Predicate abstraction perfomeil$ for
case analysis-based reasoning, e.g., reasoning that dsemen
aliasing between pointer variables, or on boolean flags dbat
trol the program flow. Invariant generation, by contrasstisng in
arithmetic reasoning and capable of quantified reasoning.r&
finement method is modular, in that it can be easily integratto
existing CEGAR-based software model checkers. We simpiyl ne
to replace the predicate discovery module by a call to arrigmt.
synthesizer for path programs.

Related Work. Our work is a synthesis of two approaches to pro-
gram analysis: counterexample-guided abstraction reénernd
invariant synthesis. Our work unifies these approaches bgrgé
izing counterexamples from paths (as they are usually ftated
in CEGAR) to program fragmentg#éth program$ on which we
apply invariant-synthesis techniques. As a result, weinlzagro-
gram analysis that can automatically generate richerioelstips
between program variables without paying the high cost afce
ing through the space of program invariants for the origprak
gram.

There has been much recent interespiadicate abstraction
based software model checking [16,22], where the set of qates
is extended as the analysis proceeds by analyzing spurgus c
terexamples [2,7, 25, 26, 28, 37]. The incompleteness ditibaal
implementations of CEGAR-based predicate abstractional-w
known [10, 14], and there have been several attempts to stigge

procedures that, in the limit, gain completeness: throwgkefally
choosing widening operations [1], or through carefullyrastrat-
ing the proof search in the underlying decision procedu2és [n
contrast, our technique is parameterized by the invarien¢gation
to apply on path programs. There exist invariant generéiatsare
sound and complete modulo the template language, but thé-inv
ants required to prove a program may not exist within the tatap
language.

There are several techniques for invariant synthesis, mmst
tably by abstract fixpoint computation on a suitably congtd
abstract domain [13, 39], or by a constraint-based anatlyaisin-
stantiates the parameters of an invariant template [30,\Whjle
in our concrete instantiation of path invariants, we havesein the
latter algorithm, our framework can equally well be instated
with an algorithm based on abstract interpretation. lards for
arithmetic abstract domains have been studied extendivddgth
styles of analysis: in the abstract interpretation styke B2, 38],
and using constraint-based methods [5,9,12]. For quadhtifigri-
ants involving arrays, there are algorithms that computeofixs
using a carefully constructed array domain [11,21]. Thevrdaaw-
back of abstract interpretation methods is a high rate eéfalarms
(due to a lack of precision for efficient analyses), and therob-
stacle to applying constraint-based methods is their haghpu-
tational cost. Constraint-based algorithms often do nateswell
to large programs, and therefore most of their applicatiosge
been limited to tricky but small programs. Path invariant®enat-
ically produce small subproblems, making the applicatibthese
techniques feasible by restricting attention to small prots. The
overall CEGAR loop combines these subproblems into a prbof o
correctness of the entire program.

The need foruniversally quantifiedassertions in the analysis
of programs that manipulate unbounded data structuresesiah
rays is well-known, and several approaches have been gedges
use quantified assertions for predicate abstraction. Hexyvévese
techniques either require the user to specify the asserfimiten
with Skolem constants for the quantified variables) [19],uee
heuristics to derive quantifiers by generalization fromt&mixam-
ples [34]. In contrast, we apply an invariant-generatiahieque
that is sound and complete for a class of invariant templ@&kes
The language of our invariants is the combined theory ofaline
arithmetic and uninterpreted functions, extended withiaarsally
guantified array fragment [6]. For templates outside themgiem-
plate language, we can still apply our algorithm and geresatind
invariants, but as expected, there is no completenessrgeara

Treatment of disjunction can be incorporated into the alostr
interpretation framework by suitable manipulation of tlomtrol-
flow graph of the program [36, 40]. We can use path invariants
to implement such a manipulation in a property-guided wag s
Section 5.

2. Examples

We illustrate the use of path invariants for automatic refiaet on
three examples. The formal exposition of the method shajiven
in the subsequent sections.

The first example is a programoRWARD, whose correctness
argument depends on the interplay between values of coanter
data variables during the loop execution. The example sliloats
path invariants identify relevant predicates that elirten@ot only
a given counterexample path, but also all counterexample paths
that can be obtained from by unwinding loops.

The second example is a programtCHECK, which manipu-
lates arrays. Its correctness proof requires loop invesidrat con-
tain universal quantifiers, and the automatic discoveryughsn-
variants has been posed as a challenge in previous work di pre
cate abstraction and discovery [29, 37]. Path invariargstity rel-

void forward(int n) {
int i, n, a, b; [>0
i:=0
A: assume(n >= 0); eizo
i=0; a=0; b=0; P -
B: while(i < n) {
ifC .o.0) o [i <l
C: a = atl;
b = b+2;
} else { a:i=a+1
D: a = at2; bi=b+2
b = b+ 7
E
) a
E: i = i+1; i P
Q=1
}
F: assert(a+b == 3*n);
)
[i > n]
la + b # 3n]
(@) (b)

@

[n > 0]

i:=0

ZES [i < n]

e
i Y4
[i > n] =i
153
[a + b # 3n]
(c) (d)

Figure 1. Program RwWARD llustrates the discovery of relevant predicates thatgméeloop unwinding(a) program;(b) counterexample
path;(c) CFG of the path program that is extracted from the countenplapath; andd) potential new counterexample path resulting from
loop unrolling when path invariants are not tracked. In taéhpand CFG representation, we Ugeto denote assumptions that represent
conditional control statements of the program. As usualatgs are denoted by:=. Double circles denote locations at entry points of nested

blocks of a program, i.e., entry points of loops.

evant universally quantified formulas together with pratis over
the loop counter.

The third example program,ARTITION, addresses the diffi-
culty of dealing with global invariants. Since path progsarapture
only some of the computations of the original program, theezo
sponding path invariants may be smaller, and representpantg
of the set of reachable program states. The correspondoizalgl
invariants, which cover all reachable states, can be defiven a
combination of several path invariants. Thus, path invasiallow
us to implement a lazy construction of program invariantisiciv
is guided by counterexamples.

2.1 Example FORWARD:
Capture Arbitrary Loop Unwinding

Our first example is programdRwWARD from Figure 1a), whose
correctness argument depends on the interplay betweeesvafu
counter and data variables during the loop execution. Togram
executes a loop times, and in each iteration, depending on some
(unmodeled) condition, either increments the variably 1 andb

by 2, or increments: by 2 andb by 1. At the end of the loop, we
want to assert the claim that the sum- b must be equal t8n.

Abstraction Refinement.First, let us briefly describe how current
techniques attempt to prove the assertion, and thus set apka b
ground for demonstrating the advantages of using pathiawar
over existing methods. A standard counterexample-guitistiac-
tion refinement (CEGAR) algorithm implemented in a tool like
BLAST attempts to prove the programoRWARD in the follow-
ing way. The initial abstraction discards all data relasinips (that
is, no predicates are tracked), and the reachability aisa(fisst
phase of CEGAR) checks if there is a path in the control-flaapgr
(CFG) that leads to an error location, where the assertiotiois
lated. There are such paths in the CFG, and Fig(lseshows one
such counterexample path, which traversesiih£le-loop once,
takes thethen-branch in the body of the loop, and then violates the

assertion after leaving the loop. Notice that while this syatac-
tic path in the CFG, the counterexample pathpsrious that is, it
cannot be executed by the program.

The second phase of CEGAR is to check if the produced coun-
terexample path is genuine or spurious, and if spurioustdoged
with abstraction refinement, i.e., to find additional pretiés that
rule out the path. The counterexample path is translatedatng-
ical formula called thepath formula which is satisfiable iff the
counterexample path can be executed in the program [33]patie
formula is the conjunction of constraints derived from thei@-
tions along the path when the path is written in static siagign-
ment form, that is, where each assignment to a variable engiv
fresh name. The path formula for the counterexample in Eigm)
is the following conjunction, where each line corresporuds tran-
sition between control locations:

no >0ANi1=0ANa1=0Aby =0A ly — U
i1 < mno A Ly — Le
a2 =a1+1Aby=b +2AN le — Uk
lo=11+1A by — U
9 > ng A by — Ur
a2 + b2 # 3no le — Le

The formula is unsatisfiable, because there is no initiaiatdn
of program variables that leads to a program execution albag
counterexample path.

In the third phase of CEGAR, predicates are extracted fram th
unsatisfiable path formula, and added to the predicatesadbistn.
This refined abstraction ensures that the new predicatésaked
during subsequent reachability analyses, and that threrétie cur-
rent counterexample path will not reoccur. One way to discov
predicates is to extract all atomic predicates that appearroof
of unsatisfiability of the path formula. (In practice, todatsple-

ment a more complicated scheme based on interpolants [R5, 37
but this does not change our argument below.) For our coexter
ample path, a possible set of such predicates is

{i=0i=1,a=0,a=1b=0,b=2},

which tracks the variables a, andb along the path. While this set
of predicates eliminates the given counterexample pathnéxt
round of reachability analysis encounters a longer coargenple
path which is obtained by unwinding the loop one more time,
namely, the path shown in Figuréd). This new counterexample
path is eliminated by tracking in addition the predicatethimset

{i=2a=20b=4}.

In general, in thé:-th refinement round, we find the set of predi-
cates{i = k,a = k,b = 2k}, and the method does not terminate.

Path Invariants. Our new refinement approach is based on iden-
tifying path invariants. Path invariants are not inferrean path
formulas, but from specigbath programswhose construction is
guided by the statements that appear along a counterexgamle
The path program for the counterexample path in Figyls &
shown in Figure (c). We observe that the path program contains
only control locations that are traversed by the countengia
path. Its statements are taken from the counterexample aath
its CFG captures the counterexample path as well as its ahwin
ings. We shall define formally how path programs are contgdlc
in Section 3. The counterexample path passes two timesghrou
the control locatior’s, which labels the loop entry. So the path
program has a loofs — ¢c — ¢z — fp in its CFG at locatiorfs.

To refine the analysis so that tHamily of counterexample
paths represented by the path program are all refuted at wece
apply invariant-generation techniques. Since there anpslan the
program, we can no longer construct a path formula that ealin
in the length of the counterexample. Instead, we lookirfeariant
maps A path-invariantmap is a mapping from the locations of a
path program to formulas such that the following two corais
hold: (initiation) the initial location of the path prograsimapped
to the formulairue, and (inductiveness) for each pair of locatiégns
and/’ with an edgg(4, p, £') in the path program, the successor of
the formula a¥ with respect to the program operatipimplies the
formula at¢’. The path-invariant map isafeif the error location
(i.e., the location that violates the assertion that is tgptmved)
is mapped to the formulgslse. Notice that an invariant map of a
path program need not be an invariant map of the originalrprag
when the set of locations is extended, because it may vitate
inductiveness requirement.

In our example we can generate invariants in arithmetic do-
mains, e.g., by applying methods described in [9, 43], artdinb
the following path-invariant map:

nly = true

nlg= 3i=a+bAa+b<3n

nbe= 3i=a+bANa+b<3n

nleg= 3i+3=a+bANa+b—-3<3n
ndr= a+b=3n

nle = false

The map is safe & is mapped tgalse. A subsequent reachability
analysis that tracks the truth of these formulas at the spamding
locations is guaranteed to eliminate the original countaregle.
Furthermore, any spurious counterexample path that isretata
by traversing the path program is eliminated by trackingé¢hier-
mulas. For example, consider a potential unwinding of thgimal
counterexample path, which traverses the loop twice, asrsiio
Figure Xd). When following this path and reaching the control lo-
cation/s for the first time, a program analysis tracking the formulas

from the path-invariant map computes an overapproximaifdhe
reachable states &t that is at least as strong as the formula defined
by the map ats. Since the path-invariant map is inductive and safe,
we conclude that the overapproximation computed for thersgc
visit to the locationés is again as strong as the formula assigned
to /5. This means that the path shown in Figufd)lcannot appear
as a spurious counterexample.

We can use similar reasoning to show that any unwinding of the
original counterexample within the CFG of the path prograith w
not produce a new (spurious) counterexample. This meanharia
path whose sequence of visited control locations is in thguage
defined by the regular expressiérls(¢clels)" lrls Can never be
reported as a spurious counterexample, once the formulastfre
path-invariant map determine the abstraction. The formstiifj-
cation of this statement, which characterizes the relevariche
formulas obtained from path invariants, relies on the catgpiess
of abstract interpretation [10].

2.2 Example INIT CHECK : Universally Quantified Predicates

The previous example showed how path programs can be used to
refute a family of counterexample paths arising from uimglla
loop. The next example shows how the same technique may be
used to inferquantifiedinvariants about the program state. Rea-
soning about many programs that manipulate unboundedelgta,
data stored in container data structures like arrays, regjuiniver-
sally quantified formulas. Usually, these formulas contaiiver-
sal quantification over indices, positions, or keys, whicbvle
reference to data values stored in the data structure. Tehase
a fundamental obstacle that prevents the systematic disgc®f
universally quantified invariants based on (finite) coustample
paths. Namely, such paths can expose only a bounded number of
data items that are stored in the data structure. Thus, iffisult to
derive and formally justify universal quantification ovéscbvered
predicates. However, from path programs we can infer qgiiedhti
invariants by simultaneously considering all unrollindsadoop.
The next example demonstrates how an invariant-synthégis a
rithm for inferring quantified invariants [3] can be appligdpath
programs.

Consider the programNiTCHECK from Figure Za), which
initializes an array td), and then checks that all elements in the
array are). We wish to prove that all assertions hold.

Abstraction Refinement. The path shown in Figure(B) repre-
sents a spurious counterexample that would be found by a veri
fication tool that does not track the array contents pregiSéie
path contains a statement that corresponds to the asseitian
tion, which appears after traversing each loop once. Franfitst
part of the counterexample path (traversal of the first laop)an
conclude that the first element in the array is initializedt@nd

discover the predicate[0] = 0. Then, by considering this fact
in the second part in the counterexample path, where thdiggqua
ali] = 0 is checked fori = 0, we conclude that the predicate

a[0] = 0 is sufficient to eliminate the given counterexample.

However, tracking the predicatg0] = 0 eliminates only this
particular counterexample path. It does not eliminate treyér
counterexample path which traverses each loop twice; thiddv
require tracking the predicatgl] = 0. In fact, counterexample-
based predicate-abstraction refinement is likely to geeera in-
finite family of predicates:[i] = 0, one for eacki > 0. Since
the number of array elements being initialized and subsetyue
checked by WiTCHECK s determined by the variable and hence
is arbitrary, no finite number of predicates obtained fronitdin
counterexample paths created by loop unwinding will suffice
prove the program correct. We need the universally quadtite
mulavk : 0 < k < n — alk] = 0 to verify INITCHECK.

void init_check(int *a, int n) {
int i;
i:i=0

A:
B: for(i = 0; i < n; i++) {
C: ali] = 0;

¥
D: for(i = 0; i < nj; i++) { [i > n)
E: assert(al[i] == 0); =0

}

} [i < n)
[ali] = 0]
ii=i41

[i < n]
(a)

(©

Figure 2. Program NITCHECK illustrates the discovery of universally quantified ineents for the challenge example from [29, 37]:
(a) program;(b) counterexample patlic) CFG of the path program that is extracted from the countenpie path.

Path Invariants. Justification of the universal quantification re-
quires consideration of all possible paths that traveredrttial-
ization and checking loops located @tand ¢, respectively. We
use a path program to represent this family of paths. Thegrath
gram extracted from the original counterexample path isvshio
Figure Zc). Using this path program, we can provide a systematic
justification of universal quantification by deriving pativariants.
The technical complication is that we have to infer invatriaraps
that map certain locations to universally quantified forasul

An inductive invariant map, say, for our path program needs
to assert that at locatiofy the contents of[:] is 0. Note that the
transition to the error locatiofk, which is taken frontz if a[i] # 0
holds, appears within a loop that iteratively increments whlue
of . Hence, the formula assigned hyo the locatior’y must imply
afi] = 0 for all values ofi that are reachable fror, that is, all
values ofi in the interval from0 to » — 1. We observe that the
first loop assigns 0 to an array celli] for each value of that is
subsequently checked in the second loop.

We compute the path-invariant maghat formalizes the above
reasons for the non-reachability of the error location ie gath
program. (See [3] for a discussion of algorithms for commuyiti
invariants that contain universal quantification.) Thenfatas in
7 restrict the value of the counter variabland contain universally
guantified statements about the contents of the initialcadld of
the arraya. The formulas for the locations in the first loop refer
only to the array contents up to the positipmhereas the formulas
for the second loop refer to each array element betWesmdn —1:

nty = true
nle= Vk:0<k<i—alk]=0
nle= Vk:0<k<i—alk]=0
nd= Vk:0<k<n—alk]=0
nle= Vk:i<k<n—alk]=0
nle = false.

By tracking the four formulas in the range of the path-inzati
map, we are guaranteed that all potential counterexamfths zat
visit a sequence of control locations from the set definedhiay t
regular expressiofu s (¢cls)* o (¢elp) ™ lels are eliminated.

2.3 Example RARTITION : Incremental Construction

Path invariants identifyocal reasons that refute a family of coun-
terexample paths. To prove an assertion in the programgthou
an analysis may have to iterate through several differetft pio-
grams, each of which presents a different family of pathsviola-
tion of the assertion. We now illustrate how path invariazge be
used within a CEGAR framework to incrementally construobgil
invariant maps, using path programs derived from diffeemnn-
terexample paths to learn additional information.

Consider the programaARTITION in Figure 3, which partitions
the elements of an input arrayinto two arraysge andit, which
contain, respectively, the elementsmfjreater or equal to 0, and
less than 0. In order to prove the assertions, we need a lgapant
at locationB which is the conjunction of

Vk:0 <k < gelen — ge[k] >0 Q)

Vk:0 <k < ltlen — It[k] <0 @)

Instead of applying invariant generation on the entire @ogat
once, CEGAR with path invariants will find the two conjuncfs o
the loop invariant aB one at a time. For example, consider first a
spurious counterexample path that traversesila-branch of the
conditional in thefor-loop. The corresponding path program looks
almost identical the path program for examplaTICHECK from
Figure Zc), except that instead of a direct write ge[:], the coun-
terexample path contains the operatiaasume (a[i]>=0) and
geli]l = alil. Performing invariant synthesis on this path pro-
gram leads to a path-invariant map similar to the one for Exam
ple INITCHECK. In particular, at the locatioB, we obtain the in-
variant from Equation (1).

These invariants, however, are not enough to prove the-asser
tions, and a second counterexample path is found. This path t
verses thelse-branch of the conditional in theor-loop. Again,
the path program is similar to the path program from Exam-
ple INITCHECK. This time, the path-invariant map generates the
second conjunct of the loop invariant, i.e., Equation (2géther,
the conjuncts suffice to prove the assertions. Thus, the GE&A
gorithm breaks the search for global program invariantspérs
formed by invariant synthesis techniques) into severaicbes for
individual components of the invariant, thus restricting searches
to smaller spaces.

formula obtained by substituting variables fro¥i for
the variables fromX in 7.¢.
Safety: For the error locatiofs, we haven.le = false.

void partition(int *a, int n) {
int i, gelen, ltlen;
int gel[n], 1t[nl;

The invariant-synthesigproblem is to construct an invariant map

gf %ii?ni:o(;)-lzlin; (i)i+ y 1 for a given program. For ease of exposition, we assume that an
’ if(a[i]’ >= 0) 1 invariant map assigns an invariant to each program locaton
c: gelgelen] = alil; efficiency, one can require invariants to be defined only aver
gelent++; programcutsetf i.e., a set of program locations such that every
} else { syntactic cycle in the CFG passes through some locationén th
D: 1t[1tlen] = al[il; cutset.
N ltlent+; Path Programs.We consider a prograt? = (X, L, o, T, {¢) to-
} gether with an error path = (4o, po, 1), ..., (lk—1, pr—1,Ls).
E: for(i = 0; i < gelen; i++) { Given P and w, we construct thepath program P™ =
F: assert(gel[i]l >= 0); (Xﬂv LW74377W7€7‘§) such that
G ;or(i= 05 i< ltlens i+t) { o the set of variables remains the samf€: = X;
H: assert(1t[i] < 0); o the program locations are exactly those that are visitechby t
) } path:L™ = {l1,...,b,_1,Le};
o the initial and error locations remain the sanig: = ¢, and
sy — KE
£ ’

Figure 3. Program RRTITION illustrates how reasoning over sev-
eral path programs can be combined. e the set of transitions is restricted to the transitions #hataken

along the path7™ = {(4o, po, ¢1), - - -, (Ck—1, pr—1,Le)}.

. Intuitively, the paths of the path prograf™ include the error
3. Path Programs and Invariants path7, and in addition all paths that result fromby unrolling
it following the control-flow graph of?. Hence the path program
P™ may traverse some loops that are traversed more often, but
it contains no transitions that do not occurin

Programs. We assume an abstract representation of programs by
transition systems [35]. frogram P = (X, L, ¢, T, {<) consists

of a setX of variables, a sef. of control locations, an initial Ani iant ™5 th P | led th-
locationfy € L, a setl of transitions, and an error locatidp € L. . n invariant maprn - for a path progra IS called apal
Each transitionr € 7 is a tuple(¢, p,¢’), wherel, ¢’ € L are invariant map

control locations, angb is a constraint over free variables from Computation of Path Invariants. There are several methods to
X U X'. The variables fronX denote values at control locatidn generate path invariants for a path program, e.g., viaatistiter-
and the variables fronX’ denote the values of the variables from pretation with specialized domains (cf. [4, 15, 21, 32, 3§),3and
at control locatior?’. We assume that the error locatiGndoes not via reduction to constraint solving (cf. [3,5,9, 12, 30,42,43]).

have any outgoing transitions. The sets of locations amtitians In our implementation of path invariants, we have utedplate-
naturally define a directed graph, called ttentrol-flow graph based invariant generatiof, 9]. By exploiting recent advances in
(CFG) of the program. (Note that we put the transition caists reasoning about the hierarchical combination of theoBe31,44],
at the edges of the graph.) our algorithm [3] is able to generate invariants over the looed

A stateof the programP is a valuation of the variables frors. theory of arithmetic and uninterpreted function symbolthwini-
The set of all states is denotedl. X. We shall represent sets of ~ versal quantification. This combined theory is known to be ex
states using constraints. For a constraiover X U X’ and a val- pressive enough for a wide variety of software verificatioobp
uation(s,s’) € val.X x val.X’, we write (s, s") |= p if the valu- lems [2,18, 19, 24, 26], including reasoning about arrays [6
ation satisfies the constraipt A computationof the programP In template-based invariant synthesis, we assume thaafdr e
is a sequence€lo, so), (1,51),..-, (lk,sK) € (L x val.X)", control location in the domain of the map we have a so-called
where/y is the initial location and for each € {0,...,k — 1}, invariant templatewhich is a parametric constraint over program
there is a transition{¢;, p,4;+1) € 7 such that(s;, s;+1) = p. variables. An example for a simple template constraint akier

A state s is reachableat location? if (¢,s) appears in some program variablesandn is
computation. The program isafe if the error locationls ap-

! - ¢ i non < p,
pears in no computation. path of the programP is a sequence piiitpn s p

m = (Lo, po, 1), (1, p1,02), ..., (lk_1,pr—1,£r) Of transitions, wherep;, pn, andp are unknown parameters whose values need
where ¢, is the initial location. The pathr is feasibleif there to be determined. This template denotes a set of formulasdma

is a computation(¢o, so), . - ., (¢, sx) such that for each € be obtained by giving values to the parameters, &ig- 3n < 5.
{0,...,k — 1}, we have(s;, si+1) = p:. If the pathm ends at The crux of the template-based approach consists in defaridg
the error location, i.el, = {g, then we callr an error path (or solving a system of constraints over the template’s pararmstch
counterexample pajhFeasible counterexample paths are referred that the resulting values yield an inductive invariant map.

to asgenuing infeasible ones, aspurious The constraints over the parameters of the template enbede t

initiation, inductiveness, and safety conditions of ingat maps.
For example, for each transitigft, p, £') of a program, we gen-
erate the constraint that states that the invariant teenplit con-
joined with the transition relatiop implies the invariant template
at/'. This constrains the values of the parameters of the teegplat
Initiation: For the initial locatior?y, we haven.fy = true. at/ and/’ to values that ensure the inductiveness of the generated
Inductiveness:For each?, ¢’ € L such that(¢, p,¢') € T, invariants. In addition, we add constraints that the tetepdd the

the formulan.¢ A p implies (n.¢')’. Here,(n.£')" is the initial location ¢, is true, and the template at the error locatién

Invariants. An invariant of P at a location/ € L is a set of
states containing the states reachablé. &n invariant mapis a
functionn from L to formulas over program variables frakhsuch
that the following conditions hold:

impliesfalse. A solution to the constraints then provides values for
the template parameters. For the combined theory of linegr-a
metic and uninterpreted function symbols, all constrafalisinto

a class that can be solved using the constraint solving igeés
described in [9].

In our implementation, we use the algorithm from our presiou
work [3] to infer universally quantifiednvariants for array pro-
grams, in addition to linear arithmetic and uninterpretexction
symbols. We construct a suitable template by analyzing engiv
path program. If the program contains an assertion thaeis-it
tively checked within a loop, then we add a universally gifieat
implication to the template. The right-hand-side of the licgiion
contains a generalization of the assertion. The positievhath the
assertion reads from the array becomes a fresh, univerpadiy-
tified variable. For the left-hand-side of the implicatioe whoose
a conjunction of linear inequalities over the program vaea and
the fresh variable. For example, given the programt CHECK and
the path program from Figurg@, we construct the templates
and for the locationgs and/y, respectively, as

(Vk:p'(i,n) < k < p*(i,n) — a[k] = p°(i,n)),

o =
v = (Vk:q'(i,n) <k < ¢°(i,n) — alk] = ¢°(i,n)),
where
p (i,n)= p;-i+p,-n+p foreachr e {1,...,3},
q" (i,n)= q; -i+gq,-n+q" foreachr e {1,...,3}.

Our implementation of the quantified invariant generatodgian
instantiation of the parameters that yields the path-iawérmap
shown in Section 2.2.

4. CEGAR with Path Invariants

We apply path invariants in a predicate abstraction-bade@AR
loop, where path invariants are used to suggest formulasfitcer
the predicate abstraction. However, our technique to denpath

programs(instead of paths) as counterexamples can be used in any

CEGAR-based program analysis.

A predicate abstractiodl is a function that maps each control
location to a set of formulas over the program variables, elgm
those formulas whose truth values are tracked by the progreata
ysis. Conceptually, the CEGAR algorithm has three phasedj:[2
abstract reachability, counterexample analysis, andadigin re-
finement. Thebstract-reachabilityphase tries to construct a safety
proof for the program by unwinding the CFG into a labeled tree

where each node of the unwinding is annotated with an atstrac

state. Theabstract stateat a node with locatior? is a boolean
combination of the formulas ifil.¢, which represents an overap-
proximation of the set of reachable states of the programrmvithe
executes the path from the root of the tree to the current.nffuke
root is labeled with the abstract state.e. If an abstract state at

a nodev implies the abstract state at another node with the same

location, then the unwinding stops at the nadélhis unwinding
process produces abstract reachability tre¢ART); see [26] for
a formal definition.

If the abstract reachability tree does not contain the dowa-
tion, then a safety proof is found, and the algorithm tert@gsa
Otherwise, the algorithm moves to tlunterexample-analysis
phase. In this phase,@unterexample patfi.e., a path from the
root to the error location) is chosen from the ART, and thealg
rithm checks if this counterexample is genuine (i.e., if @meor
path is feasible). For implementing this check, a logicahfola
is constructed from the counterexample path which is safbikfi
iff the path is feasible. If the formula is satisfiable, thebw is
found and the algorithm stops. Otherwise, the algorithnteeds
with the abstraction-refinemenphase. Now, instead of discover-

void disj() {

int x, y;
A: x = 0; y = 50;
B: while(x < 100) {

if (x<50) {

Ta
C: X = x+1;
} else { Tb Q Te
D: X = x+1;
y = y+i; T4 . Te
}

}
E: assert(y >= 100);
F: assert(y <= 100);

}

Figure 4. Program DsJ, which requires reasoning with disjunc-
tive invariants (cf. [23]), and its CFG. We omit intermedighon-
cutpoint) locations. The transitiaty initializes the variables before
entering the loop. The transitioms andr, traverse the loop by tak-
ing the positive and negative branch, respectively. Thesttimns

74 and 7. exit the loop and violate the first and second assertion,
respectively.

ing new predicates for the predicate abstraction from theisp
ous counterexample path, using for example interpolatiased
approaches [17, 25, 37], we construct the path progfdimfrom
the counterexample path Then we use an invariant-synthesis al-
gorithm to produce a path-invariant mgp for P™ [3]. This in-
variant map is used to refine the predicate abstraction: \Wealid
atomic predicates that appean;jit to the predicate abstractidh/¢

at each locatior?, in this process treating universally quantified
formulas as atomic predicates. Note that if some unwindirthe
error pathr is feasible, then no invariant mag can be found.

After abstraction refinement, the algorithm proceeds with a
other abstract-reachability phase, this time tracking emnedi-
cates (including universally quantified formulas). Theethphases
are repeated until either a proof or a bug is found (or, sihee t
problem is undecidable, the loop does not terminate).

The key property of the refinement step using path invarignts
that formulas that appear in path-invariant maps ruleatiutoun-
terexample paths that arise from arbitrary unwindings opin
the path program. This is in contrast to the existing impletae
tions of CEGAR, where each refinement step only guarantees to
remove a single counterexample path, and hence, may gét stuc
in removing infinitely many counterexample paths that refsam
unrolling a loop. In the following theorem, |&each.II denote the
set of all rooted paths in the abstract reachability treeitheon-
structed for a predicate abstractiin

THEOREM1 (Refinement Progressonsider an error pathr of

the programP, and an invariant mam™ for the corresponding
path programP™. For every predicate abstractiol such that for
each/ € L™ we haven™.¢ C II1./, the setReach.IT of paths in
the abstract reachability tree does not contain any patla Hre

constructed only from transitions iR™.

5. Disjunctive Reasoning with Path Invariants

In this section, we show that path invariants can facilitisgunc-
tive reasoning when dealing with program invariants. WasHl
trate the need for disjunctive reasoning using the exanmoigram
DisJfrom Figure 4. When attempting to verify this program, our
invariant-generation algorithm fails to compute an inatimap
for the path program extracted from a counterexample path th
traverses both branches of the loop and violates the sess®d-a

A: while(...) {

i£C..

AR
B: l;lléak;
} else {
C:
D: while(...) {
Td Te
}
E:
}
F:
}
G: ...

Figure 5. Control-flow graph that contains two nested blocks (we
omit intermediate, non-cutpoint locations). The innercklgorre-
sponds to thethile-loop at locationds. Its entry/exit point is the
location/p. The outer block corresponds to theile-loop at lo-
cation/,. Its entry point is the locatiof,, and its exit points aré,
and/g.

tion. Any attempts to increase the number of conjuncts irtéhe
plate fail. This is because proving the validity of the aseas re-
quires an invariant map that assigns a disjunctive linear invariant
(x <50 Ay =50V (0 <ax <100 Az =y)toloca-
tion £5. Such a disjunctive invariant is not captured by the conjunc
tive templates used in [3]. We propodisjunctive path programs
an extension of path programs, to support disjunctive rgago

Disjunctive Path Programs.We assume that control-flow graphs
are structured into blocks. Eablockis a strongly connected com-
ponent of the CFG. Each block is induced by a control-flowestat
ment that allows code to be executed repeatedly; exampkascof
statements includehile-loop andfor-loop statements. We ex-
clude goto-statements from consideration to simplify the expo-
sition. Thus, each bloc3 has a single entry location, denoted
by Entry.B, which is also an exit location. The blocB con-
tains all nodes and edges of the CFG that are strongly cagshect
to Entry.B. A block may have additional exit locations, which
correspond tdreak-statements. Nested loop statements induce
nested blocks, i.e., strongly connected components tlanhar
maximal. We illustrate blocks, nesting, and entry/exitalbans in
Figure 5. The control-flow graph shows transitiany which con-
nects the location& and/y by following the negative branch of the
if-statement and traversing the non-cutpoint locafiomhe body
of the inner loop corresponds tg, which is a self-loop at the loca-
tion 4. The transitionr, connects the inner loop with. The tran-
sition 74 exits the outewhile-loop by violating its condition. The
transition. exits the outer loop by taking thereak-statement.

Before giving a formal definition of disjunctive path progra
(DPPs), we informally describe how they differ from (plajmth
programs, as introduced in Section 3. In DPPs, each comicat |
tion visited by a path appears several times, indexed byg#ipn
in the path. Thus, the invariant map for DPPs can assignrdiife
formulas to the same location at different positions. Fenrtfore,
DPPs contain copies of transitions that are repeatedliyhedde
from a given location (i.e., lie within a common block) at kamo-
sition of the location. See Figures 6 and 7 for examples of ODPP
that are constructed according to the definition below.

We consider a progra® = (X, L, £y, 7, £¢) together with an
error pathr = (o, po,£1), ..., (lk—1,pr-1,Lc). We write L.z
for the set{¢o,...,¢r_1,¢s} of locations visited by the path,
and7 .« for the set{(¢o, po,?1),. .., (bx—1, pr—1,Le)} Of transi-
tions in 7. Let Blocks.7 be the set of blocks of the control-flow
graph of the progranP which contain the set of locationk..

Given P andw, we construct thelisjunctive path progranP"™ =
(XY™ LY™ 8oV™, TV™, £c¥™) such that

e the set of variables remains the same‘™ = X;

e the program locations contain two copies for each location
to model loop unwindings, and are paired with labels for the
positions in the pathL¥™ = {¢, ¢ | £ € L7} x {0, ..., k};

e the initial location is the first location in the path labeled
with 0, that is,¢0 V™ = ({0, 0);

e for each positiort € [0..k — 1] of the pathmr, the disjunctive
path program contains the transitiof;, <), p;, (¢i+1,% + 1));
moreover, ifr.i is a back-edge in the CFG, i.e., if there is a
block B € Blocks.w such that; € B and/¢;+1 = Entry.B,
then the DPP contains also the following transitions:

* ((Cig1,i 4+ 1), pxr—x, (Big1,i + 1)),
" ((05,i+1), pj, (6j1,i+1)) foreach(t;, p;, £j11) € Tom
such thatj < 7 and both¢; and/; ., are inB,
* ((igr,i+ 1), pxr=x, (Gisr, i+ 1)),
wherepx:—x denotes the constraint that preserves the valua-

tion of all variables, i.epx/—x = A,cx 2’ =1;

o the error location ige Y™ = (lg, k).

Intuitively, the paths of the disjunctive path prograi™ include
the error pathr, and in addition all paths that result from by
staying within some nested blocks affor some additional un-
windings of loops. Hence, the path progrd™{™ may iterate some
loops that are traversed hymore often, but it contains no transi-
tion that does not occur in. Consider, e.g., an error pathof the
program from Figure 5 that first traverses theile-loop without
going into the innefshile-loop, then traverses the innghile-
loop once, and finally leaves the outéiile-loop by executing
thebreak-statement (we writég for 4g):

by — be — bp — lg — g —

by — b — bp — bp — lg — g —

by — by — lg
This counterexample path and the corresponding disjungtath
program are shown in Figure 6. The nested blocks of this path a

B1 = {{y,..., s} and B; = {{p}, with B being nested irB;.
The complete set of transitions of the DPP™ is

((eAv 0)’ Pas (éDv 1)).
((éDv 1)’ Pb> (ZA’ 2))'
PX'=X> (eAv 2))

((€A72)’ =. ’
(({Av 2)’ Pas ({D’ 2))!
(({Dv 2)7 Pb, (ZAy 2))’
((f[,\, 2)7 PX'=X> (eﬁv 2))'

((€a,2), pa, (£0,3)),
((éDv 3)’ Pc; (€D7 4));

((€D74)7 pX’:AXv (&)74));
((4p,4), pe, (4p, 4)),
((bp,4), px7=x,(fn,4)),

((éDv 4)’ Pbs (Ca, 5))!

({Av‘:’ »PX'=X> (A75))'
(ér,5), pas (60, 5)),
s Pes (éD’ 5))'

((e-‘h 5)7 Pe; (zg, 6))

(b)
Figure 6. Counterexample and CFG of the corresponding DPP.

O O
() —(=)—ED
O

Te

)~

Figure 7. Disjunctive path program for the example from Figure 4
and a path that traverses the locatiéngs, ¢c, s, Iv, s, Lk, lr, ls.

By viewing P¥™ instead ofr as a counterexample, we can simul-
taneously handle an unbounded number of error paths (siynila
to a path program fort), namely, all error paths that extendby
loop unwindings of the block®; and B- for an arbitrary number
of iterations. In contrast to a path program fo(whose control-
flow graph is almost identical to the one shown in Figure 5 with
an exception that the transition is removed), the DPP¥™ con-
tains several copies of the locatiofisand/y, as well as additional
loops at these locations. They induce a finer partition ofsesteof
reachable states d?¥™, which is reflected by a disjunctive path
invariant.

Disjunctive Path Invariants. An invariant mam "™ for a disjunc-
tive path programP“™ may contain several formulas for a control
location? € L of the programP. Let L, andLZ, be the set oV "-
locations that correspond toZ-location? at different positions in
the control-flow graph and their additional copies:

Li= {(t,;i1),...,(6,in)}, andLe = {(¢,41),..., (0, jn)}.

We can use the disjunction of formulas in the mafF© over all
copies of¢, which is

V "0 v

(£,i)EL,

\V 0" 5),
(5)el,

to refine the abstraction at locatiéras proposed in Section 4.

Locations traversed by the path Time

FORWARD ZA,ZB,gc,gE,ZB,ZF,Kg 0.05 s
ln, ls, bo, ls, ls, Uk, Le 0.12s

INITCHECK | £, ¥g, e, ls, bp, lE, I, U, Le 0.27s
PARTITION | la, g, lc, s, b, bp, le, lr, Ls 1.2s
ln, ls, o, ls, le, Lo, b, Lo, Uu, L 24s

DisJ ZA,ZB,&;,ZB,ZD,ZB,ZE,Z;; 0.43 s
la, 0o, Lc, ls, bo, ls, Ux, Ur, L 2.8s

Table 1. Experiments with computing path invariants. “Time”
gives the time taken by the invariant generator (on a 1.7 Gtop
running SICSusProlog). We computed a disjunctive path invari-
ant for the last error path.

For example, we recall the program 19 from Fig-
ure 4. Given the error pathr that traverses the locations
ZA,ZB,&;,ZB,ZD,ZB,ZE,ZF,Z;;, we obtain the DPWVW shown in
Figure 7. We compute an invariant map”™ such that

" (ls,1) = x=0Ay=50
n'"(ls,3) = y<50A0<1
n'"(ls,5) = x<100Ay<z

together with initiation and safety conditioms ™ (¢x,0) = true
andn“"(£s,7) = false. This map instantiates an invariant tem-
plate that assigns two conjuncts to each location. Any gitdm
instantiate a simpler template with a single conjunct peation
failed. (Although, it would suffice to have a single conjuatthe
location(¢s, 3), namely,y < 50.) Thus, for the locatiofz of P we
obtain the disjunctive assertion

(z=0Ay=50)V(y<50)V(zr<100Ay<z),

which we use to compute a predicate abstraction of the pnogta
that is precise enough to rule out all spurious counterelesrtpat
violate the second assertion.

6. Conclusion

We proposed a new approach to counterexample-guided ebstra
tion refinement, which does not consider finite program pdths
path programs as counterexamples. Path programs areciudjefti
programs, performing possibly unbounded (looping) coafborns.
However, path programs are usually small fragments of thgg-or
nal program, thus permitting more efficient analyses. Weraati-
cally generate invariants for path programs, which delpreperty-
dependent information used to refine the analysis of thanatig
program. The path invariants eliminate all infeasible epaths
that remain within the control-flow structure of the pathgmam,
i.e., which result from an arbitrary unwinding of the loopghin
the path program. Furthermore, by considering unbounded co
putations of path programs, unlike previous predicaterabon-
based CEGAR methods, we can infer universally quantifiedipre
cates. This is necessary for reasoning about unboundedtdata
tures such as arrays.

We have applied our algorithm, as outlined in Section 4, talsm
examples involving arithmetic and array reasoning, inicigdhe
examples from Sections 2 and 5. The initial experiments with
prototype implementation are promising; see Table 1. Wavghe
computation times for the synthesis of the most interestiath
invariants (i.e., those with loops). We used the obtainedlipates
in the CEGAR loop, which on the listed examples required @nly
few refinement steps for each program. We note that none séthe
examples could be proved byLBST [26], which analyzes longer
and longer counterexample paths without terminating.

Acknowledgments. The first author is supported in part by the
grant SFU/PRG, 06-3. The second author is supported in péneb

Swiss National Science Foundation. The third author is sp@u

[21] D. Gopan, T. W. Reps, and M. Sagiv. A framework for nuroeri
ggglg/sis of array operations. RProc. POPL, pp. 338-350. ACM,

in part by the NSF grants CCF-0427202 and CCF-0546170. The [22] S. Graf and H. Saidi. Construction of abstract stagglys with PVS.

fourth author is supported in part by Microsoft Researclugh
the European Fellowship Programme.

References

[1] T. Ball, A. Podelski, and S. K. Rajamani. Relative contpieess of
abstraction refinement for software model checkingPioc. TACAS
LNCS 2280, pp. 158-172. Springer, 2002.

[2] T. Ball and S. K. Rajamani. Thel3M project: Debugging system
software via static analysis. Proc. POPL pp. 1-3. ACM, 2002.

[3] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenk
Invariant synthesis for combined theories. Mmoc. VMCA|
LNCS 4349, pp. 378-394. Springer, 2007.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgnéving,
D. Monniaux, and X. Rival. A static analyzer for large safetitical
software. InProc. PLDI, pp. 196-207. ACM, 2003.

[5] A. R. Bradley, Z. Manna, and H. B. Sipma. Linear rankinghwi

reachability. InProc. CAV LNCS 3576, pp. 491-504. Springer, 2005.

[6] A. R. Bradley, Z. Manna, and H. B. Sipma. What's decidai®ut

arrays? IrProc. VMCA| LNCS 3855, pp. 427-442. Springer, 2006.

[7] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Madu
verification of software components in EEE Trans. Software Eng.
30:388-402, 2004.

[8] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. Piac. CAV
LNCS 1855, pp. 154-169. Springer, 2000.

[9] M. Colén, S. Sankaranarayanan, and H. B. Sipma. Lineariant
generation using non-linear constraint solving. Rroc. CAV
LNCS 2725, pp. 420-432. Springer, 2003.

[10] P. Cousot. Partial completeness of abstract fixpoiatkimg. InProc.
SARALNCS 1864, pp. 1-15. Springer, 2000.

[11] P. Cousot. Verification by abstract interpretation. MVerification:
Theory and PracticeLNCS 2772, pp. 243-268. Springer, 2003.

[12] P. Cousot. Proving program invariance and terminaligiparametric
abstraction, Lagrangian relaxation and semidefinite @mogning. In
Proc. VMCAI| LNCS 3385, pp. 1-24. Springer, 2005.

[13] P. Cousot and R. Cousot. Abstract interpretation: diedhilattice
model for the static analysis of programs by construction or
approximation of fixpoints. IrProc. POPL, pp. 238-252. ACM,
1977.

[14] P. Cousot and R. Cousot. Comparing the Galois connectiad
widening/narrowing approaches to abstract interpretatim Proc.
PLILP, LNCS 631, pp. 269-295. Springer, 1992.

[15] P. Cousot and N. Halbwachs. Automatic discovery ofdineestraints
among variables of a program. Rroc. POPL, pp. 84-96, 1978.

[16] S. Das, D. L. Dill, and S. Park. Experience with predécabstraction.
In Proc. CAV LNCS 1633, pp. 160-171. Springer, 1999.

[17] J. Esparza, S. Kiefer, and S. Schwoon. Abstraction eafent with
Craig interpolation and symbolic pushdown system®roc. TACAS
LNCS 3920, pp. 489-503. Springer, 2006.

[18] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, B. Saxe,
and R. Stata. Extended static checking for JavaPrc. PLDI, pp.
234-245. ACM, 2002.

[19] C. Flanagan and S. Qadeer. Predicate abstraction fowae
verification. InProc. POPL pp. 191-202. ACM, 2002.

[20] R. W. Floyd. Assigning meanings to programs. Mathematical
Aspects of Computer Sciengp. 19-32. AMS, 1967.

In Proc. CAV LNCS 1254, pp. 72-83. Springer, 1997.

[23] S. Gulwani and N. Jojic. Program verification as probsiic
inference. InProc. POPL, pp. 277-289. ACM, 2007.

[24] S. Gulwani and A. Tiwari. Combining abstract interpmst InProc.
PLDI, pp. 376-386. ACM, 2006.

[25] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMilla
Abstractions from proofs. IRroc. POPL pp. 232-244. ACM, 2004.

[26] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. yLaz
abstraction. IrProc. POPL pp. 58-70. ACM, 2002.

[27] C. A. R. Hoare. An axiomatic basis for computer programm
Commun. ACM12:576-580, 1969.

[28] F. lvancic, Z. Yang, M. K. Ganai, A. Gupta, |. Shlyakhtand P. Ashar.
F-SoFT: Software verification platform. IProc. CAV LNCS 3576,
pp. 301-306. Springer, 2005.

[29] R. Jhala and K. L. McMillan. A practical and complete apgch
to predicate refinement. Rroc. TACASLNCS 3920, pp. 459-473.
Springer, 2006.

[30] D. Kapur. Automatically generating loop invariantsngsquantifier
elimination. Technical Report 0543Déduction and Applications
IBFI Schloss Dagstuhl, 2006.

[31] D. Kapur and C. Zarba. A reduction approach to decisiatgdures.
Technical Report TR-CS-2005-44, University of New Mexi20605.

[32] M. Karr. Affine relationships among variables of a pragr. Acta Inf,
6:133-151, 1976.

[33] J. C. King. Symbolic execution and program testi@@mmun. ACM
19:385-394, 1976.

[34] S. K. Lahiri and R. E. Bryant. Indexed predicate disegvéor
unbounded system verification. Rroc. CAV LNCS 3114, pp. 135—
147. Springer, 2004.

[35] Z. Manna and A. PnueliTemporal Verification of Reactive Systems:
Safety Springer, 1995.

[36] L. Mauborgne and X. Rival. Trace partitioning in abstranterpre-
tation based static analyzers. Pnoc. ESORPLNCS 3444, pp. 5-20.
Springer, 2005.

[37] K. L. McMillan. Lazy abstraction with interpolants. IRroc. CAY,
LNCS 4144, pp. 123-136. Springer, 2006.

[38] A. Miné. The octagon abstract domaiHigher-Order and Symbolic
Comp, 19:31-100, 2006.

[39] M. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shapsyesis via
3-valued logic.ACM Trans. Program. Lang. Sys24:217-298, 2002.

[40] S. Sankaranarayanan, F. Ivancic, |. Shlyakhter, anGupta. Static
analysis in disjunctive numerical domains.Rroc. SASLNCS 4134,
pp. 3-17. Springer, 2006.

[41] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Camsbased
linear-relations analysis. IRroc. SASLNCS 3148, pp. 53-68.
Springer, 2004.

[42] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Neadlifoop
invariant generation using Grobner basesPtoc. POPL, pp. 318—
329. ACM, 2004.

[43] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Seadatallysis
of linear systems using mathematical programmingProc. VMCA|
LNCS 3385, pp. 25-41. Springer, 2005.

[44] V. Sofronie-Stokkermans. Hierarchic reasoning inalotheory
extensions. IProc. CADE LNCS 3632, pp. 219-234. Springer,
2005.

