
Interpolation-based Software Verification with
Wolverine?

Daniel Kroening1 and Georg Weissenbacher2

1 Computer Science Department, Oxford University
2 Department of Electrical Engineering, Princeton University

Abstract. Wolverine is a software verification tool using Craig in-
terpolation to compute invariants of ANSI-C and C++ programs. The
tool is an implementation of the lazy abstraction approach, generating a
reachability tree by unwinding the transition relation of the input pro-
gram and annotating its nodes with interpolants representing safe states.
Wolverine features a built-in interpolating decision procedure for equal-
ity logic with uninterpreted functions which provides limited support for
bit-vector operations. In addition, it provides an API enabling the inte-
gration of other interpolating decision procedures, making it a valuable
source of benchmarks and allowing it to take advantage of the continuous
performance improvements of SMT solvers. We evaluate the performance
of Wolverine by comparing it to the predicate abstraction-based verifier
SatAbs on a number of verification conditions of Linux device drivers.

1 Introduction

The last decade has seen significant progress in the area of automated software
verification, manifesting itself in a number of impressive verification tools. A
recent and comprehensive survey of software verification techniques is provided
in [1] and a comparison of verification tools can be found in [2]. One approach
that received particular attention is predicate abstraction [3], a technique that
constructs a conservative abstraction of the original program using a finite set of
first-order-logic predicates to track relevant facts about the program variables.

The performance of such predicate abstraction-based software model checkers
is contingent on suitable predicates. Contemporary verification tools (e.g., Mi-
crosoft’s Slam [4]) derive these predicates from spurious counterexamples in an
iterative manner [5, 6]. Recent incarnations of this technique (such as Blast [7])
rely on Craig interpolation to derive predicates, taking advantage of the inherent
properties of interpolants which enable concise abstractions.

Some flavours of this interpolation-based abstraction mechanism avoid the
use of predicate abstraction to construct an abstract transition relation alto-
gether [8–10]. This omission has several advantages:

? Supported by the EU FP7 STREP MOGENTES and a gift from the Intel Labs
Academic Research Office.



y:=x c:=0

[y6=0]

[y=0]

y:=y&(y-1)

c:=c+1

assert(y6=x)

y:=x c:=0 [y6=0] y:=y&(y-1) c:=c+1 assert(y6=x)
1

Fig. 1. A program and one of its execution traces

– It eliminates computationally expensive calls to a theorem prover that pred-
icate abstraction-based verifiers require to construct an abstraction, and

– it decreases the size and the complexity of the implementation of the verifi-
cation tool significantly (by about two thirds in our experience).

The algorithm presented in [8] (and our implementation Wolverine) es-
sentially follows the lazy abstraction paradigm [11], but retains the abstract
transition function at the coarsest level (determined by the control-flow-graph
of the program under scrutiny). The reachability tree obtained by unwinding
this transition function is annotated with interpolants representing an over-
approximation of the reachable states. A fixed point of these annotations con-
stitutes an invariant establishing the correctness of the program with respect to
a given safety property. Section 2 provides more details.

Contributions. Wolverine is a software verification tool checking reachability
properties stated in terms of assertions and implements the algorithm described
in [8]. It is, to the best of our knowledge, the first freely available3 software model
checker for C/C++ programs based on this algorithm.

Wolverine features a built-in interpolating decision procedure for equality
logic with uninterpreted functions which provides limited support for bit-vector
operations, while many comparable verification tools use linear arithmetic to
approximate semantics of the program. In addition, it provides a programming
interface (described in Section 3) enabling the integration of other interpolating
decision procedures, allowing it to take advantage of the continuous performance
improvements of interpolating SMT solvers (see, for instance, [12–14]).

We present an evaluation of our implementation in Section 4 and provide a
tool to generate additional benchmarks on the website of Wolverine.

2 Implementation

The implementation of Wolverine is based on the CProver framework (writ-
ten in C++), which also forms the foundation of the verification tools CBMC [15],

3 Source available under a BSD-style license on http://www.cprover.org/wolverine.



SatAbs [16], and Impact [8]. We describe the implementation of Wolver-
ine using the example program in Figure 1. The program implements Weg-
ner’s algorithm, determining how many bits of x are set to one. The assertion
assert(y6=x) is a näıve safeguard against non-termination. Wolverine uses
symbolic simulation to construct a reachability tree. To this end, it unwinds the
control flow graph of the program until an assertion is reached. The shortest
execution trace of our example program reaching the assertion is shown at the
bottom of Figure 1. In order to check whether the trace violates the assertion,
Wolverine transforms it into static single assignment form:

prefix︷ ︸︸ ︷
(y1 = x0) ∧ (y1 6= 0) ∧ (y2 = y1&(y1 − 1))

À
∧
¬ assertion︷ ︸︸ ︷
(y2 = x0) (1)

Using slicing, we eliminate the assignments to c, since they are not relevant to
the correctness of the program. The effect of negating the asserted condition
is that every satisfying assignment of Formula (1) represents a witness for an
assertion violation. Note, however, that the formula is unsatisfiable and therefore
this execution cannot violate the assertion. Accordingly, the sub-formula tagged
“prefix” in Formula (1) represents a set of reachable states (at location À in the
trace) that is safe with respect to the assertion.

Wolverine splits the symbolic representation of the execution trace into n
partitions A1, . . . , An, one for each basic block traversed by the trace. It passes
these n formulas on to an interpolating decision procedure (by default the built-
in algorithm described in [17, 18]), which returns n− 1 interpolants I1, . . . , In−1

that satisfy the following conditions [8]:

1. For all 1 ≤ j ≤ n, (Ij−1 ∧Aj) implies Ij (with I0 = true and In = false), and
2. for all 1 ≤ j < n, Ij refers only to SSA variables that occur in A1, . . . , Aj as

well as in Aj+1, . . . , An.

The first condition guarantees that each interpolant Ij represents a set of
safe states at the respective program location from which no state violating the
assertion is reachable via the given trace (i.e., the interpolants and the pro-
gram statements in the trace form Hoare triples). The second condition above
guarantees that the interpolants refer only to SSA variables that are live at the
corresponding location in the trace. For instance, a valid sequence of interpolants
for the formulas (y1 = x0), (y1 6= 0), (y2 = y1&(y1 − 1)), and (y2 = x0) would
be y1 = x0, (y1 = x0) ∧ (y1 6= 0), and (x0 6= 0) ∧ (y2 ≤ x0 − 1).

After mapping the SSA variables back into the original program context,
Wolverine annotates the corresponding path in the reachability tree accord-
ingly, e.g., the node À is labelled (x 6= 0) ∧ (y ≤ x− 1).

Wolverine continues expanding the reachability tree until each leaf is either
fully expanded or covered by a previously discovered node. A node is covered if its
(or one of its predecessors’) annotation implies the annotation of a previously
discovered node associated with the same program location.4 For instance, if

4 The fact that interpolation is non-monotonic imposes some restrictions on the cov-
ering relation, which are described in more detail in [8, 19].



Wolverine annotates a node Á (which succeeds À in the reachability tree and
also corresponds to the program location following the assignment y:=y&(y-1))
with (x 6= 0) ∧ (y ≤ x− 1), then Á is covered by À.

The built-in decision procedure supports bit-vector operations using a limited
set of inference rules (such as (t1 = t2 & t3) ` (t1 ≤ t2) and (1 > t1) ` (t1 = 0)
for terms ti of type unsigned integer). Details are provided in [19, 17]. Moreover,
it uses eager bit-blasting and a SAT solver to identify an unsatisfiable core
before invoking the “word-level” interpolating decision procedure [19, 18]. If the
decision procedure fails to provide an interpolant, Wolverine falls back on using
the weakest precondition. Finally, using the option --interpolator smt-out,
Wolverine is able to print the SSA instances in the SMT-LIB format, enabling
the generation of benchmarks.

3 Interface for Interpolating Decision Procedures

Wolverine provides a C++ interface for calling external interpolating deci-
sion procedures. In order to integrate an external solver into Wolverine, the
programmer has to implement a class inheriting from external interpolatort:

class external interpolatort: public wolver interpolatort {
. . .
virtual bool initialise();

virtual bool process options(const optionst&);

protected:

virtual bool translate(const expr listt&)=0;

virtual decision proceduret::resultt solve()=0;

virtual bool read interpolants(expr listt&)=0; };

The public methods initialise and process options provide an opportu-
nity to initialise the external tool and to deal with command line parameters.
Wolverine provides the class external processt, which supports the execu-
tion of and communication with command line tools.

The methods translate and read interpolants are required to convert
formulas between the representation used by the external interpolator and ex-
pressions in the CProver format. CProver expressions (represented by the
class exprt) are annotated syntax trees with typing information. The class typet
is used to store types. Wolverine expects the interpolants returned to be typed.
Accordingly, an interpolator which discards the typing information needs to re-
store it before returning a result to Wolverine. The CProver framework
provides support for this task in form of the methods c[pp] typecheck.

The method solve returns D UNSATISFIABLE, D SATISFIABLE, or D ERROR.
In the latter case, Wolverine provides the option to fall back on computing
interpolants using the weakest precondition. If the instance is satisfiable, the
trace represents a valid counterexample and is reported. Otherwise, the method
read interpolants is expected to return in its parameter a sequence of typed
expressions which satisfy the conditions stated in Section 2.



SatAbs Wolverine

zf
pi
ng
.1

zf
pi
ng
.2

zf
re
ad
w.
1

zf
re
ad
w.
2

zf
se
t
co
nt
ro
l.
1

zf
se
t
co
nt
ro
l.
2

zf
se
t
co
nt
ro
l.
3

zf
se
t
co
nt
ro
l.
4

zf
se
t
co
nt
ro
l.
5

zf
se
t
co
nt
ro
l.
6

zf
se
t
co
nt
ro
l.
7

zf
se
t
co
nt
ro
l.
8

zf
se
t
co
nt
ro
l.
9

zf
se
t
co
nt
ro
l.
10

zf
se
t
st
at
us
.1

zf
se
t
st
at
us
.2

zf
se
t
ti
me
r.
1

zf
se
t
ti
me
r.
2

zf
se
t
ti
me
r.
3

zf
se
t
ti
me
r.
4

zf
ti
me
r
on
.1

zf
ti
me
r
on
.2

62s

(a) machzwd: IO port assertions
SatAbs

W
o
lv

e
r
in
e

(100s,100s)

(b) machzwd and nbd: IO & bounds

Fig. 2. Performance results Wolverine vs SatAbs on DDVerify drivers.

4 Checking Linux Device Drivers

Figure 2 provides a comparison of Wolverine with the predicate-abstraction
based verifier SatAbs on a number of sequential device driver benchmarks (gen-
erated with DDVerify [20], which provides a harness and an OS model anno-
tated with assertions) on a 3GHz Intel Core i7 CPU with 4GB RAM.5 Figure 2(a)
shows the run-time of Wolverine and SatAbs on 22 assertions related to the
usage of IO ports for the machzwd device driver [20]. Wolverine performs better
than SatAbs in all but 6 cases. The performance gain is particularly impressive
for the assertions zf readw.[1,2], for which both tools report a counterexample.
We attribute this to the lower overhead of the search algorithm of Wolverine.
In the case of the claims zf set control.[1,2], we observe a large number of
coverage checks in Wolverine for different branches of the reachability tree,
and the eager abstraction approach of SatAbs prevails.

The scatter-plot in Figure 2(b) shows the run-time for 73 array bound checks
for the machzwd driver (displayed using ×) and 78 array bound and IO properties
for the driver nbd (indicated by ◦). SatAbs exceeded the time-out of 100 seconds
for 23 properties of machzwd, and SatAbs as well as Wolverine timed out in
22 cases for nbd. Our results suggest that, while SatAbs is significantly faster
when few predicates are sufficient to prove an assertion correct, Wolverine’s
lazy approach is more robust as the number of predicates increases.

5 Conclusion

Wolverine is a freely available implementation of the interpolation-based lazy
abstraction algorithm presented in [8]. Its modular design enables the integra-
tion of modern interpolating SMT solvers, making it future-proof and (when
combined with DDVerify [20]) a valuable source for benchmarks. Our experi-
mental evaluation shows that our implementation is competitive when compared

5 Performance results for the device drivers presented in [7] are reported in [19].



to existing predicate-abstraction based verification tools. As future work, we in-
tend to integrate and study the performance impact of different interpolation
techniques.

References

1. Jhala, R., Majumdar, R.: Software model checking. ACM Computing Surveys 41
(2009) 21:1–21:54

2. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques for
formal software verification. Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) 27 (2008) 1165–1178

3. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: CAV.
Volume 1254 of LNCS. Springer (1997) 72–83

4. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slam and Static Driver Verifier:
Technology transfer of formal methods inside Microsoft. In: Integrated Formal
Verification (IFM). Volume 2999 of LNCS. Springer (2004)

5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: CAV. Volume 1855 of LNCS., Springer (2000) 154–169

6. Ball, T., Rajamani, S.: Generating Abstract Explanations of Spurious Counterex-
amples in C Programs. Technical Report 2002-09, Microsoft Research (2002)

7. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL. ACM (2004) 232–244

8. McMillan, K.L.: Lazy abstraction with interpolants. In: CAV. Volume 4144 of
LNCS. Springer (2006) 123–136

9. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: POPL, ACM
(2010) 471–482

10. Caniart, N.: Merit: An interpolating model-checker. In: CAV. Volume 6174 of
LNCS., Springer (2010) 162–166

11. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL.
ACM (2002) 58–70

12. Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for LA+EUF. In:
CAV. Volume 5123 of LNCS., Springer (2008) 304–308

13. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT solver. In:
TACAS. Volume 6015 of LNCS., Springer (2010) 150–153

14. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig interpolants in
satisfiability modulo theories. ACM Transactions on Computational Logic (2010)
to appear.

15. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS. Springer (2004) 168–176

16. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based pred-
icate abstraction for ANSI-C. In: TACAS. Volume 3440 of LNCS. Springer (2005)
570–574

17. Kroening, D., Weissenbacher, G.: An interpolating decision procedure for transitive
relations with uninterpreted functions. In: HVC. LNCS, Springer (2011)

18. Kroening, D., Weissenbacher, G.: Lifting propositional interpolants to the word-
level. In: FMCAD, IEEE (2007) 85–89

19. Weissenbacher, G.: Program Analysis with Interpolants. PhD thesis, Oxford Uni-
versity (2010)

20. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking con-
current Linux device drivers. In: ASE, IEEE (2007) 501–504


