Exercise Sheet 7

Early submission: Monday, 2012-02-13, 12:00 Regular submission: Tuesday, 2012-02-14, 12:00

Exercise 1 (5/10 Points)

Consider the inheritance hierarchy in Figure 1(a). Assuming the late binding approach for choosing the implementation of behavioural features and assuming the state machine of class C_0 given by Figure 1(b), sending an E-event to an instance of class C_3 would use the implementation of $f()$ provided by C_2.

Describe in words how the “right” implementation is selected and formalise this selection principle assuming complete signatures including the inheritance relation “\subset” and the set-inclusion semantics, i.e.,

$$C \subset C' \iff \mathcal{P}(C') \subseteq \mathcal{P}(C).$$

Exercise 2 (5/10 Points)

Consider the State Machine from Figure 1(b).

(i) Explain how the State Machine can be seen as an instance of the UML meta-model as given in Section 15 of [OMG, 2007]. (3)

(ii) Choose one of the constraints applying to pseudostates (cf. Section 15.3) and prove that the State Machine satisfies it (and thus, that the State Machine is well-formed regarding that condition). (2)

Figure 1: Inheritance Hierarchy and State Machine of C_4.

\[\text{(a)} \]
Exercise 3

We could formalise the substitution principle as follows: Class C_2 is a behavioural subtype of class C_1 in UML model M if and only if for each system configuration (σ, ε) and for all $id_1 \in \mathcal{D}(C_1) \cap \text{dom}(\varepsilon(\sigma))$, for all $id_2 \in \mathcal{D}(C_2) \setminus \mathcal{D}(\sigma)$ such that $\sigma(id_2)|_{\text{attr}(C_1)} = \sigma(id_1)$, we have that if

$$(\sigma, \varepsilon)[id_1/\!id_2] = (\sigma_0, \varepsilon_0) \xrightarrow{(\text{cons}_0, \text{Snd}_0)} \cdots \in [M]$$

then there exists

$$(\sigma, \varepsilon) = (\sigma'_0, \varepsilon'_0) \xrightarrow{(\text{cons}'_0, \text{Snd}'_0)} \cdots \in [M]$$

such that

$$\forall i \in \mathbb{N} \bullet \sigma_i(id_2)|_{\text{attr}(C_1)} = \sigma_i(id_1)$$

where $(\sigma, \varepsilon)[id_1/\!id_2]$ denotes consistent replacement of id_1 by id_2 in σ and ε, e.g., replace id_1 by id_2 in all values of links and event destination id_1 to id_2 etc.

Page 818 of [Telelogic, 2008] states the following on inherited State Machines:

“*You cannot make the following changes to items in the statechart of a subclass:*

- Change the source of a transition.
- Change the triggers (events or triggered operations).
- Delete or rename a state.
- Draw a state around an existing state.

You can make the following changes to items in the statechart of a subclass:

- Change anything that does not affect the model, such as moving things in the diagram without actually editing.
- Add objects to a state.
- Add more states, but not re-parent states.
- Attach a transition to a different target.

*An inherited statechart consists of all the items inherited from the superclass, as well as modified and added elements."

(i) Prove that these rules do not ensure that $C \triangleright C'$ implies behavioural sub-typing as defined above. (9)

(ii) Can you propose rules that do? (1)

Hint: That an implication does not hold can be proven by a counter-example. For instance a modification of the C-and-D example from Lecture 15 together with witness computation paths in form of recorded sequence diagrams.

References
