
IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 i

 Public

OOMMEEGGAA
Correct Development of Real-Time Embedded Systems

 IST-2001-33522

Title : A Formal Semantics for a UML Kernel Language

Author(s) : W. Damm, B. Josko, A. Votintseva (OFFIS), A. Pnueli (WIS)

Editor : Verimag

Date : 06/01/03

Identifier : IST/33522/WP 1.1/D1.1.2-Part1

Document Version : 1.2

Status : Final

Confidentiality : Public

Abstract :

This report defines a sufficiently expressive sublanguage of the behavioural modelling
constructs of UML allowing to capture industrial real time applications. Covered
aspects include in particular the concept of Active Objects, polymorphism as well as a
detailed presentation of UML statecharts. For the chosen restrictive sublanguage, the
zero-time semantics is given at two levels of abstractions: defined as an execution
scheme and as a formal representation in terms of symbolic transition systems.

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 iii

 Public

Document history

Revision Date Author Comments
1.2 03/01/2003 W. Damm, B. Josko, A. Pnueli,

A. Votintseva
Definition of the Omega-subset of UML, revised
polymorphism and execution scheme

1.1 04/06/2002 W. Damm, B. Josko, A. Pnueli,
A. Votintseva,

Kernel model + inheritance

1.0 01/04/2002 W. Damm, B. Josko, A. Pnueli,
A. Votintseva,

Kernel model draft

Table of Contents

Introduction __ 1
1 Active Objects __ 1

1.1 Definition of the Kernel Model __ 1
1.2 Design Decisions __ 12
1.3 �Preprocessing� Semantics of the Omega-subset______________________________________ 17
1.4 Formal Semantics of the Kernel Language __ 20

2 UML Statecharts ___ 27
2.1 Constituents of Statecharts___ 27
2.2 Flattening the Statechart __ 33

3 Summary: OMEGA-UML Restrictions___ 35
3.1. Classes and Associations __ 36
3.2. Operations, Events and Attributes ___ 36
3.3. Action Language __ 36
3.4. Statecharts ___ 37

References __ 37
Index ___ 38

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 1

 Public

Kernel Model for Behaviour Description

Introduction

Currently, standard UML does not provide completely formal semantics. In the specification of the standard
UML 1.4 [1], the given semantics is incomplete and static: it is said that the meanings of the constructs are
defined using natural language (p.2-9). This causes an ambiguity in the definition of computation within a UML
model. Although [2] gives the semantics of a part of UML (action language) in the terms of UML metamodel,
this is not sufficient for the formal verification, because it is still incomplete and not formal. The existing UML
tools (e.g. Rhapsody [11], Rational Rose [12], TAU [13]) implement internally some semantics with their
compilers and/or simulators, which differ from tool to tool. There is a number of papers investigating UML
semantics. Thus, for example [7] motivates the need for a formal semantics for UML. The approach from [10]
considers the UML semantic in terms of Time Object Model, but it focuses more on the methodology than on
formal semantics. The articles [4] and [5] outline formalising UML by translating class diagrams into Z
specifications, thus giving semantics only for static part of the UML models. The paper [8] describes the pUML
approach introducing denotational semantics into the UML metamodel, which places emphasis on building a
precise core semantics for the UML but without accent on real time. The paper [9] gives the ASM semantics for
the UML with OMG actions definition based on the metamodel, but it does not treat statemachines, whereas [6]
adapts and extends ASMs to get to UML state-machines. In this proposed semantics, statemachines are
disconnected from the rest of the UML.

Thus the aim of this report is to select a sufficiently expressive sublanguage, allowing to capture real-time
application, and specify formal semantics of the chosen part of UML. This part of the deliverable provides a
zero-time semantics, concentrating only on the way of object communications and computations in the system as
sequences of actions without time concepts and architectural description. For breaking down complexity, the
report is split into three chapters.

The first chapter focuses on all intricacies of classes, operations, events, class diagrams, using only flat UML
state machines. It specifies the way of modelling a quite expressive sublanguage of UML into one more
restrictive but allowing to specify a formal semantics.

The second chapter concentrates on the behaviour of a single active object using the full complexity of UML
statecharts. It also discusses how to transform such complex statecharts into flat state machines, considered in the
first section with their fully defined semantics.

The third chapter summaries the definition of the Omega-subset of UML by listing the restrictions on the
common UML notions. This is done for more suitable usage of the Omega-subset by customers.

1 Active Objects

1.1 Definition of the Kernel Model
In this paper, we describe a subclass of the UML language [1], called Omega-subset. We will specify explicitly
all model elements and their constituents in the profile of the considered kernel models.

Classes and their constituents

1.1.1. We consider an object system created from a finite set of classes C, and use small c as

metavariable for classes. We distinguish a special subset A ⊂ C called actors to specify behaviour
external to the system.

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 2

 Public

Figure 1. Class constituents

1.1.2. Each class c has associated a set of attributes c.attr , which we assume to be strongly typed. We

use small a as metavariable for attributes. For the sake of this discussion, types can be either
class identifiers, in which case we also refer to such an attribute as a reference, pointing to an
instance of the class defined as its type, or some predefined types � like (array of) integer,
boolean, char � and definable enumeration types whose internal structure is not relevant in the
context of this paper.

1.1.3. Each class can either be active or passive. Active classes own their own thread of control (defined

in Section 1.2.), their instances come equipped with their own signal - dispatcher (see below),
which in particular will maintain all signals directed to this instance. In contrast, passive classes
only execute on behalf of other objects, i.e. they cannot initiate any computation by themselves.
Once a passive object has been activated it can initiates methods calls to other objects. We refer
to this implicit attribute of a class c as its mode, technically denoted by c.mode.

1.1.4. A reactive class is a class which can process events. Event-processing is defined by a statechart.

In this paper, we consider only two types of events: signals (asynchronous, also called signal
events) and call events (synchronous). We call a class simple, if it is non-reactive. Technically, we
associate with a class c an implicit attribute c.kind , telling us whether c is reactive or simple. We
require all reactive classes to be parts of active ones (see below the composition relation) and
direct their signals to the corresponding signal-dispatcher (specified in Section 1.2).

1.1.5. With each class we associate a set c.op of operations, which the object is willing to serve.

Operations are used for synchronous communications. Operations may be parameterised, and are
seen as always returning a value � op.return � including possibly the unique value nil of the return
type (). To specify the name space of an operation op1 � if op1 is defined in different classes � we
will also refer to this operation as c::op1 where c is a class name such that op1 ∈ c.op. With each
operation op we associate a list op.param of its parameters, which can be empty. The type op.type
of an operation op defines the type of its parameters as well as the result type (also called
operation signature): op.type = (a1:type1, a2:type2, �, an:typen; op.return:type), where
(a1,a2,…,an)=op.param. In the current version we consider only input parameters (no output
parameters).

1.1.6. We distinguish between primitive operations, whose implementation is given by a piece of code

(in this paper assumed to be given in the restricted action language described below), and
triggered operations, whose implementations are given in a statechart (by the corresponding call
events).

1.1.7. For each primitive operation op we assume as given its method op.meth as a statement of the

action language, involving only attributes visible in the containing class (see below) and formal
parameters of the method � written as op.meth= {<action_sequence>} for some sequence of
primitive actions and statements <action_sequence> specified in action language. For each
triggered operation op we assume that the statechart processes the corresponding call event op
with a return value.

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 3

 Public

1.1.8. A primitive operation may not call a triggered operation. Primitive operations have additional
implicit attribute op.virt with values from {virtual, non_virtual} to specify the way of the
delegation for operation call w.r.t. inheritance relation (see below). If op1.virt = virtual, then by
any call of operation op1 from an object ob1 of class c � where op1∈ c.op � the method defined
in the most specialised class c´ (i.e. inheriting from c) will be executed, where ob1 is also an
object of class c´. If op1.virt=non_virtual and an object ob1 is considered as an object of a
generalised class c, then the method defined exactly in the class c will be executed by a call of
op1 from ob1.

1.1.9. Call trees of primitive operations must be well-founded, i.e. there is no recursive calls.

1.1.10. Operation calls are executed synchronously, that is, the caller is blocked until reception of the

return value, in a sense discussed in more detail in the section on semantics.

1.1.11. In the context of multiple objects, the concurrency attribute op.conc tells us, how simultaneous

request of multiple objects to execute a given operation op are to be handled. This can take values
in the set {sequential, guarded, concurrent}, with intended meaning as follows:

1.1.11.1. If an operation op of class c is guarded, then the implementation must ensure the

following predicate mutex(o, op) for any instance o of class c:
“no other thread of control is active in o while executing op”.

1.1.11.2. If the operation op of class c is sequential, than the context of any invocation of op in

any instance o of c must guarantee mechanisms for mutex(o, op).

1.1.11.3. If the operation is concurrent, than there are no restrictions regarding invocations of op.

1.1.12. In the current version of the paper, we require all triggered operations to be guarded or sequential.

1.1.13. We assume a set of predefined primitive operations for all predefined types.

1.1.14. In the current version of the paper, we assume that primitive operations are either sequential or

free of side-effects (which is also called query).

1.1.15. Each class comes with the following predefined operations. create_c(ref:c): c, returns the

identity of the created instance of class c, and initialises unique implicitly defined attribute self (in
the newly created object) with the identity of the created instance. We will write create_c()
(without parameters) as a shortcut for create_c(nil). We will use this operation with actual
parameters different from nil to describe a creation of objects with respect to the generalisation
relation (see below). Operation destroy_c(ref: c): () kills the object denoted by its actual
parameter.

1.1.16. Each class c may contain an constructor resp. destructor c.construct (resp. c.destruct) to specify

actions needed to be invoked during the creation resp. destruction of each object of class c. Note
that constructor and destructor are special kinds of primitive operations, i.e. they are defined using
the action language described below. The constructor c.construct is invoked at creation time of
the object (by any invocation of operation create_c), the destructor c.destruct is executed at
destruction time (by an invocation of operation destroy_c).

1.1.17. Each class defines the visibility of its attributes and operations, which can either be public,

private, or protected. If an attribute or an operation is private, then it is only visible within the
class itself (can be accessed by objects of this class). If it is public, then its visibility is
unrestricted, hence any instance of any class can read and modify a public attribute, and any
instance of any class can call a public operation. If an attribute or an operation is protected, then it
is known to the class itself and any class inheriting from the class. Thus a protected attribute a of
an instance of class c can be modified by an instance of class c´ provided c generalises c´ (see
below the definition of class generalisation).

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 4

 Public

1.1.18. We assume as given a set Sig of signals (asynchronous messages). UML views signals as classes,

in particular allowing specialisation of signals. The type s.type of signal s defines the type of its
parameters s.param. In the current version of this document, signals are assumed to be public and
considered as a special kind of classes.

1.1.19. Signal based communication is asynchronous � after emitting the signal, the sender continues

processing without awaiting reception.

1.1.20. In the current version of the paper we consider no priority relation on signals.

1.1.21. With each class c we associate a set c.sig of signals, which its objects are willing to receive (can

be handled by its statechart).

Figure 2. Example of a class
Class Interfaces

1.1.22. In extending the UML standard, we propose to associate with each class c its interface c.int. The

interface of a class collects all attributes, operations, and signals, which can cross the class
boundary. The definition of a class interface explicates, what aspects of an instance of a class are
externally observable. This concept is mandatory as prerequisite in formally capturing
requirements on the behaviours to be supported by a class, it also can be used to define interfaces
in component based designs. Specifically, the interface lists:

1.1.22.1. all public attributes;

1.1.22.2. all public operations;

1.1.22.3. all operation calls emitted to other objects;

1.1.22.4. all signals declared as receptions (implying that any of their specialisation can be received

as well). For signal s we denote s∈ c.int to specify that class c accepts reception of the
signal s;

1.1.22.5. all signals emitted.

In the example from Fig. 2, Window.int = {pos_x, pos_y, size_x, size_y; move(x,y), close(), evInput, evSave} is
the class interface of Window.

Static structure: relations between classes

1.1.23. A class diagram allows to capture information about instances of classes and their relationships.

move(x,y).meth =
{ move_x(x);
 move_y(y)}

close().implem = statechart

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 5

 Public

1.1.24. Classes can be related according to one of the following relations.

1.1.25. If class c is a generalisation of class c´ (c´ ⋖ c , and class c´ is a specialisation of class c), then

1.1.25.1 c´ provides all operations and attributes (including association ends described below) of c � as
well as its own � which are public

1.1.25.2 c´ can call all operations of c which are public or protected

1.1.25.3 c´ can read and modify all attributes of c which are public or protected

1.1.25.4 if c is a reactive (active) class, then c´ is reactive (active, respectively). If a class inherits from

several reactive classes, then all of them � immediate generalisations � must have the equal
statecharts.

1.1.25.5 A statechart from the generalised class can be overwritten by a statechart defined in a

specialised class, specifying new event (signals and/or triggered operations) receptions.

1.1.25.6 We use < to denote the transitive closure of the generalisation relationship (< = ⋖+). Relation
⋖ is also called inheritance.

1.1.26. We also consider the generalisation relation between signals. If signal s is a generalisation of
signal s´ (s´ < s), then the parameter list of signal s´ must contain all parameters of signal s and
all classes accepting reception of signal s accept signal s´ as well.

Figure 3. Example of event inheritance

The inheritance from Fig.3 imposes that the reception of evTypeSymbol, evSelect and evFormat can be accepted
by all classes accepting event evInput. Lists of the parameters of the former events must contain the parameter list
of evInput.

1.1.27. Acquaintanceship between classes is captured only by establishing associations between classes.

Parameterised names for object communication are not supported here. We distinguish three
kinds of associations: neighbour, aggregate (also called weak aggregation) and composition (also
known as strong aggregation). Association classes are not considered here. Each association is
given by its identifier ac_id ∈ ASSOC_ID and defined as a triple ac_id = (agr, root, end_points),
where

1.1.27.1 ac_id.agr ∈ {composite, aggregate, neighbour} is an association kind.

1.1.27.2 ac_id.root ∈ C is a class possessing the knowledge about other classes.

1.1.27.3 ac_id.end_points ⊆ C is a set of classes known by ac_id.root.

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 6

 Public

Figure 4. Definition of Association

1.1.28. Every association end – ac_id.root and c ∈ ac_id.end_points � come equipped with a number of

predefined attributes.

1.1.28.1. The aggregation attribute takes values in the set {none, aggregate, composite} and thus
actually defines the three classes of associations discussed above in their directed and
multidirectional form.

1.1.28.2. The multiplicity attribute takes a subset M of ΝΝΝΝ. It defines, how many instances of the class

attached to this end are associated with the class attached to the opposite association end.
The special case muliplicity = * stands for unbounded multiplicity. There are certain well-
formedness-conditions on multiplicity. As an example, association ends attached to the
compound class must have multiplicity one (while, in contrast, many instances of a
constituent class might be required to exist).

1.1.28.3. The visibility attribute takes values in the set {private, public, protected} and has the same

semantics as visibility of class attributes and operations. If an association end is private,
then it is only visible to the class attached to the opposite association end. If it is public,
then other classes can get access to this association end if there are navigating associations
through other public association ends to the class attached to this end. If it is protected, then
classes specialising the class attached to the opposite association end inherit the visibility,
i.e. can get access to this association end.

1.1.28.4. An association end can be specified via attribute name, in which case the attached class(es)

can be referred to under this name from the acquainted object. We assume availability of a
default name (such as its_c) for an unnamed end associated with a class c. Named
association ends are also called roles.

1.1.28.5. If the multiplicity of an association end is greater than 1, the different instances of classes

attached to this end at run-time can either be maintained as an ordered list, or a set,
depending on the value � true or false � of an attribute ordered. If an association end with
name its_cj is maintained as ordered list (its_cj.ordered = true), then we can refer to the
instances of the class attached to this end as its_cj(1), its_cj(2) etc.

1.1.28.6. The attribute changeability restricts ways, how association ends can be manipulated. If

frozen, then they will maintain the references obtained at initialisation time. add_only
allows to add new instances to the association end without ever deleting already associated
instances. Only changeable association ends allow unrestricted modification of their
references.

1.1.28.7. The attribute navigability of type boolean. If the attribute is true then in the graphical

representation of a directed association this is indicated by an arrowhead at the

{The value of ac_id.agr is derived
from ac_id.root.aggregation}

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 7

 Public

corresponding association end (meaning that the attribute of the opposite association end is
false). An association is bi-directional if attributes navigability of its both ends are true, in
the graphical representation indicated by absence of arrowheads at both association ends.

Association ends of different kinds of association have several constraints on the values of their
attributes, as defined in the following three tables.

Composite
associations
ac_id.agr=composite

ac_id.root ac_id.cj ∈ ac_id.end_points

aggregation composite none
multiplicity 1 n > 0 , *
changeability frozen If multiplicity = n then frozen, else

add_only or changeable
navigability unrestricted true
visibility unrestricted unrestricted
ordered not applicable prefer unordered (ordered = false)
name (default) its_c where c = ac_id.root its_cj where cj ∈ ac_id.end_points

Aggregate
associations
ac_id.agr=aggregate

ac_id.root ac_id.cj ∈ ac_id.end_points

aggregation aggregate none
multiplicity 1 n > 0 , [m,n] ,*
changeability frozen unrestricted
navigability unrestricted true
visibility unrestricted unrestricted
ordered not applicable prefer unordered (ordered = false)
name (default) its_c where c = ac_id.root its_cj where cj ∈ ac_id.end_points

Neighbour
associations
ac_id.agr=neighbour

ac_id.root ac_id.cj ∈ ac_id.end_points

aggregation none none
multiplicity n > 0 , [m,n] ,* n > 0 , [m,n] ,*
changeability unrestricted unrestricted
navigability unrestricted unrestricted
visibility unrestricted unrestricted
ordered prefer unordered (ordered = false) prefer unordered (ordered = false)
name (default) its_c where c = ac_id.root its_cj where cj ∈ ac_id.end_points

1.1.29. Pragmatically, the omposite association is used to denote a “part of-” relationship. This entails,
that creation of the compound object induces creation of its constituents (as long as their
multiplicity is bounded). Similarly, killing a compound object induces killing of its constituents.
The composite relation is also sometimes referred to as strong aggregation relation. We require,
that only the compound object itself can create and destroy its parts.

1.1.30. The composite association defines for a compound class c its constituent classes. We write c´↵ c

to denote that compound class c has (possibly multiple) instances of classes c´ as constituents, i.e.
there is composite association ac_id such that c = ac_id.root and c´ ∈ ac_id.end_points. If

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 8

 Public

ac_id.root. navigability = true, this is denoted as c´⊥ c. Selecting either ↵ or ⊥ makes the
composite association directed resp. bi-directional.

1.1.31. Acquaintance between classes in the aggregation association is defined as for composite classes.

The aggregate association denotes a weaker form of grouping of a compound class, in that
constituents are not created nor destroyed automatically at creation resp. destruction time (time
when operation create_c() resp. destroy_c() is performed) of the compound object (of class c).
We write c´ ↵ w c (resp. c´⊥ w c) to denote the weak aggregation relation between a compound
class c and one of its constituent c´ (in its directed and bi-directional version, defined similar to
that of composite association in 1.1.30).

1.1.32. A compound (resp. aggregating) object always knows its constituent objects (the attribute

navigability of the association end attached to a constituent class is true). If the composite (resp.
aggregate) association is bi-directional, then all parts also know their compound object.

1.1.33. We suggest to use strong aggregation whenever meaningful, and consider the weak aggregation

specifying the �possibility� for creation resp. destruction of a weak constituent invoked from its
aggregating object during run-time.

1.1.34. Technically, neighbour association is a derived concept, defined in terms of the aggregation

attributes of the association ends (see above). We explicitly name this type of association because
of its relevance in defining the acquaintanceship relation between different parts of a system.

1.1.35. We use c´←c to denote the directed neighbour relation between two classes, i.e. if there is

neighbour association ac_id such that ac_id.root = c, c´∈ ac_id.end_points,
ac_id.root.navigability = false and ac_id.end_points(c´).navigability = true, i.e. it is only c who
knows neighbour c´. In case of a bi-directional relation c´↔c, both neighbours know each other:
ac_id.root.navigability = ac_id.end_points(c´).navigability = true.

1.1.36. Technically, we will refer to association ends by the value of their name attributes (of type c ∈ C,

where c is attached to the corresponding association end) and index if the multiplicity is greater
than 1. For all relations between classes we require that there is no clash of the association end
names. This means for all classes c, c1, c2 and associations ac_id1, ac_id2 ∈ ASSOC_ID (c =
ac_id1.root & c = ac_id2.root & c1∈ ac_id1.end-points & c2 ∈ ac_id2.end-points) �
ac_id1.end-points(c1).name ≠ ac_id2.end-points(c2).name. We will include association ends as
implicitly defined attributes in objects (see below).

Figure 5. Example of a class diagram

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 9

 Public

In the example from Fig. 5, the following relations are pictured:
Window ↔ InputDevice : bi-directional neighbour,
DialogBox < Window : DialogBox inherits from Window,
DialogBox ⊥ w Window : an object of class Window may create any number of instances of
DialogBox, known under name ackn,
Scrollbar↵ Window and clientArea ↵ Window : one object of class clientArea and two objects
of class Scrollbar are created at the creation time of an object of Window, the latter one knows
objects of Scrollbar under default names itsScrollbar(1) and itsScrollbar(2).

1.1.37. We propose to require, that an object can only communicate with those objects it knows through
associations, so that the creator of an object knows its children.

Action Language

1.1.38. We propose a restricted action language subsuming the following features. All statements must

comply to visibility restrictions as described above. We partition attributes of an object into the
following three groups:

1.1.38.1. Navigation attributes nv_a are all attributes induced from association ends and implicit
attribute self, introduced as attributes by the preprocessing steps (see Section 1.3). In the
action language they are represented via a*, aj* (a, a´ or aj in the definition below can
also represent navigation attributes under additional constrains).

1.1.38.2. Auxiliary pointer attributes p_a are typically user declared, and are used to temporary
store pointers e.g. passed as parameters. They are not allowed to designate receivers of
operation calls or signals and must be private. In the definition below they are represented
via a or a´ (on the right sides of assignments).

1.1.38.3. Basic attributes b_a are those of some basic predefined type, which are not references
(represented via aj, a, and a´ in the definition below).

1.1.39. We propose the following set of primitive actions. Here we describe actions with abstract syntax,

just to give a list of action types and restrictions used inside primitive operations. These actions
are basic in the sense that they can be mapped to different (programming or abstract) languages.

1.1.39.1. Object creation: a* := create_c() for c ∈ C, creates a new instance of class c,

initialises implicit attribute self, and assigns the identity of the newly created object to the
attribute a* of type pointer to class c´ (association end) with the following restriction: c α
c´ where c´ is the current class containing the action and α ∈ {↵ , ⊥ , ↵ w, ⊥ w}.

1.1.39.2. Simple assignment: a0 := <primitive expression> involving a set of predefined

primitive operations (excluding navigation expressions), local (to the object where it
occurs) attributes, and possibly visible formal parameters, complying to type restrictions:
a0 must be a basic attribute.

1.1.39.3. Attribute values exchange: a := a0*.a1*.....an*.a´ or b0*.b1*....bn*.b := b´ where

aj* and bj* (0 ≤ j ≤ n) are navigation attributes complying to visibility restrictions, a´ is an
attribute (of any kind) of the class pointed by an* and b is an attribute (basic or
navigation) of the class pointed by bn* � both visible in the current class c´ containing the
action. If a (or b) is an association end, then c α c´ where c = a.type (or c = b.type,
respectively) and α ∈ {↵ w, ⊥ w, ←, ↔ }.

1.1.39.4. Operation call: a := a0*.a1*.....an*.!op(a1,...,ak) with non-nil return value or

a0*.a1*.....an*.!op(a1,...,ak) with nil return value from the class instance pointed by an*,
subject to restrictions on acquaintance between objects described above.

1.1.39.5. Explicit operation call: a := a0*.a1*.....an*.!c::op(a1,...,ak) with non-nil return value or
a0*.a1*.....an*.!c::op(a1,...,ak) with nil return value from the object pointed by an*

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 10

 Public

(complying to visibility), which is an instance of a class c´ such that c´< c (c is a
generalisation of c´).

1.1.39.6. Setting return value: return := a of an operation call.

1.1.39.7. Object destruction: destroy(a*) denoted by the reference a* with the following

restriction: c α c´ where c´ is the current class containing the action, c = a*.type and α ∈
{↵ , ⊥ , ↵ w, ⊥ w}. Note that reaching the termination connector corresponds to
destroy(self).

1.1.39.8. Signal emission: a0*.a1*.....an*.!s(a1,...,ak) to the class instance pointed by an*,

subject to restrictions on acquaintance between objects described above.

1.1.40. We call expressions a0*.a1*.....an* navigation expression and require that they may only use

navigation attributes. We propose to support sequential composition, branching, and (bounded or
unbounded) iteration. The exact syntax for actions and control constructs is discussed in M2.2.1,
Definition of the tool exchange format.

Figure 6. Example of legal operation definitions in class InputDevice

Flat UML state-machines

1.1.41. We restrict ourselves in this section to flat state-machines. Full UML statecharts are treated in

Section 2 of this report.

1.1.42. An event (or trigger event) in a state-machine is specified as one of the following

1.1.42.1. s(p1, ..., pn) reception of signal s, local parameters pj matching s.type

1.1.42.2. op(p1, ..., pn) acceptation of operation call op (call event), local parameters pj matching

op.type

op_position(x,y : int) : nil
{ itsBox(1):= create_DialogBox();
its_Window(1):= itsBox(1);
itsBox(1).op_resize(x);
itsBox(1).op_resize(x,y);
another_operation(x,y); }

another_operation(x,y : int) : nil
{ itsBox(2) := create_DialogBox();
 itsBox(2).area.op_clean();
 its_Window(1).op_resize(x,y); }

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 11

 Public

1.1.43. A guard is a boolean expression containing attributes and primitive operations of the current class
(where it is used). The trivial guard is true, which is omitted in the graphical representation.

1.1.44. A guarded trigger is a conjunction of a trigger event t and a guard b, written syntactically as t[b].

1.1.45. A flat UML state-machine is a tuple

sm = (Q, T, D, q0)
where
• Q is a finite set of states
• T ⊆ Q × ({<guarded trigger>}∪ {<guard>}) × <primitive action> × Q is a finite set of

transitions, where <primitive action> is an action with the syntax described above.
• q0 ∈ Q is the initial state
• D : Q → ℘ (Sig) gives for each state the set of deferred signals

Figure 7. Example of a flat state-machine

UML model

1.1.46. A UML model is a tuple

M = (C, A, Sig, c0, ⊥ , ↵ , ↵ w, ⊥ w, ←, ↔, <, sm)
where

1.1.46.1. C is a finite non-empty set of classes
1.1.46.2. A⊂ C is a non-empty set of actors

We denote C´ = C \ A a set of internal (system) classes
1.1.46.3. Sig is a finite set of signals
1.1.46.4. c0∈ C´ is the root class (which we require to be active)
1.1.46.5. < is the generalisation relation between classes C´ or between
 signals Sig

1.1.46.6. ⊥ ⊆ C´× C´ is the bi-directional composite relation between classes
1.1.46.7. ↵ ⊆ C´× C´ is the directed composite relation between classes
1.1.46.8. ↵ w⊆ C´× C is the directed aggregate relation between classes
1.1.46.9. ⊥ w⊆ C´× C is the bi-directional aggregate relation between classes
1.1.46.10. ← ⊆ C × C is the directed neighbour relation between classes

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 12

 Public

1.1.46.11. ↔ ⊆ C × C is the bi-directional neighbour relation between classes
1.1.46.12. sm assigns to each reactive class c∈ C a UML state-machine

such that
- the root class is the maximal aggregating class: ∀ c∈ C´ (∀ c´∈ C´ ∀ α∈ {⊥ ,↵ , ↵ w, ⊥ w} ¬ (c´α

c) � c↵ w c0) – i.e. all elements from C´ maximal in the weak and strong aggregation
hierarchy are successors of c0 under (weak) aggregation

- the relation of the composite association defines a DAG
- no sharing of weak components between several weak composites are allowed to occur in run-

time: if class c relates is a weak component (related by weak aggregation) of both c1 and c2,
then any instance o of class c will either be associated to an instance of class c1 or to an
instance of class c2 (but not both even at different points of time)

- in the multiple inheritance, there is no naming conflicts
- for all classes c , all inter-object communication supported by the behavioural aspects of c (i.e.

its operations, its entry- and exit-script, and potentially its statechart) is compliant to c.int, the
class interface of c

For uniformity, for every simple class c we assume sm(c)=({q}, ∅ , ∅ , q).

1.1.47. Instances of a class � or memory allocations in run-time � are called objects. We will use obj∈ c

or cl(obj)=c to denote that object obj is an instance of class c. Every object obj possess operations
obj.op and attributes obj.attr defined in its class cl(obj) with values val(obj.attr) as well as state-
machine sm(obj)=sm(cl(obj)).

1.2 Design Decisions
In this section we describe informally the behaviour of the UML-models from the Omega-subset specified in the
previous section.

1.2.1. Intuitively, an active object (i.e., an instance of an active class) is like a signal-driven task, which

processes its incoming requests in a first-in-first-out fashion. It comes equipped with a dispatcher,
which picks the top-level signal from a signal queue associated with the active object, and
dispatches it for processing to either its own state-machine, or to one of the passive reactive
objects associated with this active object.

1.2.2. This association must be defined for each reactive object; we thus assume the existence of a

mapping
my_ac : {c ∈ C | c.kind = reactive } → {c ∈ C | c.mode = active }.

Technically we associate with each class c an implicit attribute c.my_ac as reference to an active
class controlling computations in objects of class c (dispatching signals at the correct time and
performing operations).

1.2.3. Typically, such association (with role name my_ac) is derived from the partial order induced by

the transitive-reflexive closure of the composition relation R=(↵ ∪⊥)*: for any class c, the initial
(or default) value of c.my_ac is

c.my_ac = my_default_ac(c) = minR {c´ ∈ C | c´.mode = active ∧ cR c´ }.

1.2.4. In the sequel, we assume, that the value of attribute c.my_ac is either explicitly or implicitly
defined for each passive object (clearly c.my_ac = self for each active class c), and will
collectively refer to the set of all (passive) classes associated with an active class as its servants:

servants(c) = my_ac-1(c)= { c´∈ C | c´.my_ac = c}.

1.2.5. An important notion in the behavioural specification of concurrent systems is thread of control (or

simply thread).
1.2.5.1. A task is a logical group of objects, it corresponds to a unit of computation maintained by a

RTOS (subject of scheduling for RTOS).
1.2.5.2. Run-time correlate of a task is called thread.
1.2.5.3. Each invocation of a task corresponds to activation of a thread which performs a sequence

of actions corresponding to a run-to-completion step at the semantic level.

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 13

 Public

1.2.6. In the UML, task structure is defined by grouping at least one active object and possibly

associated passive objects. Thus, threads are controlled by active objects. For this aim, an active
object contains an operation execute() which engages a thread by performing actions from the
associated objects from servants(c) � method calls, dispatching signal and call events.

1.2.7. In this version we allow primitive operations called only in the scope of one task and we define

inter-task communications via event sending (both signal and call events). Note that if a primitive
operation calls are necessary in such communication, they can be represented (manually or
automatically) as triggered operation by adding �self-loop� transitions to all states in the
corresponding state-machine with operation name as trigger and operation method in the action
part of the state-machine.

Figure 8. Execution structure

1.2.8. A fundamental concept for the execution semantics is the notion of a run-to-completion step. It is

instructive to see the analogy of a run-to-completion step in sequential circuit design. In this
domain, the circuits accepts new input values with the rising edge of the clock. These new values
are propagated through the circuit; the time it takes for reaching the output of the circuit or new
latches depends on gate delays and path length: at any intermediate point in time, some wires may
have reached stable values, while the input is still propagated through other areas of the circuit,
causing wires to switch values. In a well defined circuit, though, this propagation delay is
bounded: eventually all wires will have taken values, which remain stable. It is only then that the
clock will tick again, causing new values to be propagated through the circuit.

1.2.9. In the UML context, reactive classes with their state-machines take the role of the sequential

circuit, and state-configurations take the role of circuit wires. So, assuming initially a stable state-
configuration, the dispatcher picks a signal from a signal queue or triggered operation called from
other thread and hands it over to the reactive class � this corresponds to the rising edge of the
clock. The current state configuration will determine, how this input is processed. Lets assume the
flat UML state machines introduced in the previous section. Assume, that there is a transition
guarded by a trigger event matching the dispatched signal event or call event (and assume no local
condition). Then this transition can be taken, toggling the �circuit input� one level. Consider the
newly entered state. Assume, that we have a transition originating from this state, labelled with a
local condition as guard which evaluates to true. Then � within the same run-to-completion-step �
this transition will be taken, causing the state-machine to reach a new state. In a well designed
state-machine, this propagation process will continue until a state is reached, from which all

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 14

 Public

originating transitions with only local conditions cannot be taken, since they evaluate to false �
such a state is called a stable state, and it is exactly in such a situation, where we can allow a new
clock tick � in our context: where we can accept a new event (signal or call), starting another run-
to-completion step.

1.2.10. The proposed execution models ensures, that there is at most a single thread of control active in

each object at each point in time, entailing that concurrent accesses must in some form be
interleaved. We feel that violating this assumption leads to execution models, which are complex
and incomprehensible, thus causing modelling errors.

1.2.11. We take a standard interleaving semantics, in which all active objects are running asynchronously.

In interleaving object executions, we have to decide on the level of granularity of interference,
indeed a key design decision. In general, verifying against an execution model supporting fine
grained interference will yield stronger results, but raise the level of complexity of the model. In
contrast, a coarse grained approach risks to hide interference possible in a real implementation,
but will typically reduce the complexity of the model. Finding the right level is thus extremely
critical.

1.2.12. The proposed execution models specifies discrete time, where every clock tick corresponds to one

run-to-completion step, which is considered atomic � i.e. not interruptible by input stimuli � and
without duration: every action in the scope of one run-to-completion step is supposed to be
instantaneous. The execution with continuous time and duration of actions, allowing
interrupt/exception, are described in the �Time Extensions in UML � (D1.1.2, part 3 from
Verimag).

1.2.13. To explain our approach we start with the trivial but nevertheless fundamental observation, that an

instance can at any time be in one of two roles, to which we refer to as the driver- and callee role
(Fig. 9), respectively.

1.2.13.1. The Driver role

Assume that the object instance is in a stable state, in a sense to be made precise below. The
instance will then consult its queue of pending (generated but not jet consumed) signals, and pick
the top signal. Lets assume, that the current state of the instance is such, that an outgoing
transition contains the dispatched signal as trigger event, and that the associated condition is true.
Then a run-to-completion execution is initiated, in which the instance as initiator of this run to
completion drives its execution: it can perform a primitive operation op called from an object of
the same thread by executing actions from its body (op.method), or it can emit a signal to any
object, or it can call triggered operation from another object. Note that the driver stays in unstable
state during the time when another object (callee) serves its call and can continue its execution
only after the termination of the call (at the callee side). Driver can be either an active object or
reactive one performing the current computation on behalf of an active object.

1.2.13.2. The Callee role

The same object may � at a different point in time � be serving � directly or indirectly � some
driver object in performing its run to completion, by executing an operation call �on its behalf�.
Such incoming calls can only be taken at well defined points, related to the choice of granularity
of interference. Assuming that an object has reached such an �interference point�, it is ready to
accept a call of its operation op if one of the outgoing transitions in the current state is labelled
with call event op and its associated condition is true. It will then execute the call, by evaluating
all involved actions, possibly invoking other operations, and eventually reach a stable situation,
thus completing the current call. Thus, as for signals, also call events (implementing triggered
operations) induce a �run-to-completion�, taking the state-machine to a configuration where
further steps are only possible by accepting an operation call or dispatching a signal. Callee can
be any object containing operation implementation.

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 15

 Public

Figure 9. Two roles of objects: Caller (= Driver) and Callee

1.2.14. We interleave execution of different threads at a coarse level, and do not allow preemption of run
to completion steps. This � in combination with the restriction to sequential operations or
primitive operations free of side effects � clearly increases understandability of the model.
Regarding model complexity, the coarse grained interleaving should allow significant
optimisations, since no external communication � neither through operations, nor signals � occurs
during a completion run; all occurring communications relate to objects in callee role, under the
control of the driving object. Thus, the callee does not accept any event nor method until it has
reached a stable state. For the computations within objects belonging to the same thread of
control: the thread can re-enter an object for a primitive operation call at any time.

1.2.15. Fig. 10 shows the two principle run-time states of an object.

Signal_queue empty and
no pending operation call

stable

Process a
transition

Dispatch
event

No locally
enabled
transition

Accept
operation call

Decision whether to
dispatch event or accept

method call based on
priorities

Locally
enabled transition

Figure 10. Run-to-completion execution scheme

1.2.16. Let us now define the concept of stability formally. A state q of reactive object o � with state

machine sm(obj) and attribute evaluation val(o.attr) � is stable if o is executing (has been created)
and there is no locally enabled transition.

stableval (q,o) ⇔ ∀ (q,l,γ,q´) ∈ sm(obj).T ∃ grd (∃ ev l ≡ ev[grd] ∨ (l≡ grd ∧ val(grd)=false))

Predicate stableval (q,o) characterises synchronisation points within one object o.

1.2.17. We can associate with each state a predicate characterising the willingness of the object to accept
an event (operation call or a signal) in this state as follows.

readyval (o, q, ev) ⇔ ∃ q´, grd, γ : (q, ev[grd], γ, q´) ∈ sm.T ∧ val(grd)=true

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 16

 Public

We call ready set for an object state q defined as a set of events for which the predicate readyval
(o, q, ev) = true.

1.2.18. With these concepts, we can now elaborate our discussion of the dispatching process, assuming
that o is stable in state q. If the top-signal of the queue is ready in this situation, then a new run-to-
completion step can be initiated in o. Otherwise, depending on whether ev is declared as
deferred signal in state q (formally expressed as ev ∈ D(q)), it would either be discarded (if not
deferred) or maintained in the FIFO for later reconsideration (at the beginning of the next run-to-
completion step).

1.2.19. It is important for real-time extensions to explicate, when �clock ticks� occur in the above

situations.

1.2.19.1. If the dispatched signal is discarded, then conceptually we consider this as a
completion of a run-to-completion step (involving no processing). By selecting the next
signal for dispatching, we initiate a new run-to-completion step, thus incrementing time.

1.2.19.2. If the dispatched signal is deferred (and thus maintained in the FIFO buffer), we again
�increment time�, by letting the dispatcher pick the next younger signal and passing it to the
object for processing, also inducing a clock tick.

1.2.20. As a modelling guideline, we suggest that signals for which persistency must be ensured are

monitored in appropriate orthogonal components, thus ensuring, that they are in the ready set of
all stable configurations.

1.2.21. A similar problem arises for operation calls. Suppose, that object o is currently executing an

operation call on behalf of active object o1, and that this call completes. In case of pending
operation calls to o by another object, such as o2 requesting a call of op, the operating system
will now grant access to this request (thus in fact giving higher priority to pending operation calls
over signals). Now suppose, that in the current stable state, o is not ready for op. In the current
UML model, this call is then considered �completed� - though it never executed! This effectively
entails, that also triggered operation calls can be discarded.(with nil return)

1.2.22. Again there are multiple ways to address this problem. First, we could enforce the same modelling

guidelines, thus requiring, that all stable state-configurations offer transitions for all possible
triggered operation calls. Again, this might be considered prohibitive from the modelling
overhead � in which case the execution model must be changed, by only offering those operations
to an object, for which it is ready. While this also would force us to give up the order of arrival of
operation calls, we can in this case argue as follows that this should be acceptable.

1.2.23. Call a logical channel a pair of acquainted objects. A minimal requirement on any reasonable

implementation is, that it preserves the order of signals and operation calls along a logical
channel. For signals, we have seen, that simply moving a signal to the tail of the queue would
even potentially destroy this requirement. Regarding operation calls, we can exploit the fact, that
the caller is suspended until arrival of the return value, thus the queue attached to the semaphore
ensuring exclusive access to the object will never contain to request from the same object, thus
bypassing its head in order to give preference to a younger operation call op´ for which o is ready
will not violate the minimal ordering requirement. We thus propose in this case to actually change
the execution model and only offer those operation calls, which are in the current ready set. This
is the justification of storing all pending requests of operation calls in a table rather than in a
queue.

1.2.24. This solution is close to the rendezvous concept of ADA: both the caller and the callee have to

agree on the call. One can in fact view a state q with outgoing transitions containing operations
op1, ..., opn as an accept statement accept(cond1:op1, ..., condn:opn), where condj denote the
guards of the corresponding transitions.

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 17

 Public

1.3 “Preprocessing” Semantics of the Omega-subset

We use standard preprocessing techniques to compile the Omega-subset defined above to a small kernel language
handled in the section on formal semantics. We will in particular compile away all relations. To be able to
dynamically set up neighbour associations, preprocessing must create implicit operations for adding, initialising,
updating and deleting association end points as specified below.

Pre-processing comes in four parts.
First, we extensively introduce what we call implicit attributes and implicit operations. Secondly, we model
generalisation relation as association by introducing the implicit attributes uplink and downlink changing the
creation procedure for subclasses and mechanism of operation calls. In addition, to support polymorphism we
replace user defined assignments with additional scripts checking the type of attributes. Thirdly, we extend user-
defined constructors and destructors with additional actions dealing with creation and destruction of composite
objects. The combination of the introduction of implicit attributes and this third preprocessing stage eliminates
the need to handle associations explicitly in the semantics. Finally, we eliminate complex navigation expressions
by introducing auxiliary attributes, reducing the level of de-referencing to at most one. In the scope of one
thread, we also inline recursively primitive operation bodies directly into transitions of statecharts containing the
calls (possible due to the choice of sequential operations and queries, i.e. operations free of side effects). This
trivial step is omitted in the definition below.

Introduction of implicit attributes and operations

1.3.1. For each class c we create an implicit attribute self of type c.

1.3.2. If its_c1, ..., its_ck are (names of) navigable end-points of associations originating from class c or

roots of associations with end-point in c, then

1.3.2.1. Class c has implicit attributes its_cj of type

- cj , if the multiplicity of the corresponding end-points is 1;

- set of cj , if the multiplicity of the corresponding end-points is greater than 1.

1.3.2.2. Assume that c = ac_id.root and ac_id.cj ∈ ac_id.end_points (or cj = ac_id.root and
ac_id.c ∈ ac_id.end_points, resp.) for some association ac_id. Then class c has implicitly
defined unified operations for manipulating association ends with different multiplicity and
different changeability attribute.

1.3.2.2.1. init_its_cj(id1:cj, …, idn:cj):() if multiplicity of this end-point (named its_cj) is
n∈ N. The function associates identifier attributes {id1, …, idn}= ID(ac_id.cj) with
objects of class cj so that it can be used to get access to the corresponding association
ends as c.its_cj(id1),�, c.its_cj(idn). Note that if the ordered attribute of this end-
point is true, then there is an order id1 < …< idn so that the identifier can be
considered as numbers id1=1,…, idn=n.

1.3.2.2.2. update_its_cj(idi , p:cj):() if the changeability attribute of this end-point is
changeable and idi∈ ID(ac_id.cj). The function changes the value of c.its_cj(idi) to
new value of p.

1.3.2.2.3. add_to_its_cj(idi, p:cj):() if the changeability attribute of this end-point is
add_only or changeable and multiplicity is not a fixed number n∈ N. Then the new
set of the identifiers is ID´(ac_id.cj)=ID(ac_id.cj) ∪ {idi}. If the changeability
attribute of this end-point is frozen, then this operation can appear only in a
constructor body.

1.3.2.2.4. delete_from_its_cj(idi:cj):() if the changeability attribute of this end-point is
changeable and multiplicity of this end-point is not a fixed number n∈ N. If the
changeability attribute of this end-point is frozen, then this operation can appear only
in a destructor body.

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 18

 Public

1.3.2.2.5. is_in_cj(p:cj):boolean The function determines whether an object referred as p
belongs to this association end, i.e. that the value of p is a value of some identifier
from ID(ac_id.cj).

These implicitly defined operations are public (i.e. can be invoked from objects of different
classes). An attribute its_cj.mult (in class c) specifies the multiplicity of the association end
attached to the class cj with the association root c.

1.3.3. For each class c with direct successors under the aggregate or composite relation to class c1, ...,
cn we require that preprocessing defines operations create_cj(). If c is a composite class, we
require these operations to be private. If cj α c with α ∈ {⊥ w,↵ w} (c is the root of an
aggregation), then we require create_cj() to be public.

1.3.4. For each class c with direct successors under the aggregate or composite relation to class c1, ...,

cn we require that preprocessing defines operations destroy_cj(ref:cj). If c is a composite class,
we require these operations to be private. If c is an aggregation, then we require these to be
public.

1.3.5. For each class c with direct generalisation classes c1,�,cn (c ⋖ ci for 1≤ i ≤ n) we require that
preprocessing defines protected operations create_ci(ref:ci) and destroy_ci(ref:ci).

Getting rid of generalisation

1.3.6. For each class c we create the implicit attributes uplinks_number of type integer and uplink.1, ...,

uplink.n of types pointer to classes c1, ...,cn, respectively, where {c1,...,cn}={c´| c⋖c´} is the set of
all immediate superclasses for c. For each class c we also create one implicit attribute downlink of
type c.

1.3.7. Consider a subclass c, and let {c1, ..., cn} be all classes s.t. c⋖cj (n≥1). We preclude any user

defined constructor c.construct(ref) (invoked from create_c(ref)) by the sequential composition
of the following action catering for the recursive creation of the inherited parts.

uplinks_number := n;

if (ref=nil) downlink:=self else downlink:=ref endif;

for j=1, ..., n do

 uplink.j := create_cj(downlink);

endfor
For all other classes (without generalisation relation), we add actions

uplinks_number := 0;

if (ref=nil) downlink:=self else downlink:=ref endif;
to their constructor body.

1.3.8. We preclude any user defined destructor body c.destruct() (invoked from destroy_c(ref:c)) by
the sequential composition of the following action catering for the recursive deletion of the
inherited parts.

for j=1, ..., uplinks_number do

 destroy_cj(uplink.j);

endfor

1.3.9. Each navigation expression a0.a1*.....an*.a such that an* is an object of a class c with c < c´, a
∈ c´.attr, and a ∉ c.attr ∪ {c0.attr | c < c0 < c´}, we replace with the expression
a0.a1*...an*.uplink.i....uplink.j.a, where on = an*.uplink.i.....uplink.j is an object of class c´.

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 19

 Public

1.3.10. We first change expressions a0.a1*.....an*.!op0(b1,...,bk) specifying virtual operation calls

(op0.virt = virtual) replacing them with a0.a1*.....an*.downlink!op0(b1,...,bk). After that we
apply delegation algorithm to all operations as follows.

1.3.11. Each expression for an operation call a0.a1*.....an*.!op0(b1,...,bk) such that an* is an object of a

class c with c < c´, op0 ∈ c´.op, and op0 ∉ c.op ∪ {c0.op | c < c0 < c´}, we replace with the
expression a0.a1*...an*.uplink.i....uplink.j.!op0(b1,...,bk), where on = an*.uplink.i.....uplink.j is an
object of class c´.
Here the condition op0∈ c.op means that there is an operation in class c with the signature
corresponding to that specified by the calling op0.

1.3.12. Each expression for an explicit operation call a0.a1*.....an*.!c::op0(b1,...,bk), where c < c´ for
some c´ such that op0 ∈ c´.op, and op0 ∉ c.op ∪ {c0.op | c < c0 < c´}, we replace with the
expression a0.a1*...an*.uplink.i....uplink.j.!op0(b1,...,bk), where on = an*.uplink.i.....uplink.j is an
object of class c´.

1.3.13. Since we require that every specialised class must specify its own statechart (the same as one from

the generalised class or completely overwritten), we do not need to change expressions with
signal emission, because we do not delegate them to the generalised object.

1.3.14. To support polymorphism, we modify the assignments a:= expr (where a.type ∈ C) of the
following three kinds of expressions (which return references as results):

- expr = a1.a1*.....an*.a* (navigation expression), then expr.type = a*.type.

- expr = create_c’(), then expr.type=c’.

- expr = a0.a1*.....an*.!op(a1,...,ak) (operation call with non-nil return value), then
expr.type=op.type

If expr.type ≠ a.type, we replace assignments a:= expr with a:=expr.uplink.i....uplink.j, where o =
expr.uplink.i.....uplink.j is an object of class a.type.

1.3.15. We also modify assignments of references nav_expr := a (where nav_expr is a navigation
expression a1.a1*.....an*.a* and a.type ≠ nav_expr.type = c ∈ C) by adding uplinks: nav_expr
:= a. uplink.i.....uplink.j, where o = a.uplink.i.....uplink.j is an object of class nav_expr.type.

Getting rid of composites

1.3.16. The semantic difference between weak and strong aggregation is compiled away in this

preprocessing step. For weak aggregation, creation of constituents, initialisation of association
ends, and destruction rests with other objects � there is no pre-defined support for these. In
contrast, for composite objects, we will ensure by extending the entry- and exit-script of a
compound class, that all children with bounded multiplicity are created, that association ends are
initialised, and that all parts are destroyed upon destruction of the whole.

1.3.17. Let α ∈ {⊥ ,↵ }. Consider a compound class c, and let {c1,...,cn} be all classes s.t. cj α c . We

preclude any user defined constructor body c.construct by the sequential composition of the
following action catering for part-creation. We require that the user defined constructor caters for
all other role initialisations.

for j=1,...,n do

if (its_cj.mult ∈ N)
 if (its_cj.mult=1)

{ init_ its_cj(id1:= create_cj()); if (α =⊥) its_cj.its_c := self endif }
 else

for r= 1,..., its_cj.mult do

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 20

 Public

{ add_to_its_cj(id(r), p:= create_cj);
 if (α =⊥) its_cj(id(r)).its_c := self endif;
 r:= r+1}
endfor

endif
else its_cj:= nil;

endif endfor

1.3.18. Let α ∈ {⊥ ,↵ }. Consider a compound class c, and let {c1,...,cn} be all classes s.t. cj α c . We
include as postclude for any user defined destructor body c.destruct the following action.

for j=1,...,n do

 if (its_cj.mult=1) destroy(its_cj)
else

 for (is_in_cj(ref)) do destroy(ref) endfor
endif endfor

1.4 Formal Semantics of the Kernel Language

We now give a formal semantics for the reduced kernel language, assuming the pre-compilation from Section
1.3, which implements the design decisions elaborated above.

We will use symbolic transition systems as proposed by Z. Manna and A. Pnueli [3] as the formal framework for
capturing the semantics. In this approach, the state-space of the transition system is spanned by a set of typed
variables, called system variables. The transition relation itself is represented symbolically by first-order
predicates, relating the future state of the system variable (expressed by primed versions of system-variables) to
the original state. The behaviour of a symbolic transition system is represented through the set of traces of
variable valuations.

We thus associate with each UML model M a symbolic transition system S = STS(M) capturing asynchronous
concurrent execution of M using an interleaving semantics.

We first explain the set of system variables used to capture the semantics of our kernel model, and then give the
formal definition of the transition relation.

System Variables

S uses only two system variables V= {sconf, lchan}, which, however, have a complex structure.

Symbolic transition systems
S = (V , Θ, ρ)

V typed set of variables
Θ initial condition on variables
ρ transition relation on valuations of variables

typically defined by first-order predicates
over V, V´

traces(S)
set of infinite sequences of valuations of variables
satisfying:
- first valuation matches Θ
- successor valuations satisfy ρ

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 21

 Public

1.4.1. The system variable sconf captures the current system configuration. This system variable defines
for each class c and each of its instances i its current instance configuration. Fig. 11 illustrates
the structure of the system configuration.

1.4.2. We will identify the set of instance identifiers with Ν , reflecting the fact, that there is no à priori

bound on the number of instances of a class.

• Object Identities
– <c,i> ∈ O_id = C × Ν
– in formal semantics: no

re-use of object id´s
– in implementation:

object_id´s are pointers to
memory, assigned by
memory management

– hence re-useop1/

op2/

•••
0 1 2 3 4 5 6 7

c6

status exe
a1 7
a2 <c7,2>
a3 3,1414
a4 <c0,1>
sc
eq

<c6,3>

••
•

••
•

<<c5,0>,e2,<15,<c2,127>>>
<<c7,2>,e5,<<c7,1027>>>

<<c19,989>,e29,<19>>

sconf : C --> Ν --> Valuation of object system variables

••••••

ds <c1,2>
my_ac <ca1,1>
act op

Figure 11. The system configuration

1.4.3. For each object o we collect the following pieces of information in its instance configuration.

1.4.3.1. o.status ∈ {dormant, executing, suspended, call_completed, dead}

1.4.3.1.1. initially the instance is either dormant or executing

1.4.3.1.2. creation of a new object of class c will choose an instance-id i and set its

status to executing; by requirement on the initial state, the object will thus also be
stable;

1.4.3.1.3. when an instance is stable, it can accept a waiting signal (dispatched by an

active object) from the signal queue or a pending operation and initiate its execution,
keeping status executing

1.4.3.1.4. when executing an operation call, the instance will become suspended , until

the call has been served

1.4.3.1.5. when the result of call becomes available, the serving object (callee) switches
the status of the driver to call_completed, the driver will pick up the result, and return
to state executing

1.4.3.1.6. when the object is killed, its status becomes dead

1.4.3.1.7. Fig. 12 gives an overview of the different states an object and their

interrelationship

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 22

 Public

- initially the instance is either dormant
or executing

- a state q of object o is stable if o
is executing and there is no locally
enabled transition:

stable(q,o) ⇔ o.status =
executing ∧ ∀ (q,l,γ,q´) ∈ T
((∃ ev,cond l ≡ ev[cond]) ∨ (l ≡
cond ∧ ¬ cond))

dead

dormant

executing

suspended

Call
completed

creation

Execution of
operation call

Ready result
is sent

Result is
Picked up

killed

Figure 12. The object states during run-time

1.4.3.2. o.a gives the current value of attribute a

1.4.3.3. o.sc gives the current state configuration of o, if o is an instance of a reactive

class c, i.e. c = cl(o). For the simple case of flat UML state-machines, this degenerates to a
single state q of sm(c).

1.4.3.4. o.eq is the signal queue associated with an active object o where hd(o.eq) points

to the top signal in the queue.

1.4.3.5. o.ds specifies the object performing service (dispatcher) at the current moment.
This attribute is intended to be used by active objects to control the flow of computations.

1.4.3.6. o.my_ac gives the name of the associated active object controlling the current thread.

1.4.3.7. o.act keeps the specification of an action (operation or signal acceptance) currently

being performed in the object o.

1.4.4. The second system variable, lchan: (O_id × O_id × op) → {sw_on, sw_off, nill}, specifies logical

channels mentioned in 1.2.23 for synchronous communication (operation calls). A channel
lchan(o1,o2, op) is switched on when object o1 calls operation op from object o2 and object o2
is ready to accept this call:
lchan(o1,o2, op) = sw_on ⇔ [(op = o1.act) & (o1.status=suspended) & readysconf(o2, o2.sc,
op)]
A channel lchan(o1,o2, op) is switched off when object o2 completes the call (becomes stable)
of operation op and sends the results to object o1 : by changing status of o1, object o2 lets him
know that operation was completed:

lchan(o1,o2, op) = sw_off ⇔ [(op = o1.act) & (o1.status=call_completed) & stablesconf(o2.sc,
o2)]

1.4.5. One possible realisation of logical channels is via pending request table � variable capturing all
pending operation requests during model execution in a global table.

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 23

 Public

Pending request table

ca .rcv .op .result .status .params

1.4.6. Here we exploit the fact, that all objects become suspended when executing an operation call, and
can thus model the table as a set of entries such that for each object there is at most one issued
pending request. This allows to organise these as a table, which for each object or actor has either
a nil value, if there is currently no pending request, or an entry specifying the kind and status of
the request.

1.4.7. Each pending request maintains the id of the receiver, the name of the requested operation, the

list of parameters, a result-field, and status information.

1.4.8. Letting ca range over Actors and Object_ids, we thus maintain non-nil entries prt.ca collecting

the following information:

1.4.8.1. prt[ca].rcv ∈ A ∪ O_id identity of the receiver

1.4.8.2. prt[ca].op the identity of the requested operation

1.4.8.3. prt[ca].result the return value of the call; only valid if status of request is
completed

1.4.8.4. prt[ca].status ∈ {pending, busy, completed}

1.4.8.4.1. whenever the caller emits an operation call, its table entry is updated by entering all
information pertinent to the call and setting its status to pending

1.4.8.4.2. once the receiver object has picked up the call, it changes the status to busy
1.4.8.4.3. once the receiver object has completed the call, it updates the result entry and

changes the status to completed
1.4.8.4.4. once the caller has picked up the result, it changes the entry to nil

1.4.8.5. prt[ca].params is the parameters of the operation call

Definition of the Transition Predicate

1.4.9. We structure the transition system as a disjunction of the transition relation for all objects and

actors, modelling the asynchronous interleaved execution of active objects.

1.4.10. This leads to the following overall structure of the transition predicate ρ from the symbolic

transition system STS(M). The different clauses are elaborated in subsequent paragraphs below.
In the following, primed (configuration) attributes of an object specify new value of the
corresponding unprimed attributes.

∃ o∃ (q,α,γ,q´)∈ sm(cl(o)).T

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 24

 Public

o.sc = q ∧
 { -- case splitting by object and transition assuming state q

[o.sc´ := q´ ∧ -- transition relation for taking steps
∧

{ Φ_<accepting signal or operation call>
∨ Φ_< unstable states>
∨ Φ_<picking up the result of a call>
}

∧ Φ _<bookkeeping when becoming stable>
]

∨∨∨∨ [o.sc´ := q ∧ o.status = executing -- transition relation not leaving the state
∧ {Φ_<discarding or deferring signals>
∨ Φ_<initiating operation call> }] }

1.4.11. Accepting a signal or a call: Φ_<accepting signal or operation call> ⇐ def�

 stableval(q,o) ∧
{
∨ [(α ≡ sg1(p1,...,pn)[guard] ∧ sg ≤ sg1 ∧ val(guard) -- accepting a signal

∧ hd(my_ac(o).eq = <o,sg,<a1,...,am>> ∧ n≤m
∧ my_ac(o).ds = nil)
� (my_ac(o).ds´ := o
∧ [o.pj´ := aj | j ∈ { 1,...,n}])
]

∨ [α ≡ op1(p1,...,pn)[guard] ∧ guard -- accepting a call event
∧ ∃ o1

[-- pick up a call from caller o1
∧ prt[o1].rcv = o
∧ prt[o1].op = op1
∧ prt[o1].status = pending
∧ prt[o1].params = <a1,...,an>
∧ [o.pj´ := aj | j ∈ { 1,...,n}]
∧ prt[o1].status´ := busy

]
∧ prt[o1].result´ := nil
]

}

1.4.12. Processing unstable states: Φ_< unstable states> ⇐ def�

 o.status = executing ∧
{ [γ ≡ a := exp -- assigning an attribute

� o.a´ := val(exp,o)
]

∨ [γ ≡ a0!sg(a1,...,an) -- emitting a signal
� my_ac(o.a0).eq´ := insert(<o.a0,sg,<a1,...,an>>,eq>
]

∨ [γ ≡ return(a) -- setting return value
∧ ∀ o1: [(prt[o1].rcv = o
∧ prt[o1].status = busy)
� (prt[o1].status´ = completed
∧ (o.status´ = call_completed
∧ prt[o1].result´ = a)
]

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 25

 Public

∨ [γ ≡ a:= create_c -- creation of an object
� (∃ i s.t. sconf(c)[i].status = dormant
∧ sconf(c)[i]´.status = executing
∧ o.a´:= i)

∨ [γ ≡ destroy(a) -- killing of an object
∧ sconf(c) [o.a].status´ := dead]

}

where val(exp,o) replaces any occurrence of a local attribute â occurring in exp by o.â.
(Note that one-level de-referencing of the form a1.a2 is subsumed as a special case of the first clause)

1.4.13. Picking up the result of an operation call Φ_<picking up the result of a call> ⇐ def�

o.status = call_completed �
{ [γ ≡ a := a0!op(a1,...,an) -- of a function call

� prt[o]´ = nil
∧ o.status´ = executing
∧ o.a´ = prt[o].result
]

∨ [γ ≡ a0!op(a1,...,an) -- of an operation call
� prt[o].status´ = nil
∧ o.status´ = executing
]

}

1.4.14. Bookkeeping when becoming stable Φ_<bookkeeping when becoming stable> ⇐ def�

stableval´ (q,o) �
{
[-- becoming stable after evaluating a signal

my_ac(o).ds = o
� my_ac(o).ds´ = nil
]

∨ [-- becoming stable after an operation call
 ∀ o1 [[prt[o1].rcv = o
 ∧ prt[o1].status = busy]

�
[prt[o1].status´ := completed
∧ o1.status´ := call_completed]

∧ [∃ o1 : (prt[o1].rcv = o
∧ prt[o1].status = pending)
� prt[o1].status´ = busy]

]
}

1.4.15. Discarding signals Φ_<discarding or deferring signals> ⇐ def�

stableval (q,o)
∧ hd(my_ac(o).eq) = <o,sg, - >
∧ my_ac(o).ds = o
∧ ∀ (q,α,γ,q´) ∈ sm(cl(o)).T : ¬ (α ≡ sg[-]∨ sg[-] < sg1[-] ≡ α)
∧ {

(sg[-] ∉ sm(cl(o)).D(q) ∧ my_ac(o).eq´ := tail(my_ac(o).eq))
∨ (sg[-] ∈ sm(cl(o)).D(q) ∧ my_ac(o).eq´ := pass_queue(<o,sg[-]>, tail(my_ac(o).eq))

}

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 26

 Public

where the function pass_queue moves the reference to the next queue element leaving the deferred event(s) at the
same place. The function can be implemented so that it moves each deferred event to the end of the queue.
1.4.16. Initiating an operation call Φ_<initiating operation call> ⇐ def�

∧ {γ ≡ a := a0!op1(a1,...,an) ∨ γ ≡ a0!op1(a1,...,an)}
∧ o.status = executing
∧ o.status´ = suspended
∧ prt[o].rcv´ := o.a0
∧ prt[o].op´ := op1
∧ prt[o].params´ := <o.a1,...,o.an>
∧ prt[o].result´ := nil
∧ [[(∃ o1: prt[o1].rcv = o.a0 ∧ prt[o1].status ≠ nil)
� prt[o].status´ = pending]
∨ (∀ o1: prt[o1].rcv ≠ o.a0
� prt[o].status´ = busy)]

It is easy to see that the pending request table together with the transition predicate defined over its implement
the mentioned logical channels, where:

lchan(o1,o2,op1) = sw_on ⇔
(prt[o1].rcv=o2 & prt[o1].op=op1 & prt[o1].status=pending & prt[o1].status´=busy)

and
lchan(o1,o2,op1) = sw_off ⇔

(prt[o1].rcv=o2 & prt[o1].op=op1 & prt[o1].status=busy & prt[o1].status´=completed)

Initial condition on variables

For the described symbolic transition system STS(M)=({sconf, lchan}, Θ, ρ), the initial conditions Θ is defined
as follows. At the beginning of the model execution all logical channels are empty and only an object of the root
class is created

Θ (lchan) = nil
∀ o ∈ O_id : Θ(o.status)=dead ⇔ cl(o) ≠ c0 (where c0 is the root class)
∀ o ∈ O_id : (Θ(o.status)=executing ∧ Θ(o.act)=c0.entry) ⇔ cl(o) = c0

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 27

 Public

2 UML Statecharts

A statechart (also called state machine) is defined in the scope of a class c and hence it inherits the set of
attributes c.attr, the set of operations c.op, and the set of signals c.sig.

2.1 Constituents of Statecharts
A statechart SC consists of a set vertices(SC) of (hierarchical) state vertices and a set trans(SC) of transitions.

State Vertices
2.1.1 A state vertex may be a state or a pseudostate (which is a synch state or a stub state), i.e. vertices(SC) =

states(SC) ∪ pstates(SC).

2.1.2 A state can be simple, final or a composite state. Final state specifies the termination, i.e. destruction of

the object. A composite state can be concurrent or not. A composite state s has a set of direct substates,
denoted by child(s). For a simple or final state s, child(s) = ∅ . For a state s’ ∈ child(s), s is also called
the father of s’, denoted as father(s’). Direct substates of a concurrent composite states are called
regions. A concurrent state will also be called an AND-State (a system is in an AND-state if it is in all of
its direct substates concurrently) and a composite state which is not concurrent will be called an OR-
state (the system is in an OR-state if it is in one of its direct substates). Fig. 13 shows an AND-state s
which is composed of three concurrent regions s1, s2, and s3. On the other hand Fig. 14 shows an OR-
state s with three direct substates s1, s2, and s3.

s1 s2 s3

s

Figure 13. AND-state (concurrent composite state)

s1

s2

s3

s

Figure 14. OR-state (non-concurrent � also called sequential � composite state)

2.1.3 We will use a function mode to identify the type of a state:

mode : states(SC) → { SIMPLE, FINAL, AND, OR}

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 28

 Public

2.1.4 Every state machine has a distinguished top state top∈ states(SC). We assume that the top state is of
mode OR 1.

2.1.5 A submachine-state is only a syntactical abbreviation and hence will not be considered in this paper.

Furthermore StubStates are used to reference states within a submachine-state and hence are also not
considered within this paper.

2.1.6 A pseudostate can be one of the following kinds:

- An initial pseudostate represents a default vertex that is the source of a single transition to the default
state of a non-concurrent composite state.

- DeepHistory is used to store the most recent active configuration of the composite state that directly
contains this pseudostates. This includes not only the information on the most recent direct substate
but also the most recent substates of that substate etc.

- ShallowHistory is used to represent the most recent active substate of the composite state that directly
contains this pseudostate.

- Join vertices serve to merge several transitions emanating from source vertices in different orthogonal
regions. The transitions entering a join vertex cannot have guards and trigger events.

- Fork vertices serve to split an incoming transition into two or more transitions terminating on orthogonal
regions. The transitions outgoing from a fork vertex must not have guards or trigger events.

- Junction vertices are used to chain together multiple transitions. They are used to construct compound
transition paths between states. Guards are evaluated statically before performing a complete
compound transition.

- Choice vertices which, when reached, result in dynamic evaluation of the guards of its outgoing
transitions It allows splitting of transitions into multiple outgoing paths such that the decision on
which path to take may be a function of the results of prior actions performed in the same run-to-
completion step.

2.1.7 Pseudostates come up with a function kind, determining its type:

kind : pstates(SC) → {initial, deepHistory, shallowHistory, join, fork, junction, choice}

2.1.8 Instead of using join and fork vertices we will consider transitions with more than one source and one
target state vertex. Junction are only used as an abbreviation and hence will not be considered here, too.

2.1.9 Choice vertices will not be handled here.

2.1.10 An OR-state s has a default substate default(s) ∈ child(s). This default substate is defined as the target

state of the transition starting at the initial vertex of the composite state s.

2.1.11 An OR-state s may contain one shallowHistory vertex, sHist(s), and at most one deepHistory vertex,

dHist(s). These two kinds of pseudostates are also called history connectors.

2.1.12 For a history connector h, the enclosing OR-state will be denoted by state(h).

2.1.13 The set of state vertices are ordered in a tree-like structure with top as its root and where the set child(s)

gives the successors of a node s in the tree.

2.1.14 The depth of a state s w.r.t. the state hierarchy is inductively defined as

0 if

() :
(()) 1 otherwise

s top
depth s

depth father s
=�

= � +�

• 1 UML only requires that the top state is a composite state. If the top state is an AND-state we can simply

add an additional enclosing OR-state without changing its behaviour.

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 29

 Public

2.1.15 The substate relation defines a partial order on the set of states:

 s ≤ s
 s ∈ child(s') then s' ≤ s
 s ≤ s', and s' ≤ s" then s ≤ s"
 s < s' iff s ≠ s' and s ≤ s' .
 top ≤ s
 s’ ≤ s, and s” ≤ s, then s’≤ s” or s” ≤ s’

 For a set of states S and s ∈ states(SC) we will write s < S iff s < s’ for all s’ ∈ S. We also will say that
state s´ is younger that state s iff s < s’.

2.1.16 A state configuration sc is a set of state vertices with the following property:

- top ∈ sc
 - if s ∈ sc and s is an AND-state then child(s) ⊆ sc
 - if s ∈ sc and s is an OR-state then there exists exactly one s’ ∈ child(s) with s’ ∈ sc

2.1.17 Furthermore, a state s may have associated a set of deferred events, an entry, do, and exit action.

deferred(s) Denotes the set of deferred events in state s
entry(s) Denotes the entry action of state s
do(s) Denotes the do-activity executed while staying in state s
exit(s) Denotes the exit action of state s

2.1.18 An event that is deferred in a composite state is automatically deferred in all directly or transitively

nested substates.

2.1.19 Restrictions:

We will not support do-activity. The idea of do-activity is to invoke a concurrent computation which can
be interrupted at any time. As we will support only one thread of control within a statechart and give the
semantics of statecharts w.r.t. run-to-completion steps, do-activities will not be considered.

Transitions

A transition in a UML statemachine has only one source state vertex and only one target state vertex. To model
more complex transitions, UML provides join and fork vertices. In this version, instead of the pseudostates of
kind join and fork we will consider more general transitions having a set of source states and a set of target states.
(cf. Fig. 15)

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 30

 Public

F

J

Figure 15. Modelling Join and Fork vertices as transitions with multiple sources and
targets

2.1.20 A transition t is associated with

source(t) : a non-empty set of states denoting the source states of transition t.
target(t): a non-empty set of state vertices denoting the target states of transition t. Besides states,

history connectors may be also contained in this set.
trigger(t): an optional trigger event (with parameters), which has to occur to enable transition t. We will

use a pseudo trigger NONE to indicate that a transition has no trigger event.
guard(t): a guard expression. Transition t can only be executed if the guard evaluates to true.
effect(t): an action which will be executed when performing transition t.

source(t) target(t)
trigger(t)
[guard(t)] /
effect(t)

Figure 16. The ingredients of a transition

2.1.21 Different states from the set source(t) must belong (directly or transitively) to different regions of an

AND-state (orthogonal substates) and the states of target(t) must also belong to different regions
(orthogonal substates).

2.1.22 A trigger can specify reception of a signal event (asynchronous communication) or a call event (for

triggered operation call) together with parameters which can be used in the guard and the following
actions.

2.1.23 The top state cannot be the source or the target of a transition.

Well-Formedness Rules

Here, we will define a collection of auxiliary notions which will be used to define well-formedness conditions on
statecharts, and which are necessary to define the effect of firing a transition. We also introduce the concept of
configurations describing maximal subset of states allowed to be concurrently active. We will first define the
smallest region where changes, due to the execution of a transition, may occur.

2.1.24 The least common ancestor lca(S) of a non-empty set S of states defines the closest state (w.r.t.

transitive containment of substates) which subsumes all states of S. As the root state top is the largest
ancestor of every state, lca(S) will exist for every subset S of states. It is defined by

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 31

 Public

1. lca(S) ≤ S (lca(S) is an ancestor of every state of S) and
2. ∀ ∈ states(SC) with ≤ S : ≤ lca(S) (lca(S) is minimal w.r.t. containment of other states, i.e.

youngest ancestor).

2.1.25 The least common OR-ancestor lca+(S) of a non-empty set S of states defines the youngest OR-state
(i.e. minimal w.r.t. containment of other states) which subsumes all states of S and is not contained in
S itself. If the least common ancestor is an OR-state not contained in S this is also the least common
OR-ancestor, otherwise, we pick the closest OR-state above the least common ancestor. As we require
that the top state is an OR-state, the least common OR-ancestor exists for every subset of states not
containing the top state. If top ∈ S, then we define lca+(S) = top. Hence, the least common OR-
ancestor is defined as follows

2.1.26 Two states s and s' are orthogonal, denoted by s ⊥ s' , if they belong (directly or by transitivity) to

different regions of an AND-states, i.e. they are not comparable w.r.t. the child* relation and their
common ancestor is an AND-state.

s ⊥ s' iff ¬ (s ≤ s' or s' ≤ s) and mode(lca({s, s'})) = AND .

A set S of states is called orthogonal, denoted by ⊥ (S), if the states of S are pairwise orthogonal.

2.1.27 A set of states S ⊆ states(SC) is called consistent, denoted by ↓ (S) iff every two states s, s' of S are
either related by the child* relation � i.e. s ≤ s' or s' ≤ s � or orthogonal.

2.1.28 A state configuration sc is a maximal consistent set of states.

2.1.29 The scope of a transition t , denoted by scope(t) , is the smallest range of states which is affected by

firing the transition t . It is defined as the OR-state which is the lca+ of the source and target states of
the transition. As the target of a transition may also contain some history connectors, we replace these
pseudo states by their enclosing OR-states to compute the common ancestor. For this aim, we introduce
the transcription function

st: 2states(SC) ∪ hist(SC) → 2states(SC) ,

defined as follows (where hist(SC) ⊆ pstates(SC) denotes the set of history connectors):

∀ S ⊆ states(SC) & C ⊆ hist(SC) : st(S ∪ C) = S ∪ {state(h) | h ∈ C}

then the scope of a transition t is
scope(t) = lca+(source(t) ∪ st(target(t))) .

2.1.30 Given a consistent set S ⊆ states(SC) , the default completion, denoted by dcompl(S) , is the smallest

set S’ such that
- S ⊆ S’ ,
- If s ∈ S’ and s ≠ top , then father(s) ∈ S’ ,
- If s ∈ S’ , mode(s) = OR and child+(s) ∩ S = Ø , then default(s) ∈ S’ ,
- If s ∈ S’ and mode(s) = AND, then child(s) ⊆ S’ .

The partial default completion below a given state s is given by

pdcompl(s) = dcompl({s}) ∩ { s' | s ≤ s' }

The completion of a consistent set of states w.r.t. history connectors will be defined below.

2.1.31 Two transitions are consistent if they are active in two orthogonal regions, i.e. if their scopes are

orthogonal.

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 32

 Public

↓ (t1, t2) iff scope(t1) ⊥ scope(t2)

This notion can be extended to a set of transitions. A set T of transitions is consistent, denoted by ↓ (T)
iff the transitions of T are pairwise consistent.

2.1.32 If a set of possible executable transitions is not consistent, we will use an assignment of transition
priorities to select a consistent subset. The priority of a transition is specified by the depth of its
innermost source state:

prio : T → Ν
prio(t) = max{ depth(s) | s ∈ source(t) } 2

s

s3

s4

s2
s12

s11

t1
t2

Figure 17. Priority of transitions: t1 has a higher priority than t2

2.1.33 A statechart SC is well-formed � denoted wff(SC) � iff for all transitions t the following holds

- ↓ (source(t)) and ↓ (st(target(t))
- ∀ s ∈ source(t) : mode(s) = OR � ∀ s' : s < s' � s' ∉ source(t)
- ∀ s ∈ target(t) ∩ states(SC) : mode(s) = OR � ∀ s' : s < s' � s' ∉ target(t)
- ∀ h ∈ target(t) ∩ hist(SC): ∀ s' : state(h) < s' � s' ∉ target(t)
- top ∉ source(t) ∪ target(t)

In the rest of this paper we will only consider well-formed statecharts.

Effects of History Connectors

2.1.34 A history configuration hc is a set S of states such that for every OR-state s set S contains a child s’ ∈

child(s). A history configuration hc can be also defined as a function over all OR-states
hc : { s | s ∈ states(SC) and mode(s) = OR } → states(SC)

with hc(s) ∈ child(s).

2.1.35 The default completion dcompl is extended by a function hcompl for handling the history connectors.

2.1.35.1 The state completion for a shallowHistory vertex h and a history configuration hc is defined by
hcompl(h, hc) = {state(h), hc(state(h)) }

2.1.35.2 For a deepHistory vertex h and a history configuration hc , we define their state completion
 hcompl(h, hc) = S, where S is the smallest subset of states satisfying
 state(h) ≤ S
 state(h) ∈ S

• 2 The priority of a transition is defined on its source state: a transition originating from a substate has higher

priority than a conflicting transition originating from any of its containing states. The priority of joined
transitions is defined by the priority of the transition with the most transitively nested source state.

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 33

 Public

if s ∈ S and mode(s) = AND then child(s) ⊆ S
 if s ∈ S and mode(s) = OR then hc(s) ∈ S

2.1.35.3 For a set H of history connectors the completion set is given by

(,) : (,)
h H

hcompl H hc hcompl h hc
∈

= U

2.1.36 An extended state configuration ecs is a pair consisting of a state configuration and a history
configuration ecs = <sc, hc>.

2.1.37 The execution of a transition t in an extended state configuration <sc, hc> with source(t) ⊆ sc will lead

to a successor configuration esc’ = <sc’, hc’> which is defined by the following:

2.1.37.1 States which are exited when performing a transition t starting from a state configutarion sc:
exited(t, sc) = { s ∈ sc | lca(source(t)) ≤ s }.

2.1.37.2 The states entered after the execution of t from a state configuration sc w.r.t. function hc:
entered(t, sc, hc) = dcompl(sc \ exited(t, sc) ∪ st(target(t)) ∪ hcompl(hist(target(t)), hc)) \ (sc \
exited(t, sc))
where hist(target(t)) = target(t) ∩ hist(SC).

2.1.37.3 The successor state configuration sc’ is given by
sc’ = dcompl(sc \ exited(t, sc) ∪ entered(t, sc, hc))

2.1.37.4 And the new history configuration hc’ is given by

2.2 Flattening the Statechart

In chapter 1 the semantics of UML models is given with respect to a flat statechart. This was done to concentrate
on the main semantical issues discussed in chapter 1 and to avoid an overloading of that chapter with the
orthogonal concepts of hierarchical state machines. In this section we describe how to flatten a statechart without
changing its behaviour.

Given a statechart SC the flattened statechart flattened(SC) is given by

2.2.1 states(flattened(SC)) = {<sc, hc> | <sc, hc> is an extended state configuration of SC}

2.2.2 trans(flattened(SC)) = { t’ = <t, sc, hc> | t ∈ trans(SC), <sc, hc> is an extended state configuration of

SC, source(t) ⊆ sc } with
• source(<t, sc, hc>) = {<sc, hc>}
• target(<t, sc, hc>) = {<sc’, hc’>} where <sc’, hc’> is the successor configuration after executing t

from the configuration <sc, hc>
• trigger(<t, sc, hc>) = trigger(t)
• guard(<t, sc, hc>) = guard (t)
• effect(<t, sc, hc>) = exit(sc, t); effect(t); enter(sc, hc, t)

2.2.3 The initial state of flattened(SC) is given by <sc0, hc0>, where sc0 is the initial state configuration
obtained by the default completion of the top state

sc0 = dcompl({top})
and hc0 is given by the default states

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 34

 Public

hc0(s) = default(s) 3

Flattening the statechart we cannot associate a unique exit action (enter action) to a state of the obtained state
machine. Therefore, the corresponding actions are lifted to the transition.

2.2.4 The action exit(sc, t) is given by a sequence of the actions exit(s), where s ∈ exited(t, sc). The order

should be from innermost states to outermost states.

2.2.4.1 exit(sc, t) = α1; �; αn where
• n = sizeof(exited(t, sc))
• for each s ∈ exited(t, sc) there exists an index I(s) ∈ {1, �, n} with αI(s) = exit(s)
• if s ≠ s’ then I(s) ≠ I(s’)
• s ≤ s’ then I(s) ≥ I(s’)

2.2.4.2 The action sequence exit(sc, t) can also be defined recursively by

2.2.4.2.1 exit(sc, t) = exit(top, sc, t)
2.2.4.2.2 exit(s, sc, t) =

if mode(s) = SIMPLE then
if s ∈ exited(t, sc) then exit(s) else nil fi

else if mode(s) = OR then
let {s’} = sc ∩ child(s)
if s ∈ exited(t, sc) then exit(s’, sc, t); exit(s) else exit(s’, sc, t) fi

else // mode(s) = AND //
let child(s) = {s1, …, sk}
if s ∈ exited(t, sc) then exit(s1, sc, t); …; exit(sk, sc, t); exit(s)
else exit(s1, sc, t);…; exit(sk, sc, t) fi

Note that in the case of an AND-state the ordering of the actions of the orthogonal substates are
arbitrary.

2.2.5 The action enter(sc,hc, t) is given by a sequence of the actions enter(s), where s ∈ entered(t, sc, hc). The
order should be from outermost states to innermost states.

2.2.5.1 enter(sc, hc, t) = α1; �; αn where

• n = sizeof(entered(t, sc, hc))
• for each s ∈ entered(t, sc, hc) there exists an index I(s) ∈ {1, �, n} with αI(s) = enter(s)
• if s ≠ s’ then I(s) ≠ I(s’)
• s ≤ s’ then I(s) ≤ I(s’)

2.2.5.2 The action sequence enter(sc, hc, t) can also be defined recursively by

2.2.5.2.1 enter(sc, hc, t) = enter(top, sc, hc, t)
2.2.5.2.2 enter(s, sc, hc, t) =

if mode(s) = SIMPLE then
if s ∈ entered(t, sc, hc) then enter(s) else nil fi

else if mode(s) = OR then
let {s’} = sc ∩ child(s)
if s ∈ entered(t, sc, hc) then enter(s); enter(s’, sc, hc, t)

else enter(s’, sc, hc, t) fi
else // mode(s) = AND //

let child(s) = {s1, …, sk}
if s ∈ entered(t, sc, hc) then
 enter(s); enter(s1, sc, hc, t); …; enter(sk, sc, hc, t)

else enter(s1, sc, hc, t); …; enter(sk, sc, hc, t) fi

• 3 This is a simplified approach. UML allows to specify an initial value for a history connector. Furthermore,

without specifying an initial history state it is only allowed to enter an OR-state through the history
connector whenever the state machine has been exited that OR-state sometimes in the past.

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 35

 Public

Note that in the case of an AND-state the ordering of the actions of the orthogonal
substates are arbitrary.

Splitting complex transitions

We define a transformation of statecharts in such a way that every transition can only perform one simple action
(assignment, emitting an event, sending a reply etc.). Using this transformation we avoid that a system is blocked
between two state configuration (waiting on the termination of an operation call).

The basic idea is to replace

source(t) target(t)
trigger(t)
[guard(t)] /
α1; …; αk

by

source(t)
trigger(t)
[guard(t)] /
α1

target(t) / α2 . . . / αk

To avoid that some other transition is enabled when inside the execution of such an action block we have to
introduce some kind of semaphore, which blocks other transitions to be executed. To do this every transition will
obtain an additional guard not(inside_trans).
Splitting a complex action into simple parts will first set this Boolean variable to true. At the end that variable
will be reset to false. This will avoid that another transition will be started when being in the middle of another
one. That is, we perform the following transformation for each transition by introducing new states:

source(t)

trigger(t)
 [guard(t) and
not(inside_trans)] /
inside_trans = true target(t) / α1 . . . / αk / inside_trans = false

3 Summary: OMEGA-UML Restrictions

In this report a subset of UML � Omega-subset � is defined, for which a formal semantics is given. This
semantics is defined at three levels. Section 1.2 has described informally an operational semantics (abstract level)
of the chosen subset. Section 1.3 describes how the Omega-subset can be represented by more restricted subset
of UML � Kernel language (�preprocessing semantics�). Finally, Section 1.4 gives a formal semantics for the
Kernel language in terms of symbolic transition systems.

Figure 18. UML subsets

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 36

 Public

Note that the Kernel language is internal format, and Omega-subset (partially) specifies the language for
costumers. Whereas the Kernel language is defined in Section 1.4 via variable sconf, the Omega-subset can be
defined by the following list of restrictions.
First, for type usage we will allow only classes, enumerations, references to objects and such predefined types
as integer, boolean, character. This types can be used for the constructors array and records.

3.1. Classes and Associations
3.1.1. No abstract classes (no abstract operations).
3.1.2. Currently, no stereotypes in the Omega-subset. Stereotypes can appear in extensions of the current

language.
3.1.3. The only relations between classes: generalization, composition, aggregation, and (neighbour)

association.
3.1.4. No association classes.
3.1.5. There is the root class for every (component) model � the maximal class under composition and

aggregation relation (↵ ∪ ⊥ ∪ ↵ w ∪ ⊥ w)*, which is active.
3.1.6. If an association relation is n-ary then only one class is the root-end, having navigable and visible

end-points (all other classes). This root is navigable and visible in any of its end-points iff it is
navigable and visible in all its end-points.

3.1.7. The composite association defines a DAG.
3.1.8. If ac_id.agr = composite then for all ac_id.cj ∈ ac_id.end_points :

• ac_id.cj.mult ∈ {n, *}, n>0.
• ac_id.cj.navigability = true
• ac_id.cj.changeability = frozen if ac_id.cj.mult = n OR

ac_id.cj.changeability = add_only if ac_id.cj.mult = *
• ac_id.root.mult = 1 and ac_id.root.changeability = frozen.

3.1.9. If ac_id.agr = aggregate then for all ac_id.cj ∈ ac_id.end_points :
• ac_id.cj.mult ∈ {n, *, [m,n]}, m, n>0.
• ac_id.cj.navigability = true
• ac_id.root.mult = 1 and ac_id.root.changeability = frozen.

3.1.10. If ac_id.agr = neighbour then:
• for all ac_id.cj ∈ ac_id.end_points : ac_id.cj.mult ∈ {n, *, [m,n]}, m, n>0.
• ac_id.root.mult = ∈ {n, *, [m,n]}, m, n>0.

1.11 No sharing of weak components between several weak composites in run-time.

3.2. Operations, Events and Attributes
3.2.1. No naming conflicts of operations, attributes, classes and associations names � e.g., in multiple

inheritance.
3.2.2. Currently we support only two types of events: signal and call events. Signal events have public

visibility.
3.2.3. Primitive operations do not call triggered operations.
3.2.4. A dependency graph of operation calls is tree-like (without recursions).
3.2.5. Triggered operations are guarded or sequential.
3.2.6. Primitive operations are sequential or free of side effects.
3.2.7. If a signal s1 is generalization of signal s2, then the list of parameters of s1 is a subset of that of s2.
3.2.8. No priorities on signals, all signals are processed in FIFO-order.
3.2.9. For all c ∈ C \ A operations create_c, destroy_c ∈ c´ ⇔ (c↵ c´ ∨ c⊥ c´ ∨ c↵ w c´ ∨ c⊥ w c´).

3.3. Action Language
3.3.1. No variable declaration within operation bodies (all declarations should be specified at the

level of class definition, i.e. as attributes with the desired visibility).
3.3.2. Restricted set of primitive actions and constructs (only those described in Section 1.1)
3.3.3. For all navigation expression a0*.a1*�..an* (n ≥ 0):
• all references a0*,�, an-1* are association role names (can be default names)
• these references and operation (or attribute, resp.) an* are visible in the current class.

IST/33522/WP 1.1/D1.1.2
A Formal Semantics for a UML Kernel Language Version 1.2

06/01/03 37

 Public

3.3.4. For all n ≥ 0 and assignments a0*.a1*�..an* := value we require that an* is a basic or
navigation attribute. If an* is a reference then the corresponding association end has attribute
an*.changeability ∈ {changeable, add_only}.

3.4. Statecharts
3.4.1. Every statechart must have a distinguished top state which is of mode OR.
3.4.2. Pseudostates Join, Fork, Junction and Choice are not considered
3.4.3. do-actions in states are not considered.
3.4.4. The priorities of transitions rise from outmost to innermost source state, meaning that a
transition originating from a substate has higher priority than a conflicting transition originating from any of
its containing states.

3.4.5. If a class inherits from several classes, then only one of the generalized classes has statechart or
generalized classes have equal statecharts. If a new statechart is specified in a specialized class, then it
completely overwrites any statechart from its generalized class, i.e. the delegation of signal and call events
(to the definition of their reception in another class) is not supported.

References
[1] Object Management Group Unified Modelling Language Specification, v 1.4, September, 2001.
[2] Object Management Group. UML 1.4 with Action Semantics, Final Adopted Specification, ptc/02-01-

09, January, 2002.
[3] Manna, Z., Pnueli, A., The Temporal Logic of Reactive and Concurrent Systems: Specification.

Springer-Verlag, New York, 1991.
[4] A.S. Evans, A.N. Clark, Foundations of the Unified Modeling Language, In: 2nd Northern Formal

Methods Workshop, Ilkley, electronic Workshops in Computing, Springer-Verlag, 1998.
http://www.cs.york.ac.uk/puml/papers/nfmw97.pdf

[5] J-M. Bruel, R.B.France, Transforming UML models to formal specifications, In: UML'98 - Beyond the
notation, 1st Intenational Workshop, Mulhouse, France, LNCS 1618, Springer, 1998.

[6] E. Boerger, A. Cavarra, and E. Riccobene, An ASM Semantics for UML Activity Diagrams. In T. Rust
(editor) Proc. AMAST 2000, LNCS 1912, Springer-Verlag, 2000, p. 361-366.
http://citeseer.nj.nec.com/288568.html

[7] A.S.Evans, R.B.France, K.C.Lano, B.Rumpe, The UML as a formal modelling notation. In: UML'98 -
Beyond the notation, 1st Intenational Workshop, Mulhouse, France, LNCS 1618, Springer, 1998.

[8] A.S.Evans and S.Kent, Meta-modelling semantics of UML: the pUML approach. In: B.Rumpe and
R.B.France (editors), 2nd International Conference on the Unified Modeling Language, Colorado,
LNCS 1723, 1999.

[9] I. Ober, Harmonizing Design Languages with Object-oriented Extensions and an Executable Semantics,
PhD Thesis, Institut National Polytechnique de Toulouse, France, April 2001.

[10] S. Gerard, F. Terrier, Y. Tanguy, Using the Model Paradigm for Real-Time Systems Development:
ACCORD/UML, OOIS Workshops 2002, p.260-269.

[11] http://www.ilogix.com/products/rhapsody/
[12] http://www.rational.com/products/rose/index.jsp
[13] http://www.telelogic.com/products/tau/

http://citeseer.nj.nec.com/288568.html
http://www.ilogix.com/products/rhapsody/
http://www.rational.com/products/rose/index.jsp
http://www.telelogic.com/products/tau/

IST/33522/WP 1.1/D1.1.21.1.1
A Formal Semantics for a UML Kernel Language Version 1.0

06/01/03 38

 Public

Index

A
Action in states 29
 do 29
 entry 29, 34
 exit 29, 34
Action language 9
Active object 12
Actor 1
Aggregation 5
 weak 5, 8
 strong 5, 7
Association 5
 Aggregate 7
 bi-directional 8
 Composite 5, 7
 directed 6
 end-points 5

Neighbour 5, 8
root 5

Association ends 6
 predefined attributes 6
 Aggregation 6
 Changeability 6
 Multiplicity 6
 Name (= role) 6, 8

Navigability 6
Ordered 6

 Visibility 6
constraints 7

Asynchronous communication 4
Attribut 2
 implicit 17

Type of an attribute 2
 predefined 2
auxiliary pointer 9

 basic 9
navigation 9

C
Callee role 14
Caller role 15
Class 1
 active 2
 Interface 4
 Kind 2
 Mode 2

passive 2
 reactive 2
 simple 2
 compound 7
Completion set (for history connectors) 33
Composition 5, 7

Consistent set (of states) 31
Constructor 3

D
Default completion 31

partial 31
Default substate 28
Deferred events 29
Destructor 3
Direct substate 27
Driver role 14

E
Event 2, 10
 Call event 2

Signal event 2
Execution scheme 13
Extended state configuration 33

F
Flat state machine 11
Flattened statechart 33

G
Generalisation 5
 of signals 5
Guard 11
Guarded trigger 11

H
History configuration 32
History connector 28
 completion set 33

DeepHistory 28
 ShallowHistory 28

state completion 32

I
Implicit attributes 17
 self 17

uplink 17
Implicit operations 17
Interface 4
Interleaving 14
 of execution 15

L
Least common ancestor 30
Least common OR-ancestor 31
Logical channel 16
 System variable 22

IST/33522/WP 1.1/D1.1.21.1.1
A Formal Semantics for a UML Kernel Language Version 1.0

06/01/03 39

 Public

N
Navigation expression 10
Neighbour relation 5, 8

O
Operation 2
 Concurrency 3
 concurrent 3
 guarded 3
 sequential 3
 create_c() 3, 9
 destroy_c(obj) 3, 10

method 2
primitive 2

 triggered 2
 Type of an operation 2
Orthogonal set (of states) 31

P
Partial default completion 31
Pending request table 22
Pseudostate 28
 Choice 28

DeepHistory 28
 Fork 28
 History connector 28
 Initial 28
 Join 28
 Junction 28
 kind 28
 ShallowHistory 28

R
Ready set 16
Reference 2
Region 27
Relations between classes 4
 Generalisation 5
Run-to-completion step 12, 13

S
Scope of transition 31
Signal 2, 4

dispatcher 2, 12
inheritance 5
Type of a signal 4

Specialisation 5
State 27
 AND-state 27

composite 27
 concurrent 27
 substate (direct) 27
 default 28
 father 27

 final 27
 mode 27

pseudostate 27, 28
OR-state 27
orthogonal 31
simple 27
stable 14, 15
top 28
vertices 27

State completion function 32
State configuration 29, 31
 extended 33
Statechart 2, 27
 flattened 33

well-formed 32
Symbolic transition system 20
Synchronous execution 3
System configuration 21
System variables 20
 current system configuration 21
 object status 21
 pending request table 22

T
Task 12
Thread (of control) 12

single thread 14
Transition 27, 29
 scope 31
 consistent 31
 priority 32
Trigger

event 10
guarded 11

Triggered operation 2

U
UML model 11

V
Visibility 3

of association ends 6
of operations and attributes 3

 private 3
 protected 3
 public 3

	Introduction
	Active Objects
	Definition of the Kernel Model
	Classes and their constituents
	Class Interfaces
	Static structure: relations between classes
	Action Language
	Flat UML state-machines
	UML model

	Design Decisions
	“Preprocessing” Semantics of the Omega-subset
	Introduction of implicit attributes and operations
	Getting rid of generalisation
	Getting rid of composites

	Formal Semantics of the Kernel Language
	System Variables
	Definition of the Transition Predicate
	Initial condition on variables

	UML Statecharts
	Constituents of Statecharts
	State Vertices
	Transitions
	Well-Formedness Rules
	Effects of History Connectors

	Flattening the Statechart
	Splitting complex transitions

	Summary: OMEGA-UML Restrictions
	Classes and Associations
	Operations, Events and Attributes
	Action Language
	Statecharts

	References
	Index

