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Abstract :   

This report defines a sufficiently expressive sublanguage of the behavioural modelling 
constructs of UML allowing to capture industrial real time applications. Covered 
aspects include in particular the concept of Active Objects, polymorphism as well as a 
detailed presentation of UML statecharts.  For the chosen restrictive sublanguage, the 
zero-time semantics is given at two levels of abstractions: defined as an execution 
scheme and as a formal representation in terms of symbolic transition systems. 
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Kernel Model for Behaviour Description 

Introduction 
 

Currently, standard UML does not provide completely formal semantics. In the specification of the standard 
UML 1.4  [1], the given semantics is  incomplete and static: it is said that the meanings of the constructs are 
defined using natural language (p.2-9). This causes an ambiguity in the definition of computation within a UML 
model. Although [2] gives the semantics of a part of UML (action language) in the terms of UML metamodel, 
this is not sufficient for the formal verification, because it is still incomplete and not formal.  The existing UML 
tools (e.g. Rhapsody [11], Rational Rose [12], TAU [13]) implement internally some semantics with their 
compilers and/or simulators, which differ from tool to tool.  There is a number of papers investigating UML 
semantics. Thus, for example [7] motivates the need for a formal semantics for UML. The approach from [10] 
considers the UML semantic in terms of Time Object Model, but it focuses more on the methodology than on 
formal semantics. The articles [4] and [5] outline formalising UML by translating class diagrams into Z 
specifications, thus giving semantics only for static part of the UML models. The paper [8] describes the pUML 
approach introducing denotational semantics into the UML metamodel, which places emphasis on building a 
precise core semantics for the UML but without accent on real time. The paper [9] gives the ASM semantics for 
the UML with OMG actions definition based on the metamodel, but it does not treat statemachines, whereas [6] 
adapts and extends ASMs to get to UML state-machines. In this proposed semantics, statemachines are 
disconnected from the rest of the UML. 

Thus the aim of this report is to select a sufficiently expressive sublanguage, allowing to capture real-time 
application, and specify formal semantics of the chosen part of UML. This part of the deliverable provides a 
zero-time semantics, concentrating only on the way of object communications and computations in the system as 
sequences of actions without time concepts and architectural description. For breaking down complexity, the 
report is split into three chapters. 

The first chapter focuses on all intricacies of classes, operations, events, class diagrams,  using only flat UML 
state machines. It specifies the way of modelling a quite expressive sublanguage of UML into one more 
restrictive but allowing to specify a formal semantics.  

The second chapter concentrates on the behaviour of a single active object using the full complexity of UML 
statecharts. It also discusses how to transform such complex statecharts into flat state machines, considered in the 
first section with their fully defined semantics. 

The third chapter summaries the definition of the Omega-subset of UML by listing the restrictions on the 
common UML notions. This is done for more suitable usage of the Omega-subset by customers.  

1 Active Objects 

1.1 Definition of the Kernel Model 
In this paper, we describe a subclass of the UML language [1], called Omega-subset. We will specify explicitly 
all model elements and their constituents in the profile of the considered kernel models. 
 
Classes and their constituents 
 
1.1.1. We consider an object system created from a finite set of classes  C, and use small  c  as 

metavariable for classes. We distinguish a special subset A ⊂  C called actors to specify behaviour 
external to the system. 
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Figure 1. Class constituents 

 
1.1.2. Each class  c   has associated a set of attributes  c.attr , which we assume to be strongly typed. We 

use small  a  as metavariable for attributes. For the sake of this discussion, types can be either 
class identifiers, in which case we also refer to such an attribute as a reference, pointing to an 
instance of the class defined as its type, or some predefined types � like (array of) integer, 
boolean, char � and definable enumeration types whose internal structure is not relevant in the 
context of this paper. 

 
1.1.3. Each class can either be active or passive. Active classes own their own thread of control (defined 

in Section 1.2.), their instances come equipped with their own  signal - dispatcher (see below), 
which in particular will maintain all signals directed to this instance. In contrast, passive classes 
only execute on behalf of other objects, i.e. they cannot initiate any computation by themselves. 
Once a passive object has been activated it can initiates methods calls to other objects. We refer 
to this implicit attribute of a class c as its mode, technically denoted by c.mode. 

 
1.1.4. A reactive class is a class which can process events. Event-processing is defined by a statechart. 

In this paper, we consider only two types of events: signals (asynchronous, also called signal 
events) and call events (synchronous). We call a class simple, if it is non-reactive. Technically, we 
associate with a class c an implicit attribute c.kind , telling us whether c is reactive or simple. We 
require all reactive classes to be parts of active ones (see below the composition relation) and 
direct their signals to the corresponding signal-dispatcher (specified in Section 1.2). 

 
1.1.5. With each class we associate a set c.op of operations, which the object is willing to serve. 

Operations are used for synchronous communications. Operations may be parameterised, and are 
seen as always returning a value � op.return � including possibly the unique value nil of the return 
type (). To specify the name space of an operation op1 � if op1 is defined in different classes � we 
will also refer to this operation as c::op1 where c is a class name such that op1 ∈ c.op. With each 
operation op we associate a list op.param of its parameters, which can be empty. The type op.type 
of an operation op defines the type of its parameters as well as the result type (also called 
operation signature): op.type = (a1:type1, a2:type2, �, an:typen; op.return:type), where 
(a1,a2,…,an)=op.param. In the current version we consider only input parameters (no output 
parameters). 

 
1.1.6. We distinguish between primitive operations, whose implementation is given by a piece of code 

(in this paper assumed to be given in the restricted action language described below), and 
triggered operations, whose implementations are given in a statechart (by the corresponding call 
events). 

 
1.1.7. For each primitive operation op we assume as given its method op.meth as a statement of the 

action language, involving only attributes visible in the containing class (see below) and formal 
parameters of the method � written as op.meth= {<action_sequence>} for some sequence of 
primitive actions and statements <action_sequence> specified in action language. For each 
triggered operation op we assume that the statechart processes the corresponding call event op 
with a return value. 

 



IST/33522/WP 1.1/D1.1.2 
A Formal Semantics for a UML Kernel Language  Version 1.2 
 

 
06/01/03  3 

 Public 

1.1.8. A primitive operation may not call a triggered operation. Primitive operations have additional 
implicit attribute op.virt with values from {virtual, non_virtual} to specify the way of the 
delegation for operation call w.r.t. inheritance relation (see below). If op1.virt = virtual, then by 
any call of operation op1  from an object ob1 of  class c � where op1∈  c.op � the method defined 
in the most specialised class c´ (i.e. inheriting from c) will be executed, where ob1 is also an 
object of class c´. If op1.virt=non_virtual and an object ob1 is considered as an object of a 
generalised class c, then the method defined exactly in the class c will be executed by a call of 
op1 from ob1. 

 
1.1.9. Call trees of primitive operations must be well-founded, i.e. there is no recursive calls. 
 
1.1.10. Operation calls are executed synchronously, that is, the caller is blocked until reception of the 

return value, in a sense discussed in more detail in the section on semantics. 
 
1.1.11. In the context of multiple objects, the concurrency attribute op.conc tells us, how simultaneous 

request of multiple objects to execute a given operation op are to be handled. This can take values 
in the set {sequential, guarded, concurrent}, with intended meaning as follows: 

 
1.1.11.1.  If an operation op  of  class  c  is guarded, then the implementation must ensure the 

following predicate mutex(o, op)  for any instance  o  of class  c: 
“no other thread of control is active in  o  while executing  op”. 

 
1.1.11.2. If the operation  op  of class  c  is sequential, than the context of any invocation of op in 

any instance  o  of  c  must guarantee mechanisms for mutex(o, op). 
 
1.1.11.3. If the operation is concurrent, than there are no restrictions regarding invocations of  op. 

 
1.1.12. In the current version of the paper, we require all triggered operations to be guarded or sequential. 
 
1.1.13. We assume a set of predefined primitive operations for all predefined types. 
 
1.1.14. In the current version of the paper, we assume that primitive operations are either sequential or 

free of side-effects (which is also called query). 
 
1.1.15. Each class comes with the following predefined operations.  create_c(ref:c): c, returns the 

identity of the created instance of class c, and initialises unique implicitly defined attribute self (in 
the newly created object) with the identity of the created instance. We will write create_c() 
(without parameters) as a shortcut for create_c(nil). We will use this operation with actual 
parameters different from nil to describe a creation of objects with respect to the generalisation 
relation (see below). Operation  destroy_c(ref: c): () kills the object denoted by its actual 
parameter. 

 
1.1.16. Each class c may contain an constructor resp. destructor  c.construct (resp. c.destruct) to specify 

actions needed to be invoked during the creation resp. destruction of each object of class c. Note 
that constructor and destructor are special kinds of primitive operations, i.e. they are defined using 
the action language described below. The constructor c.construct  is invoked at creation time of 
the object (by any invocation of operation create_c ), the destructor c.destruct  is executed at 
destruction time (by an invocation of operation destroy_c).  

 
1.1.17. Each class defines the visibility of its attributes and operations, which can either be public, 

private, or protected. If an attribute or an operation is private, then it is only visible within the 
class itself (can be accessed by objects of this class). If it is public, then its visibility is 
unrestricted, hence any instance of any class can read and modify a public attribute, and any 
instance of any class can call a public operation. If an attribute or an operation is protected, then it 
is known to the class itself and any class inheriting from the class. Thus a protected attribute a of 
an instance of class c can be modified by an instance of class c´ provided c generalises c´ (see 
below the definition of class generalisation).  



IST/33522/WP 1.1/D1.1.2 
A Formal Semantics for a UML Kernel Language  Version 1.2 
 

 
06/01/03  4 

 Public 

 
1.1.18. We assume as given a set Sig of signals (asynchronous messages). UML views signals as classes, 

in particular allowing specialisation of signals. The type s.type of signal s defines the type of its 
parameters s.param. In the current version of this document, signals are assumed to be public and 
considered as a special kind of classes. 

 
1.1.19. Signal based communication is asynchronous � after emitting the signal, the sender continues 

processing without awaiting reception. 
 
1.1.20. In the current version of the paper we consider no priority relation on signals. 
 
1.1.21. With each class c we associate a set c.sig of signals, which its objects are willing to receive (can 

be handled by its statechart).  
 

                   

Figure 2. Example of a class 
Class Interfaces 
 
1.1.22. In extending the UML standard, we propose to associate with each class c its interface c.int. The 

interface of a class collects all attributes, operations, and signals, which can cross the class 
boundary. The definition of a class interface explicates, what aspects of an instance of a class are 
externally observable. This concept is mandatory as prerequisite in formally capturing 
requirements on the behaviours to be supported by a class, it also can be used to define interfaces 
in component based designs. Specifically, the interface lists: 

 
1.1.22.1. all public attributes;  
 
1.1.22.2. all public operations; 

 
1.1.22.3. all operation calls emitted to other objects;  

 
1.1.22.4. all signals declared as receptions (implying that any of their specialisation can be received 

as well). For signal s we denote s∈  c.int to specify that class c accepts reception of the 
signal s; 

 
1.1.22.5. all signals emitted. 

 
In the example from Fig. 2,  Window.int = {pos_x, pos_y, size_x, size_y; move(x,y), close(), evInput, evSave} is 
the class interface of  Window.  
 
Static structure: relations between classes 
 
1.1.23. A class diagram allows to capture information about instances of classes and their relationships. 

move(x,y).meth = 
{ move_x(x); 
   move_y(y)} 
 
 
close().implem = statechart 
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1.1.24. Classes can be related according to one of the following relations. 
 
1.1.25. If class c is a generalisation of class c´ ( c´ ⋖  c , and class c´ is a specialisation of class c), then  
 

1.1.25.1 c´ provides all operations and attributes (including association ends described below) of c � as 
well as its own � which are public  

 
1.1.25.2 c´ can call all operations of c which are public or protected 
 
1.1.25.3 c´ can read and modify all attributes of c which are public or protected 
 
1.1.25.4 if c is a reactive (active) class, then c´ is reactive (active, respectively). If a class inherits from 

several reactive classes, then all of them � immediate generalisations � must have the equal 
statecharts. 

 
1.1.25.5 A statechart from the generalised class can be overwritten by a statechart defined in a 

specialised class, specifying new event (signals and/or triggered operations) receptions.  
 

1.1.25.6 We use < to denote the transitive closure of the generalisation relationship (< = ⋖+). Relation 
⋖ is also called inheritance. 

1.1.26. We also consider the generalisation relation between signals. If signal s is a generalisation of 
signal s´ (s´ <  s), then the parameter list of signal s´ must contain all parameters of signal s  and 
all classes accepting reception of signal s accept signal s´ as well.  

 

 
 

Figure 3. Example of event inheritance 
 
The inheritance from Fig.3 imposes that the reception of evTypeSymbol, evSelect and evFormat can be accepted 
by all classes accepting event evInput. Lists of the parameters of the former events must contain the parameter list 
of evInput. 
 
1.1.27. Acquaintanceship between classes is captured only by establishing associations between classes. 

Parameterised names for object communication are not supported here. We distinguish three 
kinds of associations: neighbour, aggregate (also called weak aggregation) and composition (also 
known as strong aggregation). Association classes are not considered here. Each association is 
given by its identifier ac_id ∈  ASSOC_ID  and defined as a triple ac_id = (agr, root, end_points), 
where 

 
1.1.27.1 ac_id.agr ∈  {composite, aggregate, neighbour} is an association kind.  

1.1.27.2 ac_id.root ∈  C is a class possessing the knowledge about other classes. 

1.1.27.3 ac_id.end_points ⊆  C is a set of classes known by ac_id.root. 
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Figure 4. Definition of Association 

 
1.1.28. Every association end – ac_id.root and c ∈  ac_id.end_points � come equipped with a number of 

predefined attributes. 
 

1.1.28.1. The aggregation attribute takes values in the set {none, aggregate, composite} and thus 
actually defines the three classes of associations discussed above in their directed and 
multidirectional form. 

 
1.1.28.2. The multiplicity attribute takes a subset M of ΝΝΝΝ. It defines, how many instances of the class 

attached to this end are associated with the class attached to the opposite association end. 
The special case muliplicity = *  stands for unbounded multiplicity. There are certain well-
formedness-conditions on multiplicity. As an example, association ends attached to the 
compound class must have multiplicity one (while, in contrast, many instances of a 
constituent class might be required to exist). 

  
1.1.28.3. The visibility attribute takes values in the set {private, public, protected} and has the same 

semantics as visibility of class attributes and operations. If an association end is private, 
then it is only visible to the class attached to the opposite association end. If it is public, 
then other classes can get access to this association end if there are navigating associations 
through other public association ends to the class attached to this end. If it is protected, then 
classes specialising the class attached to the opposite association end inherit the visibility, 
i.e. can get access to this association end. 

 
1.1.28.4. An association end can be specified via attribute name, in which case the attached class(es) 

can be referred to under this name from the acquainted object. We assume availability of a 
default name (such as its_c) for an unnamed end associated with a class c. Named 
association ends are also called roles.  

 
1.1.28.5. If the multiplicity of an association end is greater than 1, the different instances of classes 

attached to this end at run-time can either be maintained as an ordered list, or a set, 
depending on the value � true or false � of an attribute ordered. If an association end with 
name its_cj is maintained as ordered list (its_cj.ordered = true), then we can refer to the 
instances of the class attached to this end as its_cj(1), its_cj(2) etc.  

 
1.1.28.6. The attribute changeability restricts ways, how association ends can be manipulated. If 

frozen, then they will maintain the references obtained at initialisation time. add_only 
allows to add new instances to the association end without ever deleting already associated 
instances. Only changeable association ends allow unrestricted modification of their 
references. 

 
1.1.28.7. The attribute navigability of type boolean. If the attribute is true then in the graphical 

representation of a directed association this is indicated by an arrowhead at the 

{The value of ac_id.agr is derived 
from  ac_id.root.aggregation} 
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corresponding association end (meaning that the attribute of the opposite association end is 
false). An association is bi-directional if attributes navigability of its both ends are true, in 
the graphical representation indicated by absence of arrowheads at both association ends. 

 
Association ends of different kinds of association have several constraints on the values of their 
attributes, as defined in the following three tables. 

 
Composite 
associations 
ac_id.agr=composite 

ac_id.root ac_id.cj ∈  ac_id.end_points 

aggregation composite none 
multiplicity 1 n > 0 , * 
changeability frozen If multiplicity = n then frozen, else 

add_only or changeable 
navigability unrestricted true 
visibility unrestricted unrestricted 
ordered not applicable prefer unordered  (ordered = false) 
name  (default) its_c where c = ac_id.root its_cj where cj ∈  ac_id.end_points 

 
 

Aggregate 
associations 
ac_id.agr=aggregate 

ac_id.root ac_id.cj ∈  ac_id.end_points 

aggregation aggregate none 
multiplicity 1 n > 0 , [m,n] ,* 
changeability frozen unrestricted 
navigability unrestricted true 
visibility unrestricted unrestricted 
ordered not applicable prefer unordered  (ordered = false) 
name  (default) its_c where c = ac_id.root its_cj where cj ∈  ac_id.end_points 

 
 

Neighbour 
associations 
ac_id.agr=neighbour 

ac_id.root ac_id.cj ∈  ac_id.end_points 

aggregation none none 
multiplicity n > 0 , [m,n] ,* n > 0 , [m,n] ,* 
changeability unrestricted unrestricted 
navigability unrestricted unrestricted 
visibility unrestricted unrestricted 
ordered prefer unordered  (ordered = false) prefer unordered  (ordered = false) 
name  (default) its_c where c = ac_id.root its_cj where cj ∈  ac_id.end_points 

 
 

1.1.29. Pragmatically, the omposite association is used to denote a “part of-” relationship. This entails, 
that creation of the compound object induces creation of its constituents (as long as their 
multiplicity is bounded). Similarly, killing a compound object induces killing of its constituents. 
The composite relation is also sometimes referred to as strong aggregation relation. We require, 
that only the compound object itself can create and destroy its parts. 

 
1.1.30. The composite association defines for a compound class c its constituent classes. We write  c´↵  c 

to denote that compound class c has (possibly multiple) instances of classes c´ as constituents, i.e. 
there is composite association ac_id such that c = ac_id.root and c´ ∈  ac_id.end_points. If 
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ac_id.root. navigability = true, this is denoted  as c´⊥  c. Selecting either ↵  or ⊥  makes the 
composite association directed resp. bi-directional. 

 
1.1.31. Acquaintance between classes in the aggregation association is defined as for composite classes. 

The aggregate association denotes a weaker form of grouping of a compound class, in that 
constituents are not created nor destroyed automatically at creation resp. destruction time (time 
when operation create_c() resp. destroy_c() is performed) of the compound object (of class c). 
We write c´ ↵ w c  (resp.  c´⊥ w c) to denote the weak aggregation relation between a compound 
class c and one of its constituent c´ (in its directed and bi-directional version, defined similar to 
that of composite association in 1.1.30). 

 
1.1.32. A compound (resp. aggregating) object always knows its constituent objects (the attribute 

navigability of the association end attached to a constituent class is true). If the composite (resp. 
aggregate) association is bi-directional, then all parts also know their compound object.  

 
1.1.33. We suggest to use strong aggregation whenever meaningful, and consider the weak aggregation 

specifying the �possibility� for creation resp. destruction of a weak constituent invoked from its 
aggregating object during run-time. 

 
1.1.34. Technically, neighbour association is a derived concept, defined in terms of the aggregation 

attributes of the association ends (see above). We explicitly name this type of association because 
of its relevance in defining the acquaintanceship relation between different parts of a system. 

 
1.1.35. We use  c´←c  to denote the directed neighbour relation between two classes, i.e. if there is 

neighbour association ac_id such that ac_id.root = c, c´∈  ac_id.end_points,   
ac_id.root.navigability = false  and ac_id.end_points(c´).navigability = true, i.e. it is only c who 
knows neighbour c´. In case of a bi-directional relation c´↔c, both neighbours know each other:  
ac_id.root.navigability = ac_id.end_points(c´).navigability = true. 

 
1.1.36. Technically, we will refer to association ends by the value of their name attributes (of type c ∈  C, 

where c is attached to the corresponding association end) and index if the multiplicity is greater 
than 1.  For all relations between classes we require that there is no clash of the association end 
names. This means for all classes c, c1, c2 and associations  ac_id1, ac_id2 ∈  ASSOC_ID   (c = 
ac_id1.root  &  c = ac_id2.root  &  c1∈  ac_id1.end-points  &  c2 ∈  ac_id2.end-points)  � 
ac_id1.end-points(c1).name ≠ ac_id2.end-points(c2).name.  We will include association ends as 
implicitly defined attributes in objects (see below). 

 

 
Figure 5. Example of a class diagram 
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In the example from Fig. 5, the following relations are pictured:  
Window ↔ InputDevice : bi-directional neighbour,  
DialogBox < Window :  DialogBox inherits from Window,  
DialogBox ⊥ w Window :  an object of class Window may create any number of instances of 
DialogBox, known under name ackn,  
Scrollbar↵   Window and clientArea ↵   Window :   one object of class clientArea and two objects 
of class Scrollbar are created at the creation time of an object of Window, the latter one knows 
objects of Scrollbar under default names itsScrollbar(1) and itsScrollbar(2).  

1.1.37. We propose to require, that an object can only communicate with those objects it knows through 
associations, so that the creator of an object knows its children.  

 
Action Language 
 
1.1.38. We propose a restricted action language subsuming the following features. All statements must 

comply to visibility restrictions as described above. We partition attributes of an object into the 
following three groups: 

1.1.38.1. Navigation attributes nv_a  are all attributes induced from association ends and implicit 
attribute self, introduced as attributes by the preprocessing steps (see Section 1.3). In the 
action language they are represented via a*, aj*   (a, a´ or aj in the definition below can 
also represent navigation attributes under additional constrains). 

1.1.38.2. Auxiliary pointer attributes p_a are typically user declared, and are used to temporary 
store pointers e.g. passed as parameters. They are not allowed to designate receivers of 
operation calls or signals and must be private. In the definition below they are represented 
via a or a´  (on the right sides of assignments).   

1.1.38.3. Basic attributes b_a are those of some basic predefined type, which are not references 
(represented via aj, a, and a´ in the definition below). 

  
1.1.39. We propose the following set of primitive actions. Here we describe actions with abstract syntax, 

just to give a list of action types and restrictions used inside primitive operations. These actions 
are basic in the sense that they can be mapped to different (programming or abstract) languages. 

 
1.1.39.1. Object creation:   a* := create_c()  for c ∈  C, creates a new instance of class  c, 

initialises implicit attribute self, and assigns the identity of the newly created object to the 
attribute  a*  of type pointer to class c´ (association end) with the following restriction: c α 
c´  where c´ is the current class containing the action and  α ∈  {↵ ,  ⊥ , ↵ w, ⊥ w}. 

  
1.1.39.2. Simple assignment:  a0 := <primitive expression>   involving a set of predefined 

primitive operations (excluding navigation expressions), local (to the object where it 
occurs) attributes, and possibly visible formal parameters, complying to type restrictions:  
a0 must be a basic attribute. 

 
1.1.39.3. Attribute values exchange:   a := a0*.a1*.....an*.a´  or  b0*.b1*....bn*.b := b´ where 

aj* and bj*  (0 ≤ j ≤ n) are navigation attributes complying to visibility restrictions, a´ is an  
attribute (of any kind) of the class pointed by an*  and  b is an attribute (basic or 
navigation) of the class pointed by bn*   �  both visible in the current class c´ containing the 
action. If a (or b)  is an association end, then  c α c´  where c = a.type  (or c = b.type, 
respectively) and  α ∈  {↵ w, ⊥ w, ←, ↔ }. 

 
1.1.39.4. Operation call:   a := a0*.a1*.....an*.!op(a1,...,ak)  with non-nil return value or  

a0*.a1*.....an*.!op(a1,...,ak)   with nil return value from the class instance pointed by an*, 
subject to restrictions on acquaintance between objects described above. 

1.1.39.5. Explicit operation call:   a := a0*.a1*.....an*.!c::op(a1,...,ak)  with non-nil return value or  
a0*.a1*.....an*.!c::op(a1,...,ak)   with nil return value from the object pointed by an* 
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(complying to visibility), which is an instance of a class c´ such that c´< c (c is a 
generalisation of c´). 

 
1.1.39.6. Setting return value:    return := a of an operation call. 

 
1.1.39.7.  Object destruction:   destroy(a*) denoted by the reference a* with the following 

restriction: c α c´  where c´ is the current class containing the action, c = a*.type  and  α ∈  
{↵ ,  ⊥ , ↵ w, ⊥ w}. Note that reaching the termination connector corresponds to   
destroy(self). 

 
1.1.39.8.  Signal emission:   a0*.a1*.....an*.!s(a1,...,ak)   to the class instance pointed by an*, 

subject to restrictions on acquaintance between objects described above. 
 
1.1.40. We call expressions a0*.a1*.....an*   navigation expression and require that they may only use 

navigation attributes. We propose to support sequential composition, branching, and (bounded or 
unbounded) iteration. The exact syntax for actions and control constructs is discussed in M2.2.1, 
Definition of the tool exchange format. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Example of legal operation definitions in class InputDevice 
 
 
Flat UML state-machines 
 
1.1.41. We restrict ourselves in this section to flat state-machines. Full UML statecharts are treated in 

Section 2 of this report. 
 
1.1.42. An event (or trigger event) in a state-machine is specified as one of the following 
 

1.1.42.1. s(p1, ..., pn) reception of signal s, local parameters  pj  matching s.type 
 
1.1.42.2. op(p1, ..., pn) acceptation of operation call  op (call event), local parameters pj  matching 

op.type 
 

op_position(x,y : int) : nil 
{ itsBox(1):= create_DialogBox(); 
its_Window(1):= itsBox(1); 
itsBox(1).op_resize(x); 
itsBox(1).op_resize(x,y); 
another_operation(x,y); } 

another_operation(x,y : int) : nil 
{ itsBox(2) := create_DialogBox(); 
  itsBox(2).area.op_clean(); 
  its_Window(1).op_resize(x,y); } 
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1.1.43. A guard is a boolean expression containing attributes and primitive operations of the current class 
(where it is used). The trivial guard is true, which is omitted in the graphical representation. 

 
1.1.44. A guarded trigger is a conjunction of a trigger event t and a guard b, written syntactically as t[b].  
 
1.1.45. A flat UML state-machine is a tuple 
 

sm = (Q, T, D, q0) 
where    
• Q     is a finite set of states 
• T ⊆  Q × ({<guarded trigger>}∪ {<guard>} ) × <primitive action> × Q is a finite set of 

transitions, where <primitive action> is an action with the syntax described above. 
• q0 ∈  Q   is the initial state 
• D : Q → ℘ (Sig)  gives for each state the set of deferred signals 

 

 
 

Figure 7.  Example of a flat state-machine 
 
UML model 
 
1.1.46. A UML model is a tuple  

M = (C, A, Sig, c0, ⊥ , ↵ , ↵ w, ⊥ w, ←, ↔, <, sm)  
where 

1.1.46.1. C   is a finite non-empty set of classes 
1.1.46.2. A⊂ C  is a non-empty set of actors 

We denote  C´ = C \ A a set of internal (system) classes  
1.1.46.3. Sig    is a finite set of signals 
1.1.46.4. c0∈  C´  is the root class (which we require to be active) 
1.1.46.5. <    is the generalisation relation between classes C´ or between     
                                               signals Sig 

1.1.46.6.       ⊥  ⊆  C´× C´ is the bi-directional composite relation between classes  
1.1.46.7.       ↵  ⊆  C´× C´ is the directed composite relation between classes 
1.1.46.8.      ↵ w⊆  C´× C is the directed aggregate relation between classes 
1.1.46.9.      ⊥ w⊆  C´× C is the bi-directional aggregate relation between classes 
1.1.46.10. ← ⊆ C × C is the directed neighbour relation between classes  
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1.1.46.11. ↔ ⊆ C × C is the bi-directional neighbour relation between classes  
1.1.46.12. sm  assigns to each reactive class c∈ C a UML state-machine 

such that 
- the root class is the maximal aggregating class: ∀  c∈  C´ (∀  c´∈  C´ ∀  α∈ {⊥ ,↵ , ↵ w, ⊥ w}  ¬ (c´α 

c) �  c↵ w c0) – i.e. all elements from C´ maximal in the weak and strong aggregation 
hierarchy are successors of c0 under (weak) aggregation 

- the relation of the composite association defines a DAG 
- no sharing of weak components between several weak composites are allowed to occur in run-

time: if class c relates is a weak component (related by weak aggregation) of both c1 and c2, 
then any instance o of class c will either be associated to an instance of class c1 or to an 
instance of class c2 (but not both even at different points of time) 

- in the multiple inheritance, there is no naming conflicts 
- for all classes c , all inter-object communication supported by the behavioural aspects of c (i.e. 

its operations, its entry- and exit-script, and potentially its statechart) is compliant to c.int, the 
class interface of c 

For uniformity, for every simple class c we assume sm(c)=({q}, ∅ , ∅ , q). 
 
1.1.47. Instances of a class � or memory allocations in run-time � are called objects. We will use obj∈  c 

or cl(obj)=c to denote that object obj is an instance of class c. Every object obj possess operations 
obj.op and attributes obj.attr defined in its class cl(obj) with values val(obj.attr) as well as state-
machine sm(obj)=sm(cl(obj)). 

1.2 Design Decisions 
In this section we describe informally the behaviour of the UML-models from the Omega-subset specified in the 
previous section.  
 
1.2.1. Intuitively, an active object (i.e., an instance of an active class) is like a signal-driven task, which 

processes its incoming requests in a first-in-first-out fashion. It comes equipped with a dispatcher, 
which picks the top-level signal from a  signal queue associated with the active object, and 
dispatches it for processing to either its own state-machine, or to one of the passive reactive 
objects associated with this active object. 

 
1.2.2. This association must be defined for each reactive object; we thus assume the existence of a 

mapping 
my_ac : {c ∈  C | c.kind = reactive }  →  {c ∈  C | c.mode = active }. 

Technically we associate with each class c an implicit attribute c.my_ac as reference to an active 
class controlling computations in objects of class c (dispatching signals at the correct time and 
performing operations). 

 
1.2.3. Typically, such association  (with role name my_ac)  is derived from the partial order induced by 

the transitive-reflexive closure of the composition relation R=(↵  ∪⊥ )*: for any class  c,  the initial 
(or default) value of c.my_ac is 

c.my_ac  = my_default_ac(c) = minR {c´ ∈  C | c´.mode = active ∧  cR c´ }. 
 

1.2.4. In the sequel, we assume, that the value of attribute  c.my_ac  is either explicitly or implicitly 
defined for each passive object  (clearly  c.my_ac = self  for each active class c), and will 
collectively refer to the set of all (passive) classes associated with an active class as its servants: 

servants(c) = my_ac-1(c)= { c´∈  C |   c´.my_ac  = c}. 
 
1.2.5. An important notion in the behavioural specification of concurrent systems is thread of control (or 

simply thread).  
1.2.5.1. A task is a logical group of objects, it corresponds to a unit of computation maintained by a 

RTOS (subject of scheduling for RTOS). 
1.2.5.2. Run-time correlate of a task is called thread. 
1.2.5.3. Each invocation of a task corresponds to activation of a thread which performs a sequence 

of actions corresponding to a run-to-completion step at the semantic level. 
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1.2.6. In the UML, task structure is defined by grouping at least one active object and possibly 

associated passive objects. Thus, threads are controlled by active objects. For this aim, an active 
object contains an operation execute() which engages a thread by performing actions from the 
associated objects from servants(c) � method calls, dispatching signal and call events. 

 
1.2.7. In this version we allow primitive operations called only in the scope of one task and we define 

inter-task communications via event sending (both signal and call events). Note that if a primitive 
operation calls are necessary in such communication, they can be represented (manually or 
automatically) as triggered operation by adding �self-loop� transitions to all states in the 
corresponding state-machine with operation name as trigger and operation method in the action 
part of the state-machine. 

 
 

Figure 8. Execution structure 
 
1.2.8. A fundamental concept for the execution semantics is the notion of a run-to-completion step. It is 

instructive to see the analogy of a run-to-completion step in sequential circuit design. In this 
domain, the circuits accepts new input values with the rising edge of the clock. These new values 
are propagated through the circuit; the time it takes for reaching the output of the circuit or new 
latches depends on gate delays and path length: at any intermediate point in time, some wires may 
have reached stable values, while the input is still propagated through other areas of the circuit, 
causing wires to switch values. In a well defined circuit, though, this propagation delay is 
bounded: eventually all wires will have taken values, which remain stable. It is only then that the 
clock will tick again, causing new values to be propagated through the circuit.  

 
1.2.9. In the UML context, reactive classes with their state-machines take the role of the sequential 

circuit, and state-configurations take the role of circuit wires. So, assuming initially a stable state-
configuration, the dispatcher picks a signal from a signal queue or triggered operation called from 
other thread and hands it over to the reactive class � this corresponds to the rising edge of the 
clock. The current state configuration will determine, how this input is processed. Lets assume the 
flat UML state machines introduced in the previous section. Assume, that there is a transition 
guarded by a trigger event matching the dispatched signal event or call event (and assume no local 
condition). Then this transition can be taken, toggling the �circuit input� one level. Consider the 
newly entered state. Assume, that we have a transition originating from this state, labelled with a 
local condition as guard which evaluates to true. Then � within the same run-to-completion-step � 
this transition will be taken, causing the state-machine to reach a new state. In a well designed 
state-machine, this propagation process will continue until a state is reached, from which all 
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originating transitions with only local conditions cannot be taken, since they evaluate to false � 
such a state is called a stable state, and it is exactly in such a situation, where we can allow a new 
clock tick � in our context: where we can accept a new event (signal or call), starting another run-
to-completion step. 

 
1.2.10. The proposed execution models ensures, that there is at most a single thread of control active in 

each object at each point in time, entailing that concurrent accesses must in some form be 
interleaved. We feel that violating this assumption leads to execution models, which are complex 
and incomprehensible, thus causing modelling errors. 

 
1.2.11. We take a standard interleaving semantics, in which all active objects are running asynchronously. 

In interleaving object executions, we have to decide on the level of granularity of interference, 
indeed a key design decision. In general,  verifying against an execution model supporting fine 
grained interference will yield stronger results, but raise the level of complexity of the model. In 
contrast, a coarse grained approach risks to hide interference possible in a real implementation, 
but will typically reduce the complexity of the model. Finding the right level is thus extremely 
critical. 

 
1.2.12. The proposed execution models specifies discrete time, where every clock tick corresponds to one 

run-to-completion step, which is considered atomic � i.e. not interruptible by input stimuli � and 
without duration: every action in the scope of  one run-to-completion step is supposed to be 
instantaneous. The execution with continuous time and duration of actions, allowing 
interrupt/exception, are described in the �Time Extensions in UML � (D1.1.2, part 3 from 
Verimag). 

 
1.2.13. To explain our approach we start with the trivial but nevertheless fundamental observation, that an 

instance can at any time be in one of two roles, to which we refer to as the driver- and callee role 
(Fig. 9), respectively. 

 
1.2.13.1.   The Driver role 

Assume that the object instance is in a stable state, in a sense to be made precise below. The 
instance will then consult its queue of pending (generated but not jet consumed) signals, and pick 
the top signal. Lets assume, that the current state of the instance is such, that an outgoing 
transition contains the dispatched signal as trigger event, and that the associated condition is true. 
Then a run-to-completion execution is initiated, in which the instance as initiator of this run to 
completion drives its execution: it can perform a primitive operation op called from an object of 
the same thread by executing  actions from its body (op.method), or it can emit a signal to any 
object, or it can call triggered operation from another object. Note that the driver stays in unstable 
state during the time when another object (callee) serves its call and can continue its execution 
only after the termination of the call (at the callee side). Driver can be either an active object or 
reactive one performing the current computation on behalf of an active object. 

 
1.2.13.2.   The Callee role 

The same object may � at a different point in time � be serving � directly or indirectly � some 
driver object in performing its run to completion, by executing an operation call �on its behalf�. 
Such incoming calls can only be taken at well defined points, related to the choice of granularity 
of interference. Assuming that an object has reached such an �interference point�, it is ready to 
accept a call of its operation  op  if one of the outgoing transitions in the current state is labelled 
with call event  op  and its associated condition is true. It will then execute the call, by evaluating 
all involved actions, possibly invoking other operations, and eventually reach a stable situation, 
thus completing the current call. Thus, as for signals, also call events (implementing triggered 
operations) induce a �run-to-completion�, taking the state-machine to a configuration where 
further steps are only possible by accepting an operation call or dispatching a signal.  Callee can 
be any object containing operation implementation. 
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Figure 9. Two roles of objects: Caller (= Driver) and Callee 
 

1.2.14. We interleave execution of different threads at a coarse level, and do not allow preemption of run 
to completion steps. This � in combination with the restriction to sequential operations or 
primitive operations free of side effects  � clearly increases understandability of the model.  
Regarding model complexity, the coarse grained interleaving should allow significant 
optimisations, since no external communication � neither through operations, nor signals � occurs 
during a completion run; all occurring communications relate to objects in callee role, under the 
control of the driving object. Thus, the callee does not accept any event nor method until it has 
reached a stable state. For the computations  within objects belonging to the same thread of 
control: the thread can re-enter an object for a primitive operation call at any time. 

 
1.2.15. Fig. 10 shows the two principle run-time states of an object. 

 

Signal_queue empty and 
no pending  operation call

stable

Process a 
transition

Dispatch 
event

No locally
enabled
transition

Accept
operation call

Decision whether to 
dispatch event or accept 

method call based on 
priorities

Locally
enabled transition  

Figure 10. Run-to-completion execution scheme 
 
1.2.16. Let us now define the concept of stability formally. A state q of reactive object  o � with state 

machine sm(obj) and attribute evaluation val(o.attr) � is stable if o is executing (has been created) 
and there is no locally enabled transition.  

 
stableval (q,o) ⇔ ∀ (q,l,γ,q´) ∈  sm(obj).T ∃  grd (∃ ev  l ≡ ev[grd] ∨  (l≡ grd  ∧  val(grd)=false)) 
 
Predicate stableval (q,o) characterises synchronisation points within one object o. 
 

1.2.17. We can associate with each state a predicate characterising the willingness of the object to accept 
an event (operation call or a signal) in this state as follows. 

 
readyval (o, q, ev) ⇔ ∃  q´, grd, γ  :  (q, ev[grd], γ, q´ ) ∈  sm.T ∧   val(grd)=true 
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We call ready set for an object state q defined as a set of events for which the predicate readyval 
(o, q, ev) = true. 
 

1.2.18. With these concepts, we can now elaborate our discussion of the dispatching process, assuming 
that o is stable in state q. If the top-signal of the queue is ready in this situation, then a new run-to-
completion step can be initiated in o. Otherwise, depending on whether  ev  is declared as 
deferred signal in state q (formally expressed as ev ∈  D(q) ), it would either be discarded (if not 
deferred) or maintained in the FIFO for later reconsideration (at the beginning of the next run-to-
completion step). 

 
1.2.19. It is important for real-time extensions to explicate, when �clock ticks� occur in the above 

situations. 
 

1.2.19.1. If the dispatched signal is discarded, then conceptually we consider this as a 
completion of a run-to-completion step (involving no processing). By selecting the next 
signal for dispatching, we initiate a new run-to-completion step, thus incrementing time. 

1.2.19.2. If the dispatched signal is deferred (and thus maintained in the FIFO buffer), we again 
�increment time�, by letting the dispatcher pick the next younger signal and passing it to the 
object for processing, also inducing a clock tick. 

 
1.2.20. As a modelling guideline, we suggest that signals for which persistency must be ensured are 

monitored in appropriate orthogonal components, thus ensuring, that they are in the ready set of 
all stable configurations. 

 
1.2.21. A similar problem arises for operation calls. Suppose, that object  o  is currently executing an 

operation call on behalf of active object   o1, and that this call completes. In case of pending 
operation calls to o by another object, such as o2 requesting a call of op,  the operating system 
will now grant access to this request (thus in fact giving higher priority to pending operation calls 
over signals). Now suppose, that in the current stable state, o is not ready for op. In the current 
UML model, this call is then considered �completed� - though it never executed! This effectively 
entails, that also triggered operation calls can be discarded.(with nil return) 

 
1.2.22. Again there are multiple ways to address this problem. First, we could enforce the same modelling 

guidelines, thus requiring, that all stable state-configurations offer transitions for all possible 
triggered operation calls. Again, this might be considered prohibitive from the modelling 
overhead � in which case the execution model must be changed, by only offering those operations 
to an object, for which it is ready. While this also would force us to give up the order of arrival of 
operation calls, we can in this case argue as follows that this should be acceptable. 

 
1.2.23. Call a logical channel a pair of acquainted objects. A minimal requirement on any reasonable 

implementation is, that it preserves the order of signals and operation calls along a logical 
channel. For signals, we have seen, that simply moving a signal to the tail of the queue would 
even potentially destroy this requirement. Regarding operation calls, we can exploit the fact, that 
the caller is suspended until arrival of the return value, thus the queue attached to the semaphore 
ensuring exclusive access to the object will never contain to request from the same object, thus 
bypassing its head in order to give preference to a younger operation call op´ for which o is ready 
will not violate the minimal ordering requirement. We thus propose in this case to actually change 
the execution model and only offer those operation calls, which are in the current ready set. This 
is the justification of storing all pending requests of operation calls in a table rather than in a 
queue. 

 
1.2.24. This solution is close to the rendezvous concept of ADA: both the caller and the callee have to 

agree on the call. One can in fact view a state  q  with outgoing transitions containing operations  
op1, ..., opn  as an accept statement  accept(cond1:op1, ..., condn:opn), where condj denote the 
guards of the corresponding transitions. 
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1.3 “Preprocessing” Semantics of the Omega-subset 
 
We use standard preprocessing techniques to compile the Omega-subset defined above to a small kernel language 
handled in the section on formal semantics. We will in particular compile away all relations. To be able to 
dynamically set up neighbour associations, preprocessing must create implicit operations for adding, initialising, 
updating and deleting association end points as specified below. 
 
Pre-processing comes in four parts. 
First, we extensively introduce what we call implicit attributes and implicit operations. Secondly, we model 
generalisation relation as association by introducing the implicit attributes uplink and downlink  changing the 
creation procedure for subclasses and mechanism of operation calls. In addition, to support polymorphism we 
replace user defined assignments with additional scripts checking the type of attributes. Thirdly, we extend user-
defined constructors and destructors with additional actions dealing with creation and destruction of composite 
objects. The combination of the introduction of implicit attributes and this third preprocessing stage eliminates 
the need to handle associations explicitly in the semantics.  Finally, we eliminate complex navigation expressions 
by introducing auxiliary attributes, reducing the level of de-referencing to at most one. In the scope of  one 
thread, we also inline recursively primitive operation bodies directly into transitions of statecharts containing the 
calls (possible due to the choice of sequential operations and queries, i.e. operations free of side effects). This 
trivial step is omitted in the definition below.   
 
Introduction of implicit attributes and operations 
 
1.3.1. For each class c we create an implicit attribute self of type c. 
 
1.3.2. If its_c1, ..., its_ck are (names of) navigable end-points of associations originating from class c or 

roots of associations with end-point in c, then 

1.3.2.1.  Class c has implicit attributes its_cj of type  

- cj ,  if the multiplicity of the corresponding end-points is 1;  

- set of cj ,  if the multiplicity of the corresponding end-points is greater than 1. 

1.3.2.2. Assume that c = ac_id.root and ac_id.cj ∈  ac_id.end_points (or cj = ac_id.root and 
ac_id.c ∈  ac_id.end_points, resp.) for some association ac_id. Then class c has implicitly 
defined unified operations for manipulating association ends with different multiplicity and 
different changeability attribute. 

1.3.2.2.1.  init_its_cj(id1:cj, …, idn:cj):()    if multiplicity of this end-point (named its_cj) is 
n∈ N. The function associates identifier attributes {id1, …, idn}= ID(ac_id.cj)  with 
objects of class cj so that it can be used to get access to the corresponding association 
ends as c.its_cj(id1),�, c.its_cj(idn). Note that if the ordered attribute of this end-
point is true, then there is an order  id1 < …< idn so that the identifier can be 
considered as numbers id1=1,…, idn=n. 

1.3.2.2.2. update_its_cj(idi , p:cj):()    if the changeability attribute of this end-point is 
changeable and idi∈   ID(ac_id.cj). The function changes the value of c.its_cj(idi) to 
new value of p. 

1.3.2.2.3. add_to_its_cj(idi, p:cj):()     if  the changeability attribute of this end-point is 
add_only or changeable and multiplicity is not a fixed number n∈ N. Then the new 
set of the identifiers is ID´(ac_id.cj)=ID(ac_id.cj) ∪  {idi}. If the changeability 
attribute of this end-point is frozen, then this operation can appear only in a 
constructor body. 

1.3.2.2.4. delete_from_its_cj(idi:cj):()     if the changeability attribute of this end-point is 
changeable and multiplicity of this end-point is not a fixed number n∈ N. If the 
changeability attribute of this end-point is frozen, then this operation can appear only 
in a destructor body. 
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1.3.2.2.5. is_in_cj(p:cj):boolean The function determines whether an object referred as p 
belongs to this association end, i.e. that the value of p is a value of some identifier 
from ID(ac_id.cj). 

 
These implicitly defined operations are public (i.e. can be invoked from objects of different 
classes). An attribute its_cj.mult  (in class c) specifies the multiplicity of the association end 
attached to the class cj with the association root c. 
 

1.3.3. For each class c with direct successors under the aggregate or composite relation to class c1, ..., 
cn we require that preprocessing defines operations create_cj(). If c is a composite class, we 
require these operations to be private. If cj α c with α ∈  {⊥ w,↵ w} (c is the root of an 
aggregation), then we require create_cj() to be public. 

  
1.3.4. For each class c with direct successors under the aggregate or composite relation to class c1, ..., 

cn we require that preprocessing defines operations destroy_cj(ref:cj). If c is a composite class, 
we require these operations to be private. If c is an aggregation, then we require these to be 
public. 

1.3.5. For each class c with direct generalisation classes c1,�,cn  (c ⋖  ci  for 1≤ i ≤ n) we require that 
preprocessing defines protected operations create_ci(ref:ci) and destroy_ci(ref:ci).  

Getting rid of generalisation 
 
1.3.6. For each class c we create the implicit attributes uplinks_number of type integer and uplink.1, ..., 

uplink.n of types pointer to classes c1, ...,cn, respectively, where {c1,...,cn}={c´| c⋖c´} is the set of 
all immediate superclasses for c. For each class c we also create one implicit attribute downlink of 
type c. 

 
1.3.7. Consider a subclass c, and let {c1, ..., cn} be all classes  s.t. c⋖cj (n≥1). We preclude any user 

defined constructor  c.construct(ref)  (invoked from create_c(ref) )  by the sequential composition 
of the following action catering for the recursive creation of the inherited parts. 

uplinks_number := n; 

if  (ref=nil) downlink:=self  else downlink:=ref   endif; 

for j=1, ..., n do 

  uplink.j := create_cj(downlink); 

endfor 
For all other classes (without generalisation relation), we  add actions       

uplinks_number := 0; 

if  (ref=nil) downlink:=self  else downlink:=ref   endif; 
to their constructor body. 
 

1.3.8. We preclude any user defined destructor body c.destruct()  (invoked from destroy_c(ref:c) )  by 
the sequential composition of the following action catering for the recursive deletion of the 
inherited parts. 

for j=1, ..., uplinks_number do 

 destroy_cj(uplink.j); 

endfor 
 

1.3.9. Each navigation expression a0.a1*.....an*.a  such that an* is an object of a class c with  c < c´, a 
∈  c´.attr, and a ∉  c.attr  ∪  {c0.attr | c < c0 < c´},  we replace with the expression 
a0.a1*...an*.uplink.i....uplink.j.a, where on = an*.uplink.i.....uplink.j is an object of class c´. 
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1.3.10. We first change expressions a0.a1*.....an*.!op0(b1,...,bk)  specifying virtual operation calls 

(op0.virt = virtual) replacing them with a0.a1*.....an*.downlink!op0(b1,...,bk).  After that we 
apply delegation algorithm to all operations as follows. 

 
1.3.11. Each expression for an operation call a0.a1*.....an*.!op0(b1,...,bk) such that an* is an object of a 

class c with  c < c´, op0 ∈  c´.op, and op0 ∉  c.op  ∪  {c0.op | c < c0 < c´},  we replace with the 
expression a0.a1*...an*.uplink.i....uplink.j.!op0(b1,...,bk), where on = an*.uplink.i.....uplink.j is an 
object of class c´.  
Here the condition op0∈  c.op means that there is an operation in class c with the signature 
corresponding to that specified by the calling op0. 
 

1.3.12. Each expression for an explicit operation call a0.a1*.....an*.!c::op0(b1,...,bk), where  c < c´ for 
some c´ such that  op0 ∈  c´.op, and op0 ∉  c.op  ∪  {c0.op | c < c0 < c´},  we replace with the 
expression a0.a1*...an*.uplink.i....uplink.j.!op0(b1,...,bk), where on = an*.uplink.i.....uplink.j is an 
object of class c´.  

 
1.3.13. Since we require that every specialised class must specify its own statechart (the same as one from 

the generalised class or completely overwritten), we do not need to change expressions with 
signal emission, because we do not delegate them to the generalised object. 

1.3.14. To support polymorphism, we modify the assignments a:= expr (where a.type ∈  C) of the 
following three kinds of expressions (which return references as results): 

- expr = a1.a1*.....an*.a* (navigation expression), then expr.type = a*.type.  

- expr = create_c’(), then expr.type=c’.  

- expr = a0.a1*.....an*.!op(a1,...,ak) (operation call with non-nil return value), then 
expr.type=op.type 

If expr.type ≠ a.type, we replace assignments a:= expr with a:=expr.uplink.i....uplink.j, where o = 
expr.uplink.i.....uplink.j is an object of class a.type. 

1.3.15. We also modify assignments of references nav_expr := a (where nav_expr is a navigation 
expression a1.a1*.....an*.a*  and   a.type ≠ nav_expr.type = c ∈  C) by adding uplinks:  nav_expr 
:= a. uplink.i.....uplink.j, where o = a.uplink.i.....uplink.j is an object of class nav_expr.type. 

 
Getting rid of composites 
 
1.3.16. The semantic difference between weak and strong aggregation is compiled away in this 

preprocessing step. For weak aggregation, creation of constituents, initialisation of association 
ends, and destruction rests with other objects � there is no pre-defined support for these. In 
contrast, for composite objects, we will ensure by extending the entry- and exit-script of a 
compound class, that all children with bounded multiplicity are created, that association ends are 
initialised, and that all parts are destroyed upon destruction of the whole.  

 
1.3.17. Let α ∈  {⊥ ,↵ }. Consider a compound class c, and let {c1,...,cn} be all classes s.t. cj α c . We 

preclude any user defined constructor body  c.construct by the sequential composition of the 
following action catering for part-creation. We require that the user defined constructor caters for 
all other role initialisations. 

 
for j=1,...,n do 

if (its_cj.mult ∈  N)  
   if (its_cj.mult=1) 

{ init_ its_cj(id1:= create_cj()); if (α =⊥ )  its_cj.its_c := self  endif  } 
    else   

for  r= 1,..., its_cj.mult do 
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{  add_to_its_cj(id(r), p:= create_cj);  
   if (α =⊥ ) its_cj(id(r)).its_c := self    endif; 
   r:= r+1} 
endfor    

endif 
else  its_cj:=  nil;  

endif  endfor 
 

1.3.18. Let α ∈  {⊥ ,↵ }. Consider a compound class c, and let {c1,...,cn} be all classes s.t. cj α c . We 
include as postclude for any user defined destructor body  c.destruct  the following action. 

 
for  j=1,...,n do 

 if (its_cj.mult=1) destroy(its_cj) 
else   

 for (is_in_cj(ref))  do destroy(ref)   endfor 
endif        endfor 

 

1.4 Formal Semantics of the Kernel Language 
 
We now give a formal semantics for the reduced kernel language, assuming the pre-compilation from Section 
1.3, which implements the design decisions elaborated above. 
 
We will use symbolic transition systems as proposed by Z. Manna and A. Pnueli [3] as the formal framework for 
capturing the semantics. In this approach, the state-space of the transition system is spanned by a set of typed 
variables, called system variables. The transition relation itself is represented symbolically by first-order 
predicates, relating the future state of the system variable (expressed by primed versions of system-variables) to 
the original state. The behaviour of a symbolic transition system is represented through the set of traces of 
variable valuations. 

 
We thus associate with each UML model  M  a symbolic transition system   S = STS(M)  capturing asynchronous 
concurrent execution of   M using an interleaving semantics. 
 
We first explain the set of system variables used to capture the semantics of our kernel model, and then give the 
formal definition of the transition relation. 
 
System Variables 
 
S  uses only two system variables V= {sconf, lchan}, which, however, have a complex structure. 

Symbolic transition systems
S = ( V , Θ, ρ)

V  typed set of variables
Θ initial condition on variables
ρ transition relation on valuations of variables

typically defined by first-order predicates 
over  V, V´ 

traces(S)
set of infinite sequences of valuations of variables 
satisfying:
- first valuation matches Θ
- successor valuations satisfy ρ
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1.4.1. The system variable sconf captures the current system configuration. This system variable defines 
for each class  c  and each of its instances  i   its current  instance configuration. Fig. 11  illustrates 
the structure of the system configuration. 

 
1.4.2. We will identify the set of instance identifiers with  Ν , reflecting the fact, that there is no à priori 

bound on the number of instances of a class.  
 

• Object Identities
– <c,i> ∈ O_id = C × Ν
– in formal semantics: no 

re-use of object id´s
– in implementation: 

object_id´s are pointers to 
memory, assigned by 
memory management

– hence re-useop1/

op2/

•••
0  1  2  3  4  5  6  7

c6

status  exe
a1 7
a2 <c7,2>
a3 3,1414
a4 <c0,1>
sc
eq

<c6,3>

••
•

••
•

<<c5,0>,e2,<15,<c2,127>>>
<<c7,2>,e5,<<c7,1027>>>

<<c19,989>,e29,<19>>

sconf :  C --> Ν --> Valuation of object system variables

••••••

ds <c1,2>
my_ac <ca1,1>
act op  

 

Figure 11. The system configuration 
 
1.4.3. For each object  o  we  collect the following pieces of information in its instance configuration. 
 

1.4.3.1.   o.status ∈  {dormant, executing, suspended, call_completed, dead} 
 

1.4.3.1.1.   initially the instance is either dormant or executing 
 
1.4.3.1.2.   creation of a new object of class  c  will choose an instance-id  i  and set its 

status to executing; by requirement on the initial state, the object will thus also be 
stable; 

 
1.4.3.1.3.   when an instance is stable, it can accept a waiting signal (dispatched by an 

active object) from the signal queue or a pending operation and initiate its execution, 
keeping status executing 

 
1.4.3.1.4.   when executing an operation call, the instance will become suspended , until 

the call has been served 
 

1.4.3.1.5.   when the result of call becomes available, the serving object (callee) switches 
the status of the driver to call_completed, the driver will pick up the result, and return 
to state executing 

 
1.4.3.1.6.   when the object is killed, its status becomes dead 

 
1.4.3.1.7.   Fig. 12 gives an overview of the different states an object and their 

interrelationship 
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- initially the instance is either dormant 
or executing

- a state q of object  o is stable if o
is executing and there is no locally 
enabled transition:

stable(q,o) ⇔ o.status = 
executing ∧ ∀ (q,l,γ,q´) ∈ T  
((∃ ev,cond  l ≡ ev[cond]) ∨ (l ≡
cond ∧ ¬ cond ))

dead

dormant

executing

suspended

Call 
completed

creation

Execution of
operation call

Ready result
is sent 

Result is 
Picked up

killed

 

Figure 12. The object states during run-time 
 

1.4.3.2.   o.a gives the current value of attribute  a 
 
1.4.3.3.   o.sc gives the current state configuration of  o,  if  o is an instance of a reactive 

class c, i.e.  c = cl(o). For the simple case of flat UML state-machines, this degenerates to a 
single state  q  of  sm(c).  

 
1.4.3.4.   o.eq is the signal queue associated with an active object  o  where  hd(o.eq)  points 

to the top signal in the queue. 
 

1.4.3.5.   o.ds   specifies the object performing service (dispatcher)  at the current moment. 
This attribute is intended to be used by active objects to control the flow of computations. 

 
1.4.3.6.    o.my_ac gives the name of the associated active object controlling the current thread. 

 
1.4.3.7.   o.act  keeps the specification of an action (operation or signal acceptance) currently 

being performed in the object o. 
 
1.4.4. The second system variable, lchan: (O_id × O_id  × op) → {sw_on, sw_off, nill}, specifies logical 

channels mentioned in 1.2.23 for synchronous communication (operation calls).  A channel 
lchan(o1,o2, op)  is switched on when object o1 calls operation op from object o2 and object o2 
is ready to accept this call: 
lchan(o1,o2, op) = sw_on   ⇔  [  (op = o1.act) & (o1.status=suspended)  & readysconf(o2, o2.sc, 
op)  ] 
A channel lchan(o1,o2, op)  is switched off when object o2 completes the call (becomes stable) 
of operation op and sends the results  to object o1 : by changing status of o1, object o2 lets him 
know that  operation was completed: 

lchan(o1,o2, op) = sw_off   ⇔  [  (op = o1.act) & (o1.status=call_completed)  & stablesconf(o2.sc, 
o2)  ] 
 

1.4.5. One possible realisation of logical channels is via pending request table � variable capturing all 
pending operation requests during model execution in a global table. 
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Pending request table

ca .rcv .op .result .status   .params

 
 

1.4.6. Here we exploit the fact, that all objects become suspended when executing an operation call, and 
can thus model the table as a set of entries such that for each object there is at most one issued 
pending request. This allows to organise these as a table, which for each object or actor has either 
a nil value, if there is currently no pending request, or an entry specifying the kind and status of 
the request. 

 
1.4.7. Each pending request maintains the id  of the receiver, the name of the requested operation, the 

list of parameters, a result-field, and status information. 
 
1.4.8. Letting  ca range over Actors and Object_ids, we thus maintain non-nil entries   prt.ca  collecting 

the following information: 
 

1.4.8.1.   prt[ca].rcv ∈  A ∪  O_id identity of the receiver 
 

1.4.8.2.   prt[ca].op  the identity of the requested operation 
 

1.4.8.3.   prt[ca].result  the return value of the call; only valid if status of request is 
completed 

 
1.4.8.4.   prt[ca].status ∈  {pending, busy, completed} 

1.4.8.4.1. whenever the caller emits an operation call, its table entry is updated by entering all 
information pertinent to the call and setting its status to pending 

1.4.8.4.2. once the receiver object has picked up the call, it changes the status to busy 
1.4.8.4.3. once the receiver object has completed the call, it updates the result entry and 

changes the status to completed 
1.4.8.4.4. once the caller has picked up the result, it changes the entry to nil 

1.4.8.5.    prt[ca].params is the parameters of the operation call 

 
Definition of the Transition Predicate 
 
1.4.9. We structure the transition system as a disjunction of the transition relation for all objects and 

actors, modelling the asynchronous interleaved execution of active objects. 
 
1.4.10. This leads to the following overall structure of the transition predicate ρ from the symbolic 

transition system STS(M). The different clauses are elaborated in subsequent paragraphs below. 
In the following, primed (configuration) attributes of an object specify new value of the 
corresponding unprimed attributes. 

 
∃ o∃ (q,α,γ,q´)∈  sm(cl(o)).T  
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o.sc = q  ∧  
 { -- case splitting by object and transition assuming state q 

[  o.sc´ := q´ ∧  -- transition relation for taking steps 
∧  

{ Φ_<accepting signal or operation call> 
∨  Φ_< unstable states> 
∨  Φ_<picking up the result of a call> 
}  

∧ Φ _<bookkeeping when becoming stable> 
] 

∨∨∨∨  [ o.sc´ := q ∧  o.status = executing   --  transition relation not leaving the state 
∧  {Φ_<discarding or deferring signals> 
∨  Φ_<initiating operation call> } ] } 

 
 
1.4.11. Accepting a signal or a call:  Φ_<accepting signal or operation call> ⇐ def� 
 
 stableval(q,o) ∧  
{ 
∨ [ (α ≡ sg1(p1,...,pn)[guard]  ∧  sg ≤  sg1 ∧  val(guard)   -- accepting a signal 

∧ hd(my_ac(o).eq = <o,sg,<a1,...,am>> ∧  n≤m 
∧ my_ac(o).ds = nil) 
� (my_ac(o).ds´ := o 
∧ [ o.pj´ := aj | j ∈  { 1,...,n}]) 
] 

∨  [ α ≡ op1(p1,...,pn)[guard] ∧  guard -- accepting a call event 
∧ ∃ o1  

[ -- pick up a call from caller o1 
∧ prt[o1].rcv = o 
∧ prt[o1].op = op1 
∧ prt[o1].status = pending 
∧ prt[o1].params = <a1,...,an> 
∧ [ o.pj´ := aj | j ∈  { 1,...,n}] 
∧ prt[o1].status´ := busy 

] 
∧ prt[o1].result´ := nil 
] 

} 
 
1.4.12. Processing unstable states: Φ_< unstable states>  ⇐ def� 
 
 o.status = executing ∧  
{  [ γ ≡ a := exp -- assigning an attribute 

� o.a´ := val(exp,o) 
] 

∨ [ γ ≡ a0!sg(a1,...,an)  -- emitting a signal 
� my_ac(o.a0).eq´ := insert(<o.a0,sg,<a1,...,an>>,eq> 
] 

∨ [ γ ≡ return(a)  -- setting return value 
∧ ∀  o1: [(prt[o1].rcv = o 
∧ prt[o1].status = busy) 
� (prt[o1].status´ = completed 
∧  (o.status´ = call_completed 
∧  prt[o1].result´ = a)  
] 
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∨  [ γ ≡ a:= create_c -- creation of an object 
� (∃  i s.t. sconf(c)[i].status = dormant  
∧ sconf(c)[i]´.status = executing 
∧ o.a´:= i) 

∨  [ γ ≡ destroy(a) -- killing of an object 
∧ sconf(c) [o.a].status´ := dead  ] 

} 
 
where val(exp,o) replaces any occurrence of a local attribute â occurring in exp by o.â. 
(Note that one-level de-referencing of the form a1.a2 is subsumed as a special case of  the first clause) 
 
 
1.4.13. Picking up the result of an operation call Φ_<picking up the result of a call> ⇐ def� 
 

o.status = call_completed � 
{ [ γ ≡ a := a0!op(a1,...,an) -- of a function call 

� prt[o]´ = nil 
∧ o.status´ = executing 
∧ o.a´ = prt[o].result 
] 

∨  [ γ ≡ a0!op(a1,...,an) -- of an operation call 
� prt[o].status´ = nil 
∧ o.status´ = executing 
] 

} 
 
1.4.14. Bookkeeping when becoming stable Φ_<bookkeeping when becoming stable> ⇐ def� 

stableval´ (q,o) � 
{ 
[ -- becoming stable after evaluating a signal 

my_ac(o).ds = o 
� my_ac(o).ds´ = nil 
] 

∨  [ -- becoming stable after an operation call 
  ∀ o1 [ [prt[o1].rcv = o 
   ∧  prt[o1].status = busy] 

� 
[ prt[o1].status´ := completed 
∧  o1.status´ := call_completed ] 

∧ [ ∃ o1 : (prt[o1].rcv = o 
∧ prt[o1].status = pending) 
� prt[o1].status´ = busy  ] 

   ] 
} 
 
1.4.15. Discarding signals Φ_<discarding or deferring signals> ⇐ def� 

stableval (q,o) 
∧ hd(my_ac(o).eq) = <o,sg, - > 
∧ my_ac(o).ds = o 
∧ ∀ (q,α,γ,q´) ∈  sm(cl(o)).T  : ¬  (α ≡ sg[-]∨  sg[-] < sg1[-] ≡ α) 
∧ { 

(sg[-] ∉  sm(cl(o)).D(q)  ∧  my_ac(o).eq´ := tail(my_ac(o).eq)  ) 
∨ (sg[-]  ∈  sm(cl(o)).D(q) ∧  my_ac(o).eq´ := pass_queue(<o,sg[-]>, tail(my_ac(o).eq) ) 

} 
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where the function pass_queue moves the reference to the next queue element leaving the deferred event(s) at the 
same place. The function can be implemented so that it moves  each deferred event to the end of the queue.  
1.4.16. Initiating an operation call Φ_<initiating operation call> ⇐ def� 
 

∧  {γ ≡ a := a0!op1(a1,...,an)  ∨  γ ≡ a0!op1(a1,...,an)} 
∧ o.status = executing 
∧ o.status´ = suspended 
∧ prt[o].rcv´ := o.a0 
∧ prt[o].op´ := op1 
∧ prt[o].params´ := <o.a1,...,o.an> 
∧ prt[o].result´ := nil 
∧ [[ (∃  o1: prt[o1].rcv = o.a0 ∧  prt[o1].status ≠ nil) 
� prt[o].status´ = pending] 
∨  (∀  o1: prt[o1].rcv ≠ o.a0 
� prt[o].status´ = busy) ] 

 
It is easy to see that the pending request table together with the transition predicate defined over its implement 
the mentioned logical channels, where: 

lchan(o1,o2,op1) = sw_on ⇔ 
(prt[o1].rcv=o2 & prt[o1].op=op1 & prt[o1].status=pending & prt[o1].status´=busy) 

and 
lchan(o1,o2,op1) = sw_off ⇔ 

(prt[o1].rcv=o2 & prt[o1].op=op1 & prt[o1].status=busy & prt[o1].status´=completed) 
 

Initial condition on variables 
 
For the described symbolic transition system STS(M)=({sconf, lchan}, Θ, ρ), the initial conditions Θ is defined 
as follows. At the beginning of the model execution all logical channels are empty and only an object of the root 
class is created 

Θ (lchan) = nil 
∀ o ∈  O_id : Θ(o.status)=dead ⇔ cl(o) ≠ c0 (where c0 is the root class) 
∀ o ∈  O_id : (Θ(o.status)=executing ∧  Θ(o.act)=c0.entry) ⇔ cl(o) = c0 
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2 UML Statecharts 
 
A statechart (also called state machine) is defined in the scope of a class c and hence it inherits the set of 
attributes c.attr, the set of operations c.op, and the set of signals c.sig. 

2.1 Constituents of Statecharts 
A statechart SC consists of a set vertices(SC) of (hierarchical) state vertices and a set trans(SC) of transitions.  

State Vertices 
2.1.1 A state vertex may be a state or a pseudostate (which is a synch state or a stub state), i.e. vertices(SC) = 

states(SC) ∪  pstates(SC). 
 
2.1.2 A state can be simple, final or a composite state. Final state specifies the termination, i.e. destruction of 

the object. A composite state can be concurrent or not. A composite state s has a set of direct substates, 
denoted by child(s). For a simple or final state s,  child(s) = ∅ . For a state s’ ∈  child(s), s is also called 
the father of s’, denoted as father(s’). Direct substates of a concurrent composite states are called 
regions. A concurrent state will also be called an AND-State (a system is in an AND-state if it is in all of 
its direct substates concurrently) and a composite state which is not concurrent will be called an OR-
state (the system is in an OR-state if it is in one of its direct substates). Fig. 13 shows an AND-state s 
which is composed of three concurrent regions s1, s2, and s3. On the other hand  Fig. 14 shows an OR-
state s with three direct substates s1, s2, and s3. 

 
 

s1 s2 s3 

s 

 
Figure 13. AND-state (concurrent composite state) 

 
 

s1 

s2 

s3 

s 

 
Figure 14. OR-state (non-concurrent � also called sequential � composite state) 

 
2.1.3 We will use a function mode to identify the type of a state: 

mode : states(SC) → { SIMPLE, FINAL, AND, OR} 
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2.1.4 Every state machine has a distinguished top state top∈  states(SC). We assume that the top state is of 
mode OR 1. 

 
2.1.5 A submachine-state is only a syntactical abbreviation and hence will not be considered in this paper. 

Furthermore StubStates are used to reference states within a submachine-state and hence are also not 
considered within this paper. 

 
2.1.6 A pseudostate can be one of the following kinds: 

- An initial pseudostate represents a default vertex that is the source of a single transition to the default 
state of a non-concurrent composite state.  

- DeepHistory is used to store the most recent active configuration of the composite state that directly 
contains this pseudostates. This includes not only the information on the most recent direct substate 
but also the most recent substates of that substate etc. 

- ShallowHistory is used to represent the most recent active substate of the composite state that directly 
contains this pseudostate. 

- Join vertices serve to merge several transitions emanating from source vertices in different orthogonal 
regions. The transitions entering a join vertex cannot have guards and trigger events. 

- Fork vertices serve to split an incoming transition into two or more transitions terminating on orthogonal 
regions. The transitions outgoing from a fork vertex must not have guards or trigger events.  

- Junction vertices are used to chain together multiple transitions. They are used to construct compound 
transition paths between states. Guards are evaluated statically before performing a complete 
compound transition. 

- Choice vertices which, when reached, result in dynamic evaluation of the guards of its outgoing 
transitions It allows splitting of transitions into multiple outgoing paths such that the decision on 
which path to take may be a function of the results of prior actions performed in the same run-to-
completion step. 

 
2.1.7 Pseudostates come up with a function kind, determining its type: 

kind : pstates(SC) → {initial, deepHistory, shallowHistory, join, fork, junction, choice} 
 

2.1.8 Instead of using join and fork vertices we will consider transitions with more than one source and one 
target state vertex. Junction are only used as an abbreviation and hence will not be considered here, too.  

 
2.1.9 Choice vertices will not be handled here. 
 
2.1.10 An OR-state s has a default substate default(s) ∈  child(s). This default substate is defined as the target 

state of the transition starting at the initial vertex of the composite state s.  
 
 
2.1.11 An OR-state s may contain one shallowHistory vertex, sHist(s),  and at most one deepHistory vertex, 

dHist(s). These two kinds of pseudostates are also called history connectors. 
 
2.1.12 For a history connector h, the enclosing OR-state will be denoted by state(h). 
 
2.1.13 The set of state vertices are ordered in a tree-like structure with top as its root and where the set child(s) 

gives the successors of a node s in the tree. 
 
2.1.14 The depth of a state s w.r.t. the state hierarchy is inductively defined as 

  

 
0 if

( ) :
( ( )) 1 otherwise

s top
depth s

depth father s
=�

= � +�
 

 

                                                           
• 1  UML only requires that the top state is a composite state. If the top state is an AND-state we can simply 

add an additional enclosing OR-state without changing its behaviour. 
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2.1.15   The substate relation defines a partial order on the set of states:     

 s ≤ s  
 s ∈  child(s')  then  s' ≤ s  
 s ≤ s',  and  s' ≤ s" then  s ≤ s"  
 s < s'  iff  s ≠ s' and  s ≤ s'  . 
 top ≤ s 
 s’ ≤ s,  and  s” ≤ s, then s’≤ s” or s” ≤ s’ 

 For a set of states S and s ∈ states(SC) we will write s < S  iff  s < s’ for all s’ ∈ S. We also will say that 
state s´ is younger that state s iff s < s’. 
 
2.1.16 A state configuration sc is a set of state vertices with the following property: 

- top ∈  sc 
 - if s ∈  sc and s is an AND-state then child(s) ⊆  sc 
 - if s ∈  sc and s is an OR-state then there exists exactly one s’ ∈  child(s) with s’ ∈  sc 

 
2.1.17 Furthermore, a state s may have associated a set of deferred events, an entry, do, and exit action. 
 

deferred(s) Denotes the set of deferred events in state s 
entry(s) Denotes the entry action of state s 
do(s) Denotes the do-activity executed while staying in state s 
exit(s) Denotes the exit action of state s 

 
2.1.18 An event that is deferred in a composite state is automatically deferred in all directly or transitively 

nested substates. 
 
2.1.19 Restrictions: 

We will not support do-activity. The idea of do-activity is to invoke a concurrent computation which can 
be interrupted at any time. As we will support only one thread of control within a statechart and give the 
semantics of statecharts w.r.t. run-to-completion steps, do-activities will not be considered. 

 
Transitions 
 
A transition in a UML statemachine has only one source state vertex and only one target state vertex. To model 
more complex transitions, UML provides join and fork vertices. In this version, instead of the pseudostates of 
kind join and fork we will consider more general transitions having a set of source states and a set of target states. 
(cf. Fig. 15) 
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F 

J 

  

 

 

Figure 15. Modelling Join and Fork vertices as transitions with multiple sources and 
targets 

  
2.1.20 A transition t is associated with 
 

source(t) :  a non-empty set of states denoting the source states of transition t. 
target(t):  a non-empty set of state vertices denoting the target states of transition t. Besides states, 

history connectors may be also contained in this set. 
trigger(t):  an optional trigger event (with parameters), which has to occur to enable transition t. We will 

use a pseudo trigger NONE to indicate that a transition has no trigger event. 
guard(t):  a guard expression. Transition t can only be executed if the guard evaluates to true. 
effect(t):  an action which will be executed when performing transition t. 

 
 

source(t) target(t) 
trigger(t) 
[guard(t)] / 
effect(t)  

Figure 16. The ingredients of a transition 
 
2.1.21 Different states from the set source(t) must belong (directly or transitively) to different regions of an 

AND-state (orthogonal substates) and the states of target(t) must also belong to different regions 
(orthogonal substates). 

 
2.1.22 A trigger can specify reception of a signal event (asynchronous communication) or a call event (for 

triggered operation call) together with parameters which can be used in the guard and the following 
actions. 

 
2.1.23 The top state cannot be the source or the target of  a transition. 
 
Well-Formedness Rules 
 
Here, we will define a collection of auxiliary notions which will be used to define well-formedness conditions on 
statecharts, and which are necessary to define the effect of firing a transition. We also introduce the concept of 
configurations describing maximal subset of states allowed to be concurrently active. We will first define the 
smallest region where changes, due to the execution of a transition, may occur.  
 
2.1.24 The least common ancestor  lca(S)  of a non-empty set S of states defines the closest state (w.r.t. 

transitive containment of substates) which subsumes all states of  S. As the root state top is the largest 
ancestor of every state, lca(S) will exist for every subset  S  of states. It is defined by  
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1.     lca(S) ≤ S  ( lca(S)  is an ancestor of every state of  S )  and 
2.     ∀  ∈  states(SC)  with ≤ S : ≤ lca(S)  ( lca(S)  is minimal w.r.t. containment of other states, i.e. 

youngest ancestor). 
 

2.1.25 The least common OR-ancestor  lca+(S)  of a non-empty set S of states defines the youngest OR-state 
(i.e. minimal w.r.t. containment of other states) which subsumes all states of  S  and is not contained in  
S  itself. If the least common ancestor is an OR-state not contained in  S  this is also the least common 
OR-ancestor, otherwise, we pick the closest OR-state above the least common ancestor. As we require 
that the top state is an OR-state, the least common OR-ancestor exists for every subset of states not 
containing the top state. If  top ∈   S, then we define lca+(S) = top. Hence, the least common OR-
ancestor is defined as follows  

 

 
 
2.1.26 Two states  s  and  s'  are orthogonal, denoted by  s ⊥  s' , if they belong (directly or by transitivity) to 

different regions of an AND-states, i.e. they are not comparable w.r.t. the  child*  relation and their 
common ancestor is an AND-state. 

s ⊥  s'  iff  ¬  (s  ≤  s'  or  s'  ≤  s) and  mode(lca({s, s'})) =  AND . 

A set  S  of states is called orthogonal, denoted by  ⊥ (S), if the states of  S  are pairwise orthogonal.  
 

2.1.27 A set of states  S ⊆  states(SC)  is called consistent, denoted by  ↓ (S)  iff every two states  s, s'  of  S  are 
either related by the child*  relation � i.e.  s ≤ s'  or  s' ≤ s  � or orthogonal.  

 
2.1.28 A state configuration sc is a maximal consistent set of states.  
 
2.1.29 The scope of a transition  t , denoted by  scope(t) , is the smallest range of states which is affected by 

firing the transition  t . It is defined as the OR-state which is the  lca+  of the source and target states of 
the transition. As the target of a transition may also contain some history connectors, we replace these 
pseudo states by their enclosing  OR-states to compute the common ancestor. For this aim, we introduce 
the transcription function  

st: 2states(SC) ∪  hist(SC)  → 2states(SC) , 

defined as follows (where hist(SC) ⊆  pstates(SC) denotes the set of history connectors):  
 

∀   S ⊆  states(SC) & C ⊆  hist(SC) :  st(S ∪ C) = S ∪ {state(h) | h ∈ C} 

then the scope of a transition t is   
scope(t)  =  lca+(source(t) ∪ st(target(t)) ) . 

 
2.1.30 Given a consistent set  S ⊆ states(SC) ,  the default completion, denoted by  dcompl(S) ,  is the smallest 

set  S’  such that  
- S ⊆ S’ ,  
- If  s ∈ S’  and  s ≠ top , then  father(s) ∈ S’ ,  
- If  s ∈ S’ ,  mode(s) = OR  and  child+(s) ∩ S = Ø , then  default(s) ∈ S’ ,  
- If  s ∈  S’  and  mode(s) = AND,  then  child(s) ⊆ S’ .  

The partial default completion below a given state s is given by 

pdcompl(s) = dcompl({s}) ∩ { s' |  s ≤  s' } 
 

The completion of a consistent set of states w.r.t. history connectors will be defined below.  
 
2.1.31 Two transitions are consistent if they are active in two orthogonal regions, i.e. if their scopes are 

orthogonal.     
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↓ (t1, t2)  iff  scope(t1) ⊥  scope(t2) 

This notion can be extended to a set of transitions. A set  T  of transitions is consistent, denoted by  ↓ (T)  
iff the transitions of  T  are pairwise consistent.  
 

2.1.32 If a set of possible executable transitions is not consistent, we will use an assignment of transition 
priorities to select a consistent subset. The priority of a transition is specified by the depth of its 
innermost source state:  

prio : T → Ν 
prio(t) = max{ depth(s) | s ∈  source(t) }   2 

 
 

 
s

s3

s4

s2 
s12

s11

t1 
t2 

 
Figure 17. Priority of transitions:  t1 has a higher priority than t2 

 
2.1.33 A statechart  SC  is well-formed � denoted  wff(SC) � iff for all transitions  t  the following holds  

- ↓ (source(t))  and  ↓ (st(target(t))   
- ∀ s ∈  source(t) : mode(s) = OR  �  ∀ s' : s < s' � s' ∉  source(t)   
- ∀ s ∈  target(t) ∩ states(SC) : mode(s) = OR  �  ∀ s' : s < s'  � s' ∉  target(t)   
- ∀ h ∈  target(t) ∩ hist(SC):  ∀ s' : state(h) < s' � s' ∉  target(t)   
- top ∉  source(t) ∪  target(t)   

 
In the rest of this paper we will only consider well-formed statecharts.  

Effects of History Connectors 
 
2.1.34 A history configuration hc is a set S of states such that for every OR-state s  set S  contains a child  s’ ∈  

child(s). A history configuration hc can be also defined as a function over all OR-states 
hc : { s  | s ∈  states(SC) and mode(s) = OR } → states(SC)  

with hc(s) ∈  child(s). 
 

2.1.35 The default completion dcompl is extended by a function hcompl for handling the history connectors. 
 

2.1.35.1 The state completion for a shallowHistory vertex h and a history configuration hc is defined by 
hcompl(h, hc) = {state(h), hc(state(h)) } 

2.1.35.2 For a deepHistory vertex h and a history configuration hc , we define their state completion  
 hcompl(h, hc) = S, where S is the smallest subset of states satisfying 
  state(h) ≤ S 
  state(h) ∈  S 

                                                           
• 2  The priority of a transition is defined on its source state: a transition originating from a substate has higher 

priority than a conflicting transition originating from any of its containing states. The priority of joined 
transitions is defined by the priority of the transition with the most transitively nested source state. 
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if s ∈  S and mode(s) = AND then child(s) ⊆  S 
  if s ∈  S and mode(s) = OR then hc(s) ∈  S 
 
2.1.35.3 For a set H of history connectors the completion set is given by 

( , ) : ( , )
h H

hcompl H hc hcompl h hc
∈

= U  

2.1.36 An extended state configuration ecs is a pair consisting of a state configuration and a history 
configuration ecs = <sc, hc>. 

 
2.1.37 The execution of a transition t in an extended state configuration <sc, hc> with source(t) ⊆ sc will lead 

to a successor configuration esc’ = <sc’, hc’> which is defined by the following: 
 

2.1.37.1 States which are exited when performing a transition t starting from a state configutarion sc: 
exited(t, sc) = { s ∈  sc  |  lca(source(t)) ≤ s }. 
 

2.1.37.2 The states entered after the execution of t from a state configuration sc w.r.t. function hc: 
entered(t, sc, hc) = dcompl(sc \  exited(t, sc) ∪  st(target(t)) ∪  hcompl(hist(target(t)), hc)) \ (sc \ 
exited(t, sc)) 
where hist(target(t)) = target(t) ∩ hist(SC). 
 

2.1.37.3 The successor state configuration sc’ is given by  
sc’ = dcompl( sc \ exited(t, sc) ∪  entered(t, sc, hc)) 
 

2.1.37.4 And the new history configuration hc’ is given by 
 

 

2.2 Flattening the Statechart 
 
In chapter 1 the semantics of UML models is given with respect to a flat statechart. This was done to concentrate 
on the main semantical issues discussed in chapter 1 and to avoid an overloading of that chapter with the 
orthogonal concepts of hierarchical state machines. In this section we describe how to flatten a statechart without 
changing its behaviour. 
  
Given a statechart SC the flattened statechart flattened(SC) is given by 
 
2.2.1 states(flattened(SC)) = {<sc, hc> | <sc, hc> is an extended state configuration of SC} 
 
2.2.2 trans(flattened(SC)) = { t’ = <t, sc, hc> | t ∈  trans(SC), <sc, hc> is an extended state configuration of 

SC,  source(t) ⊆  sc } with 
• source(<t, sc, hc>) = {<sc, hc>} 
• target(<t, sc, hc>) = {<sc’, hc’>} where <sc’, hc’> is the successor configuration after executing t 

from the configuration <sc, hc>  
• trigger(<t, sc, hc>) = trigger(t) 
• guard(<t, sc, hc>) = guard (t) 
• effect(<t, sc, hc>) = exit(sc, t); effect(t); enter(sc, hc, t) 
 

2.2.3 The initial state of flattened(SC) is given by <sc0, hc0>, where sc0 is the initial state configuration 
obtained by the default completion of the top state 

sc0 = dcompl({top}) 
and hc0 is given by the default states 
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hc0(s) = default(s)   3 
 
Flattening the statechart we cannot associate a unique exit action (enter action) to a state of the obtained state 
machine. Therefore, the corresponding actions are lifted to the transition. 
 
2.2.4 The action exit(sc, t) is given by a sequence of the actions exit(s), where s ∈  exited(t, sc). The order 

should be from innermost states to outermost states. 
 

2.2.4.1 exit(sc, t) = α1; �; αn where  
• n = sizeof(exited(t, sc)) 
• for each s ∈  exited(t, sc) there exists an index I(s) ∈  {1, �, n} with αI(s) = exit(s) 
• if s ≠ s’ then I(s) ≠ I(s’) 
• s ≤ s’ then I(s) ≥ I(s’) 

2.2.4.2 The action sequence exit(sc, t) can also be defined recursively by 

2.2.4.2.1 exit(sc, t) = exit(top, sc, t) 
2.2.4.2.2 exit(s, sc, t) =  

if mode(s) = SIMPLE then  
if s ∈  exited(t, sc) then exit(s) else nil fi 

else if mode(s) = OR then 
let {s’} = sc ∩ child(s) 
if s ∈  exited(t, sc) then exit(s’, sc, t); exit(s) else exit(s’, sc, t) fi 

else    // mode(s) = AND // 
let child(s) = {s1, …, sk} 
if s ∈  exited(t, sc) then exit(s1, sc, t); …; exit(sk, sc, t); exit(s)  
else exit(s1, sc, t);…; exit(sk, sc, t) fi 

Note that in the case of an AND-state the ordering of the actions of the orthogonal substates are 
arbitrary. 
 

2.2.5 The action enter(sc,hc, t) is given by a sequence of the actions enter(s), where s ∈  entered(t, sc, hc). The 
order should be from outermost states to innermost states. 

 
2.2.5.1 enter(sc, hc, t) = α1; �; αn where  

• n = sizeof(entered(t, sc, hc)) 
• for each s ∈  entered(t, sc, hc) there exists an index I(s) ∈  {1, �, n} with αI(s) = enter(s) 
• if s ≠ s’ then I(s) ≠ I(s’) 
• s ≤ s’ then I(s) ≤ I(s’) 

2.2.5.2 The action sequence enter(sc, hc, t) can also be defined recursively by 

2.2.5.2.1 enter(sc, hc, t) = enter(top, sc, hc, t) 
2.2.5.2.2 enter(s, sc, hc, t) =  

if mode(s) = SIMPLE then  
if s ∈  entered(t, sc, hc) then enter(s) else nil fi 

else if mode(s) = OR then 
let {s’} = sc ∩ child(s) 
if s ∈  entered(t, sc, hc) then enter(s); enter(s’, sc, hc, t)  

else enter(s’, sc, hc, t) fi 
else  // mode(s) = AND // 

let child(s) = {s1, …, sk} 
if s ∈  entered(t, sc, hc)  then 
 enter(s); enter(s1, sc, hc, t); …; enter(sk, sc, hc, t)  

else enter(s1, sc, hc, t); …; enter(sk, sc, hc, t) fi 

                                                           
• 3  This is a simplified approach. UML allows to specify an initial value for a history connector. Furthermore, 

without specifying an initial history state it is only allowed to enter an OR-state through the history 
connector whenever the state machine has been exited that OR-state sometimes in the past.  
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Note that  in the case of an AND-state the ordering of the actions of the orthogonal 
substates are arbitrary. 

 
Splitting complex transitions 
 
We define a transformation of statecharts in such a way that every transition can only perform one simple action 
(assignment, emitting an event, sending a reply etc.). Using this transformation we avoid that a system is blocked 
between two state configuration (waiting on the termination of an operation call). 
 
The basic idea is to replace  
 
 

source(t) target(t) 
trigger(t) 
[guard(t)] / 
α1; …; αk  

 
by 
 
 

source(t)  
trigger(t) 
[guard(t)] / 
α1 

target(t) / α2 . . . / αk  

 
To avoid that some other transition is enabled when inside the execution of such an action block we have to 
introduce some kind of semaphore, which blocks other transitions to be executed. To do this every transition will 
obtain an additional guard not(inside_trans). 
Splitting a complex action into simple parts will first set this Boolean variable to true. At the end that variable 
will be reset to false. This will avoid that another transition will be started when being in the middle of another 
one. That is, we perform the following transformation for each transition by introducing new states: 
 
 

source(t)  

trigger(t) 
 [guard(t) and 
not(inside_trans)] / 
inside_trans = true target(t) / α1 . . . / αk   / inside_trans = false 

 

3 Summary: OMEGA-UML Restrictions 
 
In this report a subset of UML � Omega-subset � is defined, for which a formal semantics is given. This 
semantics is defined at three levels. Section 1.2 has described informally an operational semantics (abstract level) 
of the chosen subset.  Section 1.3 describes how the Omega-subset can be represented by more restricted subset 
of UML � Kernel language (�preprocessing semantics�). Finally, Section 1.4 gives a formal semantics for the 
Kernel language in terms of symbolic transition systems. 
 

 
Figure 18. UML subsets 
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Note that the Kernel language is internal format, and Omega-subset (partially) specifies the language for 
costumers. Whereas the Kernel language is defined in Section 1.4 via variable sconf, the Omega-subset can be 
defined by the following list of restrictions. 
First, for type usage  we will allow only classes,  enumerations,  references to objects and such predefined types 
as  integer, boolean, character. This types can be used for the constructors  array and records. 

3.1.  Classes and Associations 
3.1.1. No abstract classes (no abstract operations). 
3.1.2. Currently, no stereotypes in the Omega-subset. Stereotypes can appear in extensions of the current 

language. 
3.1.3. The only relations between classes: generalization, composition, aggregation, and (neighbour) 

association. 
3.1.4. No association classes. 
3.1.5. There is the root class for every (component) model � the maximal class under composition and 

aggregation relation (↵   ∪  ⊥  ∪  ↵ w ∪   ⊥ w)*, which is active. 
3.1.6. If an association relation is n-ary then only one class is the root-end, having navigable and visible 

end-points (all other classes). This root is navigable and visible in any of its end-points iff  it is 
navigable and visible in all its end-points.  

3.1.7.  The composite association defines a DAG. 
3.1.8.  If ac_id.agr = composite then for all ac_id.cj ∈  ac_id.end_points : 

• ac_id.cj.mult ∈  {n, *}, n>0. 
• ac_id.cj.navigability = true 
• ac_id.cj.changeability = frozen if ac_id.cj.mult = n OR  

ac_id.cj.changeability = add_only if ac_id.cj.mult = * 
• ac_id.root.mult = 1 and ac_id.root.changeability = frozen. 

3.1.9.  If ac_id.agr = aggregate then for all ac_id.cj ∈  ac_id.end_points : 
• ac_id.cj.mult ∈  {n, *, [m,n]}, m, n>0. 
• ac_id.cj.navigability = true 
• ac_id.root.mult = 1 and ac_id.root.changeability = frozen. 

3.1.10. If ac_id.agr = neighbour then: 
• for all ac_id.cj ∈  ac_id.end_points : ac_id.cj.mult ∈ {n, *, [m,n]}, m, n>0. 
• ac_id.root.mult = ∈ {n, *, [m,n]}, m, n>0.  

1.11 No sharing of weak components between several weak composites in run-time. 

3.2.  Operations, Events and Attributes 
3.2.1. No naming conflicts of operations, attributes, classes and associations names � e.g., in multiple 

inheritance. 
3.2.2. Currently we support only two types of events: signal and call events. Signal events have public 

visibility. 
3.2.3. Primitive operations do not call triggered operations. 
3.2.4. A dependency graph of operation calls is tree-like (without recursions). 
3.2.5. Triggered operations are guarded or sequential. 
3.2.6. Primitive operations are sequential or free of side effects. 
3.2.7. If a signal s1 is generalization of signal s2, then the list of parameters of s1 is a subset of that of s2. 
3.2.8.  No priorities on signals, all signals are processed in FIFO-order. 
3.2.9.  For all c ∈  C \ A operations create_c, destroy_c ∈  c´  ⇔  (c↵ c´  ∨   c⊥ c´  ∨  c↵ w c´ ∨   c⊥ w c´). 

3.3.  Action Language 
3.3.1.  No variable declaration within operation bodies (all declarations should be specified at the 

level of class definition, i.e. as attributes with the desired visibility).  
3.3.2.  Restricted set of primitive actions and constructs (only those described in Section 1.1) 
3.3.3.  For all navigation expression a0*.a1*�..an* (n ≥ 0):  
• all references a0*,�, an-1*  are association role names (can be default  names) 
• these references and operation (or attribute, resp.) an* are visible in the current class. 
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3.3.4.  For all n ≥ 0 and assignments a0*.a1*�..an* := value we require that an* is a basic or 
navigation attribute. If an* is a reference then the corresponding association end has attribute  
an*.changeability ∈  {changeable, add_only}. 

3.4.  Statecharts 
3.4.1.  Every statechart must have a distinguished top state which is of mode OR. 
3.4.2.  Pseudostates  Join, Fork, Junction and Choice are not considered 
3.4.3.  do-actions in states are not considered. 
3.4.4.  The priorities of transitions rise from outmost to innermost source state, meaning that a 
transition originating from a substate has higher priority than a conflicting transition originating from any of 
its containing states. 

3.4.5.  If a class inherits from several classes, then only one of the generalized classes has statechart or 
generalized classes have equal statecharts. If a new statechart is specified in a specialized class, then it 
completely overwrites any statechart from its generalized class, i.e. the delegation of signal and call events 
(to the definition of their reception in another class) is not supported. 
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Actor   1 
Aggregation  5 
 weak  5, 8 
 strong  5, 7 
Association  5 
 Aggregate 7 
 bi-directional 8 
 Composite 5, 7 
 directed  6 
 end-points 5 

Neighbour 5, 8 
root  5 

Association ends  6 
 predefined attributes 6 
 Aggregation 6 
 Changeability 6 
 Multiplicity 6 
 Name (= role) 6, 8 

Navigability 6 
Ordered 6 

 Visibility 6 
constraints 7 

Asynchronous communication 4 
Attribut   2 
 implicit  17 

Type of an attribute  2 
 predefined 2 
auxiliary pointer  9 

 basic  9 
navigation  9 

C 
Callee role 14 
Caller role 15 
Class 1 
 active 2 
 Interface 4 
 Kind 2 
 Mode 2 

passive 2 
 reactive 2 
 simple 2 
 compound 7 
Completion set (for history connectors) 33 
Composition 5, 7 

Consistent set (of states) 31 
Constructor 3 

D 
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UML model 11 
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