
© I-Logix, 1999 1

ROPES:
Rapid Object-Oriented Process

for Embedded Systems

Bruce Powel Douglass
Chief Evangelist

I-Logix Inc.

Introduction

Creating software is not truly an engineering activity in which the application of known
rules against a problem statement repeatedly results in a highly reliable, cost-effective
solution. The creation of good software is notoriously difficult and depends heavily on the
skill of individual developers. The current state of the art sees software development as a
technological craft rather than an engineering discipline. The creation of software is
difficult primarily because software is essentially a real-world or imaginary-world model
filled with complexity exceeding the capabilities of any one person to completely
comprehend it at any one time.

The language and semantic models of software modeling are reasonably mature, although
they are certainly still evolving. Nevertheless, the systems they model defy complete and
formal description. The more complete the model, the more accurate and representative
the model becomes, but also the more difficult to create and prove correct.

The developer is left with a problem. On one hand, there is a real-world system that must
be created. On the other hand, there are semantic models and notations at the developer’s
disposal to capture the essential characteristics of the system being created and its
informational and control context. How can the developer use these modeling elements to
represent the system in a complete and accurate way that is understandable, portable,
modifiable, and correct? What steps are necessary in this quest and in what order should
they be applied?

The problem, as it stands, is similar to someone who knows a large number of French
words and wishes to converse in French, but still does not know how to weave the words
together into coherent sentences. The problem facing the developer, however, is not to
just make sentences; it is to create a book of poetry in which the various phrases, refrains,
and poems come together into an integrated whole. How to accomplish this task is
ultimately answered by the development process.

This material is adapted from the author’s upcoming book: Doing Hard Time:
Developing Real-Time Systems using UML, Objects, Frameworks, and Patterns
Reading, MA: Addison-Wesley, 1999

© I-Logix, 1999 2

A question commonly asked by managers is “Why bother with process?” Aside from
keeping Scott Adams1 dutifully employed, process allows us to

• produce systems of consistent quality

• reliably produce systems with complex behavioral requirements

• predict when systems will be complete

• predict system development cost

• identify milestones during development that enable mid-course corrections when
necessary

• enable efficient team collaboration for moderate and large-scale systems

Terms and Concepts

A methodology consists of the following parts:

• a semantic framework

• a notational schema

• a set of sequenced work activities

• a set of deliverable work artifacts

The semantic framework and its notational schema together comprise the modeling
language, such as the UML. The development process describes the activities that govern
the use of the language elements and the set of design artifacts that result from the
application of these elements in a defined sequence of activities.

Development Phases

The development process is divided up into large-scale activities, or phases, in an effort to
simplify and clarify what needs to be done and when. These phases are as follows:

• Analysis

• Design

• Translation

• Testing

Analysis consists of identification of the essential characteristics of all possible correct
solutions. Design adds the elements to the analysis that define one particular solution on
the basis of the optimization of some criteria. Translation creates an executable,
deployable realization of the design. Testing verifies that the translation is equivalent to
the design and validates that the implementation meets all of the criteria for correctness
identified in the analysis.

1 Author of the Dilbert™ comic strip.

© I-Logix, 1999 3

All phases of the development process work on a model of the system. This model must
be an organized, internally-consistent set of abstractions that collaborate to achieve system
description at a desired level of detail and maturity. It is important to understand that the
analysis model, design model, translation (source code) model, and testing model are not
different models which are somehow linked. They are (or at least ought to be) different
views of the very same system model. Let me elaborate.

If you view the work artifacts of each phase as the results of capturing a different model,
then you must permit those artifacts to vary independently. All software engineers have
had the experience that the more abstract models can deviate from the source code. This is
always a bad thing. An essential ingredient to the ROPES process is that all the artifacts of
the model under development must always be of the very same underlying reality. Each
phase of development is allowed to focus on different aspects of the same system, just as
architects use different views (floor plans, electrical conduit plans, and plumbing plans, for
example) to focus on different aspects of the same building.

The Analysis phase is further divided into the following subphases:

• Requirements analysis

• Systems analysis

• Object analysis.

Requirements analysis is the process of extracting the requirements from the customer
and structuring them into a comprehensible form. Systems analysis builds more rigorously
defined models and, based on the requirements,partitions system behavior into mechanical,
electronic, and software components. It is used in the development of complex systems
such as those in the aircraft, automotive, and factory automation industries. Many real-
time domains may skip the systems analysis step because the system architecture is simple
enough to not require it.

Both requirements and systems analysis are, in their very essence, functional descriptions
of the system which rely heavily on behavioral and functional decomposition. The
structural units of this decomposition are behaviors, functions, and activities. These
structural elements are arranged into system models. The system model, along with the
requirements model, form the system specification.

The third aspect of analysis is object analysis. This is a fundamentally different way to
model the system under development. Object analysis consists of two subphases:
structural and behavioral object analysis. Structural object analysis identifies the
structural units of object decomposition which consist of classes and objects, their
organizational units (packages, nodes and components), and the inherent relations among
these elements. Behavioral object analysis defines essential dynamic behavioral models for
the identified classes. Moving from systems analysis to object analysis requires a nontrivial
translation step.

The design phase may likewise be divided into the following subphases:

© I-Logix, 1999 4

• Architectural design

• Mechanistic design

• Detailed designs

Architectural design identifies the large-scale organizational pieces of the deployable
software system. It consists of different views of the underlying semantic model. The
deployment view organizes the elements of the object analysis into executable components
which execute on various processor nodes. The development view organizes the non-
executable artifacts (such as source code) into sections on which individuals work in order
to enable team members to effectively manage their work and their collaboration with
other team members. The concurrency view identifies concurrent time-based collaboration
between the objects. The structural elements defined during architectural design constitute
strategic design decisions that have wide-reaching impact on the software structure which
are largely driven by the application of architectural design patterns, as discussed in [5]
and [6].

An object itself is a small unit of decomposition. Objects collaborate in clusters to achieve
larger scale purposes. A collaboration is a collection of objects collaborating or
interacting together to achieve a common purpose, such as the realization of a use case. A
mechanism is the reification of a collaboration (such as a design pattern). The process of
“gluing” these mechanisms together from their object parts constitutes mechanistic
design. Much of mechanistic design proceeds in similar fashion to architectural design by
using mechanistic design patterns to “glue” objects together to facilitate collaboration.

Detailed design defines, structures and organizes the internals of individual classes. This
often includes translation patterns for how model structures will be coded, the visibility
and data typing of attributes, and the implementation of associations, aggregations and
compositions in the selected programming language.

Design can proceed using either of two strategies. The most common is elaboration.
Using this approach, design proceeds by refining and elaborating the analysis models until
the model is implementable. In this approach, design information is added to the analysis
model. The other approach, called translation, captures design information in a translator.
The translator is then applied against the analysis model to produce the executable system.
The translation approach commonly utilizes a context-specific framework and rules for
translating analysis concepts into programming language statements automatically.
Rhapsody™ is a UML-compliant design automation tool that works in exactly this way.
The details of Rhapsody are discussed in Appendix B, and a demo copy of Rhapsody is
provided on the CDROM accompanying this book.

Elaboration does not require as much tool support, but generally takes longer since the
translator, once constructed, can be applied against many analysis models and must only
be modified when the design decisions change. For real-time systems, the use of a real-
time framework greatly facilitates construction since most of the common mechanisms

© I-Logix, 1999 5

required for such systems are captured in the framework and used automatically by the
translated analysis elements.

Ordering

Not only does a process consider the work activities and the products of that work, it
must also define the order in which these activities are performed. The entire set of work
activities organized into a sequence is called a lifecycle. Different lifecycle models are in
use, with varying degrees of success.

Lifecycle models are important because, while the phases identify what must be done, the
lifecycle model specifies when it must be done. Lifecycle modeling can be done both at the
micro cycle level and the macro cycle level [1]. A micro cycle defines the ordering of
activities within a portion of a macro cycle or within a single iteration of an iterative macro
cycle.

Maturity

Deciding on these phases and the order of development-related activities is not enough.
Each phase contains activities (things that developers do) and results in the form of
artifacts (deliverable work products). These artifacts have different levels of maturity. The
maturity of an artifact refers to both its completeness and its quality. The completeness of
an artifact refers to how much of the intended scope of the artifact has been considered
and taken into account within the artifact. An artifact’s quality is a comparison of the

Is Automatically Generated Code a Reality?
A question I often hear is whether or not the technology for generating code
automatically from UML object models is mature enough to use in real
systems. Certainly, the elaborative approach is more common. However,
automatically generated code can, and is, being used today in a variety of
hard real-time and embedded systems. Most systems are between 60% and
90% “housekeeping’ and framework software. This software really varies
little from system to system, but is typically written from scratch for each
system. Some design automation tools not only provide this framework but
also “glue” your object models into that framework. The Microsoft MFC
library provides just such a framework for Windows programmers and
greatly facilitates the development of Windows-based applications. Real-
time frameworks do the same for embedded real-time systems today. Real-
time frameworks provide a consistent way for handling event reception,
finite state machine operation, control of concurrency, operating system
abstraction, etc.

© I-Logix, 1999 6

specific artifact and the optimal qualities of artifacts of its kind, a process that is often
subjective, leading to the statement that, like art, “I know bad software when I see it2.”

Development Task Sequencing

Before we discuss the methods, procedures, and artifacts of the ROPES process, let’s
consider lifecycles in more detail. There are two primary approaches to sequencing
development phases. The waterfall lifecycle is the most common. It orders the phases in a
linear fashion. It has the advantage of simplicity and strong tool support. Other lifecycles
are based on iterations of the phases. The advantage of iterative lifecycles is that they
allow early risk reduction and better mid-course control over development projects.

Waterfall Lifecycle

The waterfall lifecycle approach is based on the serialization of development phases into a
strict order. The artifacts produced within a phase must all meet a certain level of maturity
before the start of the next phase is permitted. Thus, the waterfall lifecycle has the
advantage of easy scheduling. It is, however, not without its problems. The primary
difficulty is the problem of incompleteness – the artifacts of any phase cannot be complete
until they are elaborated in subsequent phases and their problems identified. As a practical
matter, experience has clearly shown that analysis cannot be complete until at least some
design has been done, and design cannot be complete until some coding has been done,
and coding cannot be complete until testing has been done. In the waterfall lifecycle, each
of these phases depends on the artifacts from the previous phases being complete and
accurate; but this never happens. So this model of the development process is inadequate.
This is another way of saying that we plan one way but do another. Although this lifecycle
facilitates planning, those plans are inaccurate, and we cannot, in general, tell where we
are with any certainty. For example, if you admit that some of the analysis will have to be
redone, and your team has scheduled 6 weeks for analysis and “finishes” in 5 weeks, are
you late or not?

2 One indication that a design or source code is “bad” is when the reviewer suddenly drops
the source code on the floor, clutches his eyes and yells “I’m blind! I’m blind!” while
running from the room. This is usually not a good sign.

© I-Logix, 1999 7

Figure 1: Waterfall Lifecycle

Iterative Lifecycles

Iterative lifecycles deal with the incompleteness problem by using a more representative
(i.e. complex) model with the premise that each waterfall lifecycle model is not planned to
execute only once, but possibly many times so that each “turn of the wheel” results in a
prototype3.. The iterative lifecycle allows for early testing of analysis models even though
they are not complete. This is a powerful notion because it takes cognizance of the fact
that the phases will not be complete the first time through and allows us to plan our
projects accordingly. Iterative lifecycles are more flexible and can be tailored easily to the
size and complexity of the system being developed. Additionally, by using reasonable
criteria on the contents and ordering of the prototypes, we can assist project tracking with
earlier feedback on high risk project issues.

This more accurate representation comes at a cost – iterative lifecycle projects are more
difficult to plan and control, and they are not directly supported by project management
tools. With the increased flexibility and accuracy afforded by these models, comes more
complexity.

3 Similar to the Hindu concept of reincarnation in which we come back in a higher form,
but only if we’ve been good.

Analysis

Implementation

Design

Testing

Party!

© I-Logix, 1999 8

Barry Boheim published early work on iterative lifecycles[3] which he referred to as the
spiral lifecycle. Managers often have concerns as to whether or not the spiral is
convergent4 and how to plan and manage projects along these lines. This topic will be
dealt with in later in this paper.

Figure 2: Iterative Lifecycle

Prototyping

A prototype is an instance of a system model. In the software context, they are almost
always executable in some sense. Prototypes may be either throw-away or iterative. A
throw-away prototype is one which will not ultimately show up in the final product. For
example, it is common to use GUI-building tools to construct mock-ups of user interfaces
to provide early exposure of a planned interface to a set of users. This visual prototype,
which might be done in Visual Basic, will not be shipped in the final product, but helps
developers understand their problem more completely and communicate with non-
technical users.

4 Hence its other name as the “software spiral of death.”

Requirements
Analysis

Systems Analysis

Object Analysis

Analysis

Architectural
Design

Mechanistic
Design

Detailed
Design

Design

Implementation
Testing

Party!

Integration
Testing

Validation
Testing

Coding
Unit

Testing

Iterative
Prototypes

© I-Logix, 1999 9

Iterative prototypes are executable models of the system that ultimately will be shipped in
their final form as the final product. This means that the quality of the elements (design
and code) that make up an iterative prototype must be of higher quality than a throw-away
prototype.

Iterative prototypes are constructed by modifying the previous prototype to correct
uncovered defects and add new elements. In this way, prototypes become increasingly
elaborate over time in much the same way that trees grow in spurts, indicated by their
growth rings. At some point, the prototype meets the system validation criteria, resulting
in a shippable prototype. The prototype continues to be elaborated even after release,
constituting service packs, maintenance releases, and major upgrades.

Each prototype should have a mission, a statement of the primary purpose for the
construction of the prototype. The mission might be to reduce some specific risk or set of
risks, provide early integration of system architectural units, implement a use case, or
provide an integrated set of functionality for alpha or beta testing. A common strategy is
to implement use case prototypes in order of risk.

Many designs are organized into architectural layers based on their level of abstraction.
The most concrete layers exist at the bottom and consist of abstractions related to the
low-level manipulation of the underlying hardware. The more abstract layers exist above
the more concrete layers, and realize their behavior through the invocation of lower-level
services. At the very top layer are the abstractions that exist within the application domain.
This is a marvelous way to decompose a set of abstractions, although rarely useful to
organize the content and delivery of prototypes. If the prototypes are organized around
use cases, then the implementation policy is vertical. By this is meant that the prototype
typically will contain elements from most or all of the layers of abstraction. This approach
is also called incremental development.

Figure 3 below shows the concept behind vertical prototyping. The model is structured as
a set of horizontal layers, but the prototypes implement relevant portions from most or all
of these layers.

© I-Logix, 1999 10

Figure 3: Vertical Prototyping

The technology that really enables the iterative prototyping process is automatic
translation of description models into executable models. Executable models are crucial
because the only things that you can really validate are things that you can execute. For
example, an early prototype to realize a single use case might consist of a few dozen
classes, five of which may non-trivial state machines. To manually create an
implementation of a simple use case would certainly take, at minimum, several days, and
might require up to several weeks to perfect. The developer would have to answer many
low-level questions like “What is the implementation of a state? An event? How do I
implement time-outs? How should I handle events that are not yet being handled? What
about crossing thread boundaries?” All these questions must be answered, but they are
ancillary to the work at hand – judging whether or not the collaboration of objects
realizing the use case is, in fact, correct. With a translative approach, the code can be
generated, compiled, and run within seconds.

Scheduling and Estimation

There is ample evidence in the software industry that we have not been tremendously
successful in terms of predicting the resources, time, or budget required to develop

Device I/O

Application Layer

OS Layer

Communication Layer

Think
Horizontally

D
o

V
er

ti
ca

lly

Aquire
Remote

Data

Display
Remote

Data

Closed
Loop

Control

Performance
Tuning

© I-Logix, 1999 11

products5. PC Week reported in 1994 that 52% of all software projects in the US were at
least 189% over-budget, and 31% of all projects were cancelled before completion. Other
studies give similarly depressing statistics.

There are a number of theories as to exactly why this is the case. A common theory is that
software engineers are morons who can’t schedule a trip to the bathroom.
Understandably, software engineers often take the opposing view that managers are
clueless pointy-haired individuals that wouldn’t know an accurate estimate if it ran over
them with its car. And, of course, everyone gets to blame marketing.

My own personal view is that everybody gets to share the blame, if any is to be had, and
this poor performance is due to both technical and sociological issues.

The sociological issues include the following:

• the unwillingness of many managers to accept reasonable estimates

• an authoritative managerial style

• accuracy in estimation is often actively discouraged6

• non-stationary requirements

• unwillingness on the part of management to believe that software is inherently
difficult

• a lack of understanding of the true cost of replacing personnel

• managers giving the “desired” answer7

• engineers providing the “desired” answer knowing full well its inaccuracy

• the use of schedules as a motivational tool in the belief that stress is a good
motivator

Of these, the last is the least defensible and the most insulting to the engineering staff, and
has the greatest long-term cost of the business.

The technical issues are follows:

• software involves invention; and estimation of invention is fundamentally difficult

• engineers are not trained in estimation techniques

• managers use waterfall rather than iterative lifecycles

Of the two, the technical problems are by far the more solvable.8

5 This is, no doubt, the source of the phrase “There are lies, damn lies, statistics, fantasies,
and software schedules.”
6 I once had a manager tell me in regards to an estimate “That’s the wrong answer – do it
again.”
7 Another manager once told me “You have 6 months to do this. How long will it take
you?” Even I knew the answer to that one!

© I-Logix, 1999 12

Advantages of Accurate Schedules

Despite their rarity, accurate schedules have a number of business advantages. Probably
the main one is the selection of appropriate projects to pursue. I believe one of the reasons
why the failure rate of software projects is so high is that many of these projects would
not have been started had the true cost of the project been known at the start9. Projects
which will not recoup their costs and return a profit generally ought not to be started in
the first place. However, in the absence of accurate information as to the cost of projects,
making good decisions about which projects to do is difficult. Accurate schedules can
reduce the loss due to starting projects that should not have been begun in the first place.

Another advantage to accurate schedules is that it facilitates the planning of ancillary
activities, such as

• Manufacturing

• Disk copying

• Documenting the software

• Preparing ad campaigns

• Hiring employees

• Gearing up for the next project

It is very expensive to gear up a manufacturing effort, which might include the purchase of
expensive equipment and the hiring of manufacturing personnel, only to have
manufacturing wait for a late project to complete.

Another benefit near to my own heart is the lowering of the very real “human cost” of
software engineering. It is all too common for software engineers to work inhuman
hours10, often for months at a time11, in order to achieve goals which were unrealistic in
the first place. The whole notion of the software-engineer-as-hero becomes much less
appealing when one actually has a life (and family).

Of course, many managers use “aggressive12” schedules. As Tom DeMarco and Timothy
Lister [4] point out, using schedules as a motivational tool means that they cannot be used
to accurately predict the time and cost of the project. Even from a strictly business
financial aspect, this approach fails miserably in practice, not to mention the fact the

8 You can lead a horse to water, but you can’t make him write good software.
9 I once had a manager tell me in response to an estimate, “That might be correct, but I
can’t report that to upper management. They’d cancel the project!” He seemed
unconcerned that this might actually be the best thing from a business standpoint.
10 I once worked 120 hours per week for three weeks to make a schedule date.
11 On another project, I worked 90 hours per week for 6 months.
12 As in “the probability of coming in at the scheduled time is less than the probability of
all the molecules in the manager’s head suddenly Brownian-motioning in the same
direction causing his head to jump across the table.”

© I-Logix, 1999 13

premise underlying it is insulting to engineers.13 Aggressive scheduling tends to burn the
engineering staff out and they take their hard-won expertise and use it for the competition.
The higher turnover resulting from a consistent application of this management practice is
very expensive. It typically costs about $300,000 to replace a $70,000 engineer. Using
schedules as planning tools instead of motivation avoids this problem.

Difficulties of Accurate Scheduling

The advantages of accurate schedules are clear. We are, nevertheless, left with the
problem of how to obtain them. As stated above, the difficult problems are sociological in
nature. I have consulted for a number of companies and have greatly improved their
estimation and scheduling accuracy through the consistent application of a few key
principles.

Estimates are always applied against estimable work units (EWUs). EWUs are small,
atomic tasks typically no more than 80 hours in duration. The engineer estimating the
work provides three estimates:

• Low/Optimistic (Engineers will beat it 20% of the time)

• Mean (Engineers will beat it 50% of the time)

• High/Pessimistic (Engineers will beat it 80% of the time)

Of the three, the most important is the 50% estimate. This estimate is the one which the
engineer will beat ½ of the time. The central limit theorem of statistics states that if all of
the estimates are truly 50% estimates, then overall, the project will come in on time.
However, this estimate alone does not provide all necessary information. You would also
like a measure of the perceived risk associated with the estimate. This is provided by the
20% and 80% estimates. The former is the time that the engineer will beat only 20% of the
time, while the latter will be beat 80% of the time. The difference between these two
estimates is a measure of the confidence the engineer has in the estimate. The more the
engineer knows, the smaller that difference will be.

These estimates are then combined together to come up with the estimate actually used in

the schedule:

The EC factor is the “Estimator Confidence Factor.” This is based on the particular
engineer’s accuracy history. An ideal estimator would have an EC value of 1.00. Typical
EC values range from 1.5 to 5.0.

13 “If I don’t beat them with a stick, they won’t perform!”

EC
HighMeanLow

*
6

*4 ++

© I-Logix, 1999 14

In order to improve their accuracy, engineers must track their estimation success. This
success is then fed back into the EC factor. A sample from an estimation notebook is
shown in Table 1 below.

Table 1: Sample From Estimation Notebook

Date Task Opt Mean High Unadjusted
Used

EC Used Actual Dev. % Diff

9/15/97 User Interface 21 40 80 43.5 1.75 76.1 57 17 0.425

9/17/97 Database 15 75 200 85.8 1.75 150.2 117 42 0.56

9/18/97 Database
Conversion

30 38 42 37.3 1.75 65.3 60 32 0.842

9/20/97 User Manual 15 20 22 19.5 1.75 34.1 22 2 0.1

To construct a new EC value, use the formula below:

ECn+1 = Σ(Deviations using ECn)/(# Estimates) + 1.00

For example, to construct a new EC value from the table above, you would compute the
following:

EC1 = (0.425 + 0.56 + 0.842 + 0.1)/4 + 1.00 = 1.48

In this example, the engineer went from an estimator confidence factor of 1.75 to 1.48 (a
significant improvement). This EC value is then used to adjust the “Unadjusted Used”
estimate to the actual “Used” estimate for insertion in the schedule. It is important to track
estimation success in order to improve it. In order to improve a thing, it is necessary to
track a thing.

A schedule is an ordered arrangement of EWUs. It is ordered to take into account inherent
dependencies, level of risk, and the availability of personnel. The process of creating a
schedule from a set of estimates is well covered in other texts and is not discussed here.

The ROPES Macro Cycle

The ROPES process is based on an iterative lifecycle which uses the standard UML
metamodel for its semantic framework and notation. It encourages (but does not require)
automatic code generation within a real-time framework from its models to facilitate rapid
generation of prototypes. Although the elaborative approach can be used, the translative
approach creates deployable prototypes much faster and with much less effort.

© I-Logix, 1999 15

Figure 4: ROPES Process

The purpose of any process is to improve the product resulting from the process. In
particular, the primary purposes of any development process are to do the following:

• increase the quality of the end product

• improve the repeatability and predictability of the development effort

• decrease the effort required to develop the end product at the required level of
quality.

Other requirements may be levied on a development process such as “to aid in
accountability, visibility, and regulatory approach.” If your development process does not
provide these benefits, then it is a bad process and should be replaced or revised.

To achieve its primary purposes, a development process consists of phases, activities, and
artifacts. A phase is a set of activities that relate to a common development purpose which
is usually performed at a consistent level of abstraction. Each phase contains activities
(things that developers do) and artifacts (deliverable work products) which result from
those activities. The primary artifacts of the ROPES process phases are shown in Figure 5
below.

Requirements
Analysis

Systems Analysis

Object Analysis

Analysis

Architectural
Design

Mechanistic
Design

Detailed
Design

Design

Implementation
Testing

Party!

Integration
Testing

Validation
Testing

Coding
Unit

Testing

Iterative
Prototypes

© I-Logix, 1999 16

Figure 5: ROPES Process Artifacts

Figure 5 shows the different phases of a single iteration. In practice, these phases iterate
over time to produce the development prototypes. The primary artifacts are the versions
of the system model produced by the different phases. A prototype really consists of not
only the executable thing, but also of the artifacts used to generate it.

Each prototype in the ROPES process is organized around system use cases. Once the set
of use cases is identified and characterized, they are ordered to optimize the effort. The

Analysis

Translation

Testing

Analysis
Object Model

Application
Requirements

Design Patterns

Real-Time
Framework

Application
Components

Scenarios
Use Cases

Design

Design Object
Model

Test Vectors

Tested
Application

Legacy Code3rd Party
Components

Design Defects

Analysis Defects

Translation
Defects

Hazard Analysis

© I-Logix, 1999 17

optimal ordering is determined by a combination of the use case priority, risk, and
commonality.

For example, suppose you lead a team that builds an embedded communications protocol
which is modeled after the 7-layer ISO communications protocol standard. The layered
architecture appears in Figure 6 below.

Figure 6: Communication Protocol Architecture

This protocol is to be implemented on several different processors using different RTOSs
and compilers. The processor platforms include a heterogeneous set of 16-bit, 32-bit, and
DSP processors. Additionally, some subsystems are to be implemented in C while others
in C++. The team wants the same source code to compile and operate on all platforms, so
this is identified as an early risk. You agree, in this case, to create an object model and
implement the protocol using only the standard C that is also present in C++.

You want to reduce risk while providing the subsystems the ability to do at least some
useful communication with others as early as possible. You then identify a series of
prototypes which optimize both risk reduction and early availability as shown in Figure 7
below.

● Application Layer: Application services

● Presentation Layer: Data encode/decode

● Session Layer: Organized extended dialogs

● Transport Layer: Connection-oriented and
Connectionless transportation

● Network Layer: packet routing

● Data Link Layer: Error free frame
transmission, flow control

● Physical Layer: Encapsulate and abstract
physical media characteristics

Presentation

Application

Session

Transport

Network

Data Link

Physical

© I-Logix, 1999 18

Figure 7: Prototypes for Communication Protocol Project

In my own experience, I have led just such a development project, and with great success.
Interestingly, as a result of the “Hello World” prototype, which was compiled on every
subsystem, we found that none of the ANSI C-compliant compilers were, in fact, ANSI C-
compliant. By creating this prototype first, we were able to find the minimum set of
language translation rules that worked on all subsystem compilers. At this point, only a
small amount of code had to be rewritten. Had we waited until later, the rewrite would
have been much more substantial and costly.

In the following sections, we will look at each phase of the ROPES process (the ROPES
micro-cycle) and identify activities and deliverables. Each sub-phase is described in detail,
including its activities (things you do during the sub-phase), the metamodel elements used
(things you manipulate or define), and the artifacts (things produced). In some situations
or business environments, some of the activities or artifacts of the sub-phases may be
skipped. For example, if your system is not safety-critical, you won’t spend the effort and
time to produce a hazard analysis document. Pick the activities and artifacts that make the
most sense for your system and work culture.

H
el

lo
 W

or
ld

D
at

a
E

nc
od

e,
 A

ck
/N

ak

M
es

sa
ge

 R
ou

tin
g

Fl
ow

 C
on

tr
ol

,
M

es
sa

ge
 I

nt
eg

ri
ty

C
on

ne
ct

io
ns

 &
 S

es
si

on

E
nc

ry
pt

io
n

&
 C

om
pr

es
si

on

Se
cu

ri
ty

 F
ea

tu
re

s

P
er

fo
rm

an
ce

 T
un

in
g

Project Time

� � � � � � � �

© I-Logix, 1999 19

Analysis

As mentioned earlier, the analysis of a system identifies all characteristics of the system
which are essential to correctness. That is, a system should be devoid of design
characteristics that are free to vary. Figure 8 shows the subphases and deliverables for the
ROPES analysis activity, including the generated and delivered artifacts.

Figure 8: ROPES Analysis Model Artifacts

Requirements
Analysis

Application
Requirements

Scenarios

Use Cases

Object Structural
Analysis

Test Vectors

Analysis

Hazard Analysis

Tested
Application

Analysis Defects

Systems Analysis

Executable
Specification

Hardware
Specification

Software
Specification

Requirements
Specification

Requirements
Specification

Object Behavioral
Analysis

Architectural
ModelTest Vectors

Analysis Object Model

Object Structural
Model

Object Behavioral Model

© I-Logix, 1999 20

Requirements Analysis

Requirements analysis extracts requirements from the customer. The customer may be
anyone who has the responsibility for defining what the system does. This might be a user,
a member of the marketing staff, or a contractor. There are several barriers to the
extraction of a complete, unambiguous, and correct set of requirements.

First, most customers understand the field use of the system, but tend not to think about it
in a systematic manner. This results in requirements that are vague or incomplete. Even
worse, they may specify requirements which are mutually exclusive, impossible, or too
expensive to implement. The customer will forget to specify requirements which seem too
“obvious” and will specify requirements which are really implementations.

Second, customers will specify what they think they need. However, this is often not the
best solution to their problem. If you deliver a system which is what the customer
requested but does not meet their needs, you will nevertheless shoulder the blame. It
behooves you to figure out what the real requirements are.

It is important to note that requirements analysis is almost exclusively a functional view. It
does not identify objects or classes. It comes as a disappointment to many beginners that
after spending a significant effort identifying use cases and elaborating their behavior, not
a single object is identified by the end of requirements analysis. That remains the task of
object analysis, a later sub-phase.

Activities

The basic activities of requirements analysis are as follows:

• Identify the use cases and associated actors

• Decompose use cases with the following relations:
> generalization
> uses (or includes)
> extends

• Identify and characterize external events that affect the system

• Define behavioral scenarios that capture system dynamic behavior.

• Identify required constraints:
> required interfaces to other systems
> performance constraints

The first tool is the use case. As mentioned in [6], a use case is a cohesive end-to-end,
externally visible behavior of the system. They can often be identified by talking with the
customer. In a medium sized system, you will expect to find anywhere from a few, up to a
few dozen, use cases. Most systems consist of three kinds of use cases:

• Primary use cases are the most obvious and capture typical externally visible
functionality.

© I-Logix, 1999 21

• Secondary use cases are less common but still identify important piece of
functionality.

• Sometimes it is possible to also identify safety-related use cases. Most of the time,
however, safety and reliability issues are addressed within the previously
mentioned types of use cases. These use cases exist when, in addition to normal
functionality, the system also acts as a safety monitor or enabler for another
system.

Remember, however, that a use case is a function that returns a visible result to an actor
without revealing internal structure. This means that the identification of use cases and
their relations does not indicate or imply an object structure. Use cases map to
mechanisms and collaborations, not to objects. This is a stumbling block for many
beginners who expect the set of use cases to automatically determine an object structure.
There is no automatic way to bridge the gap from a functional black-box view of the
system to an object-oriented white box view.

Once use cases are identified, scenarios can be examined in more detail. Remember,
scenarios are instances of use cases. They walk a particular path through a use case.
Requirements scenarios are a primary means for requirement extraction14. You will start
with an obvious set of scenarios but quickly identify branching points where different
decisions are made. Whenever a branching point appears in a scenario, it indicates the
existence of another scenario (in which another decision was made). If the latter scenario
is “interestingly different” then it should be added to the scenario set of the use case.

The identification of events relevant to the system and their properties is also done during
requirements analysis. This analysis includes the messages and events that actors send to
the system and the system response to those messages. The performance properties of
each message at this level include the following:

• An Associated actor:
> Sender of message
> Receiver of response

• An Arrival pattern (periodic or episodic)

• An Arrival time for the message:
> Period and jitter for periodic message
> Minimum interarrival interval or burst length for episodic message

• The message response properties:
> Deadline for hard deadline message
> Average response time for soft deadline message

• Message state information:

14 I like to visualize a scenario as the needle of a rather large syringe which I plunge into
the brain of a marketer to suck out hidden requirements. I find such visualizations helpful
during long meetings.

© I-Logix, 1999 22

> Preconditional invariants for the message
> Protocol (acceptable message sequence)
> Message data
> Postconditional invariants for the response

This information is typically captured in a use case(s), object context and sequence
diagrams, statecharts, and perhaps an External Event List.

Metamodel Entities Used

Two different kinds of modeling elements are used in requirements analysis: contextual
and behavioral. It is important to remember that during this sub-phase, the system view is
black-box, and only elements which are visible from an external perspective are specified.
The contextual elements define the following:

• actors (objects that exist outside the scope of your system)

• the “system object”

• use cases

• use case relations

• external messages (including events)

• hazards

Use case relations may exist between use cases or a use case and an actor. Use cases
capture typical and exceptional uses of the system which are visible to actors. Actors are
objects outside use case context, and may be human users of the system, devices with
which the system must interact, or legacy software systems. Actors associate with use
cases. The association between an actor and a use case means that the actor can send or
receive messages which enable participation in the scenarios of that use case.

Hazard identification is crucial for safety-critical or mission-critical systems, or for any
system for which the cost of system failure is high. At a minimum, you must define the
hazards and their associated risks. Many times, this description will also include safety
measures if externally visible, although it is more common to define them later in design.

Behavioral elements include the following:

• constraints, such as
> performance requirements
> fault tolerance times

• statecharts, including
> states
> transitions

• scenarios

• message protocols in actor-system interactions

© I-Logix, 1999 23

Behavioral elements define how the system behaves, but only from a black box
perspective. It is relatively common to use statecharts to define the behavior of message
protocols of external interfaces and the required behavior of use cases. Statecharts are
fully-constructive; this means that a single statechart can define the complete behavior of
its associated contextual element. Scenarios are only partially-constructive. It is impossible
to fully define the complete behavior of a complex machine with a single scenario.
Scenarios may be used to describe important paths through a state machine, or they may
be applied when the behavior is not state-driven. It is common to define a few up to a few
dozen scenarios per use case.

Artifacts

There are many different artifacts produced during this sub-phase. The ones listed here are
the most common.

Table 2: Requirements Analysis Artifacts

Artifact Representation Basic? Description

Requirements
document

Text Yes A textual description of the system
contents, interface to external actors, and
externally visible behavior, including
constraints and safety requirements.

Use case
diagrams

Yes Identification of the major functional areas
of the system and the interaction of actors
with use cases.

Statecharts No Some sets of use cases will be reactive, i.e.
have state behavior. The full behavioral
space of such use cases may be captured in
statecharts.

External Event
List

No A spreadsheet describing the properties of
events received by the system or issued
from the system. This includes properties
such as period and jitter (for periodic
events), minimum interarrival time and
burst length (for episodic events),
deadlines, event data, and so on.

Use cases

Context
Diagram

No This is an idiomatic use of a UML object
diagram. It contains the system “object”
and actors that interact with the system.
The messages and events passing between
actors and the system are identified.

© I-Logix, 1999 24

Artifact Representation Basic? Description

Sequence
diagrams

Yes As paths through individual use cases, these
represent scenarios of uses of the system.
They show specific paths through a use
case including messages sent between the
use case and its associated actors.

Use case
Scenarios

Timing
diagrams

No As another representation of scenarios,
timing diagrams are also instances of use
cases. Normally applied only to reactive use
cases, they show state along the vertical
axis and linear time along the horizontal
axis.

Hazard
Analysis

No This is normally a spreadsheet format
document which identifies the key hazards
that the system must address and their
properties, such as fault tolerance time,
severity and probability of the hazard, and
its computed risk.

Test Vectors Textual Yes Specification of tests to validate system
against requirements

For some systems it is appropriate to produce all the above artifacts, while for others only
part are required. The set of normally required artifacts are identified as “basic” in the
middle column of Table 2. The structure and contents of these artifacts are discussed in
more detail in [5] and [6].

Systems Analysis

Systems analysis is an important phase in large complex embedded systems, such as
aerospace and automotive applications. Systems analysis normally elaborates key
algorithms and partitions the requirements into electronic, mechanical, and software
components. Often, behavioral modeling tools such as Statemate15 are used to construct
executable models and explore system dynamics. This is especially true when the system
displays non-trivial state or continuous behavior.

It should be noted that, like requirements analysis, systems analysis is still fundamentally a
functional, and not an object, view. It does not imply, let alone identify, objects and
classes. Systems analysis, therefore, will not normally result in a set of objects and classes.
It is possible to perform system (and for that matter) hardware analysis using object model
methods. However, systems analysts, as a group, seem reluctant to adopt this technology.
In the meantime, it is best that we software types accept that and plan to bridge the gap
between their functional view and our object view.

15 Statemate™ is systems analysis tool for building and testing executable models of
complex reactive systems. It is available from I-Logix. See www.ilogix.com.

© I-Logix, 1999 25

Activities

The primary activities of system analysis are to

• identify large-scale organizational units for complex systems

• build and analyze complex behavioral specifications for the organizational units

• partition system-level functionality into the three engineering disciplines of
> software
> electronics
> mechanics

• Test the behavior with executable models

The large-scale organization is often time-specified in the systems analysis sub-phase. The
result is a functionally-decomposed architecture containing black box nodes which contain
behavioral elements called components. These components are then analyzed in detail and
hardware/software trade-offs are typically made. The interfaces among the components
must be defined, at least at a high level. This allows the engineers of different disciplines to
go off and work on their respective pieces.

The analysis of behavioral components is done with finite state machines, continuous
control systems, or a combination of the two. For reactive systems, it means constructing
complex statecharts of the component behavior. This results in finite state machines with
potentially hundreds or thousands of states. For continuous control systems, linear or
nonlinear PID control loops are the most common way to capture the desired behavior.

In complex systems, it is crucial to execute the models to ensure that they are correct,
unambiguous, and complete. Errors in specification during this phase are the most costly
to correct later because the errors are often only discovered after the system is completely
implemented. Correcting errors in systems analysis requires substantial rewrites of major
portions of the system under development. Early proofs of correctness (such as formal
proofs or functional and performance testing) can greatly reduce this risk at minimal cost.
It is important that any tests designed during systems analysis be constructed in such a
way that they may also be applied later to the developed system. This not only saves work
in producing tests, it helps ensure that the delivered system has the correct behavior.

Metamodel Entities Used

The metamodel elements used in systems analysis are both structural and behavioral.
Structural components are used to decompose system functionality into functional blocks
(nodes on deployment diagrams). These are typically what is meant by the systems analysis
term “subsystem16.” The UML component can be used to represent unelaborated boxes.

16 A subsystem, to a systems analyst, is a box that contains hardware and software, and
meets some cohesive functional purpose. This is somewhat different than, although related
to, the UML use of the term. A UML subsystem is a subclass of two metamodel entities,

© I-Logix, 1999 26

When the hardware pieces are identified, they become UML «processor» nodes on which
software-only components reside.

The UML does not define a way to specify continuous mathematics. Continuous
algorithms are best specified using equations or pseudocode. UML activity diagrams can
be used as a type of concurrent flowchart to represent algorithms as well. Performance
constraints are normally elaborated at this sub-phase. The performance constraints are
applied at the component level, meaning that the end-to-end performance of behaviors
defined for the components must be specified.

Artifacts

Artifacts resulting from system analysis are outlined in the table below.

Table 3: Systems Analysis Artifacts

Artifact Representation Description

Deployment
diagrams

Identifies hardware boxes that contain executable
components.

Architectural
Model

Component
diagrams

Identifies functional boxes, potentially residing on
nodes, which may be composed of a combination of
hardware and software. Some components may be
specialized to interact with «device» nodes
(hardware that does not execute software of
interest) or may be software-only components.

Statecharts Finite state machines defined at the component
level.

Mathematical
Models

Mathematical descriptions of continuous
functionality, such as PID control loops.

Activity
diagrams

UML diagrams that roughly correspond to
concurrent flowcharts. These have some of the
properties of Petri nets as well and can model
complex algorithms.

Executable
Specification

Sequence
diagrams

Paths of interest (such as typical and exceptional)
through the statecharts.

Software
Specification

Text Detailed requirements of allocated responsibilities
and behaviors required of the software

Hardware
Specification

Text Detailed requirements of allocated responsibilities
and behaviors required of the hardware platform

Test Vectors Sequence
diagrams

Scenarios used to test that the implemented system
meets systems analysis requirements.

Package and Classifier. Thus subsystems can group model elements (since it is a type of
package) and may also have attributes, associations, and may be specialized itself.

© I-Logix, 1999 27

Artifact Representation Description

System test plan A plan for how the system will be tested to ensure
that it correctly implements system analysis
requirements.

Object Analysis

Previous sub-phases have defined the required behavior of the system. These requirements
must be met by the object structure identified in this phase. Object analysis is the sub-
phase in which the essential objects and classes are identified and their important
properties captured. It is important to note that this is the first point at which objects and
classes appear. It is also important that only the objects and classes that are essential to all
possibly correct solutions are captured17. That is why the analysis object model is often
referred to as the “logical” or “essential” model.

Object analysis consists of two different subphases: structural and behavioral object
analysis. In practice, these subphases are most often done concurrently. For example,
exploration of the important scenarios (behavior) leads to the identification of additional
objects within a collaboration (structure) that realizes a use case.

Activities

The primary activities of object analysis are to

• apply object identification strategies to uncover essential objects of the system

• abstract the objects to identify classes

• uncover how the classes and objects relate to each other

• construct mechanisms of object collaboration that meet the use case behavioral
requirements

• define the essential behavior of reactive objects

• identify the essential operations and attributes of the objects

• test the identified mechanisms with scenarios

• decompose end-to-end performance constraints into performance constraints on
class operations

Metamodel Entities Used

The modeling elements used are the standard ones found in class and object diagrams:
classes, objects, relations, and so on. In addition, mechanisms are instances of

17 It is difficult to imagine, for example, an accounting system object model which did not
include the class account, or a fire-control system which did not include the classes target
or weapon, at least in some form.

© I-Logix, 1999 28

collaborations. UML collaborations are namespaces that contain interactions of classifiers
(such as classes).

It is common to divide up the classes into different areas of subject matter called domains.
A domain is an area of concern in which classes and objects are related. Typical domains
include Device I/O, User Interface, Alarm Management, Persistence (long-term storage).
A Device I/O domain might contain classes such as A/D Converter, Hardware Register,
Port, and so on. A User Interface domain might contain classes such as Window,
scrollbar, button, font, bitmap, and icon. Each system will also have one or more specific
application domains, such as spacecraft management, avionics, electrocardiography, or
reactor management.

Generalization taxonomies are usually held within a single domain. Naturally,
collaborations must span across domain boundaries so classes may associate across
domains. Domains are commonly represented as packages on class diagrams. Part of the
usefulness of domains comes from the fact that because they are well encapsulated and
self-contained, analysis may proceed on domains independently.

In order to divide up the analysis work among team members, development components
are usually identified. Development components represent non-deployable organizations of
model elements (artifacts), such as documents and files. These differ from deployable
components such as data tables, pluggable components, libraries (e.g. dlls) and executable
programs. The identification of deployment components allows team members to divide
up the work. This work is, of course, normally done on top of a configuration
management layer to facilitate the efficient collaboration of team members.

Finite state machines continue to be used to capture reactive behavior, but during this sub-
phase they are applied to classes only; if you identify a statechart during object analysis,
then there must be a class to which the statechart belongs18. This means that statecharts
identified in use cases and components from earlier sub-phases of analysis must be
partitioned among the classes identified during object analysis. This usually results in some
re-orthogonalization of the state behavior and care must be taken to show that in all cases
the resulting set of class state machines is isomorphic with the use case and component
state machines.

Message sequence, collaboration, and timing diagrams are used to specify the dynamic
collaboration of objects within mechanisms. Early in analysis, most people prefer to use
sequence diagrams, but later, as the object structure stabilizes, some prefer to move to
collaboration diagrams. When timing is important, timing diagrams can clearly represent
operation or state behavior over time.

18 Less common, a statechart may be added to a collaboration. Usually, however, such a
statechart has already been defined for the use case realized by that component.

© I-Logix, 1999 29

Artifacts

Table 4: Object Analysis Artifacts

Artifact Representation Description

Class and object
diagrams

Identifies key abstractions and their logical
organization in packages and mechanisms.

Domain diagrams An idiomatic usage of a class diagram consisting
primarily of packages organized around subject
matters of interest and their dependency relations.

Object
Structural
Model

Component
diagrams

Identifies development components, such as files
and documents, to enable team members to
collaborate by sharing work units.

Statecharts Finite state machines defined at the class level.
Activity diagrams UML diagrams that roughly correspond to

concurrent flowcharts. These have some of the
properties of Petri nets as well and can model
complex algorithms.

Sequence
diagrams

Paths of interest (such as typical and exceptional)
through the collaborations of identified classes.

Collaboration
diagrams

Same as sequence diagrams, but organized visually
similar to object diagrams.

Object
Behavioral
Model

Timing diagrams Specifies the timing of operations and state
transitions in collaborations of identified classes.

Design

While analysis identifies the logical or essential model of a system, design defines a single
particular solution that is in some sense “optimal”. For example, design will identify things
like

• Which objects are active (concurrency model)

• Application task scheduling policies

• Organization of classes and objects within deployable components

• Interprocessor communication media and protocols

• Distribution of software components to nodes (esp. if systems analysis step was
skipped)

• Relation implementation strategies (How should associations be implemented –
pointers? references? TCP/IP sockets?)

• Implementation patterns for state machines
> Management of multi-valued roles (i.e. 1-* associations)
> Error-handling policies

© I-Logix, 1999 30

> Memory-management policies

Three are currently three subphases of design: architectural, mechanistic, and detailed.
Architectural design defines the strategic design decisions that affect most or all of the
software components, such as the concurrency model and the distribution of components
across processor nodes. Mechanistic design elaborates individual collaborations by adding
“glue” objects to bind the mechanism together and optimize its functionality. Such objects
include containers, iterators, and smart pointers. Detailed design defines the internal
structure and behavior of individual classes. This includes internal data structuring and
algorithm details.

The work artifacts of the ROPES design process are shown in Figure 9 below. The
primary deliverable artifact is the design model.

Figure 9: ROPES Design Model Artifacts

Much of design consists of the application of design patterns to the logical object model.
These patterns may be large, medium, or small scale, mapping to architectural,
mechanistic, or detailed design. Of course, to be correct, both the design model and the
analysis model are different views of the same underlying system model, albeit different
levels of abstraction. It is obviously important that the design must not be inconsistent
with the analysis. Moving from the more abstract analysis model to the design model may
be done in ROPES using either the elaborative or translative approach.

Detailed Design

Analysis Object
Model

Design Patterns

Architectural
Design

Mechanistic Design

Design

Scenarios
Use Cases

Hazard Analysis

Architectural Design
Model

Mechanistic Design
Model

Detailed Design Model

Design Object Model

Design Detects

Design Detects

Architectural Model

© I-Logix, 1999 31

The translative approach has much to recommend it. In a translative macro cycle, a
translator is built which embodies the design decisions and patterns to be used. This
translator is then applied against the object model to produce an executable system. The
advantage of a translator is that once built, turning around a prototype from an analysis
model is a matter of seconds or minutes, rather than days or weeks. The translator
normally has two parts: a real-time framework (see [5] for a description) and a code
generator. The real-time framework works much like a GUI framework (such as MFC or
Motif). Base classes provide attributes and behavior common to such elements in the
domain. A real-time framework will provide classes such as timers, threads, semaphores,
state machines, states, events, and a set of operating system abstractions. The code
generator generates code from your modeled classes, relations, and statecharts, that in
turn use these framework classes (by subclassing or associating with them). The generated
code is then compiled and executed.

Tools such as Rhapsody™ provide translators and frameworks out-of-the-box that
embody a default set of design decisions. These decisions can be used without change,
particularly for early prototypes, but even in final deployable systems as well. However,
the user may go in and modify the translator or the framework if desired. This may be
done by

• subclassing the classes provided by framework, specializing the behavior as
necessary

• Replacing parts of the framework

• setting code generation configuration properties of the translator

In addition, because translating tools provide generation of code and a real-time
framework, they can insert animation instrumentation that allows them to monitor the
execution of the generated program and graphically depict that behavior using analysis and
design level abstractions rather than source code. In the case of Rhapsody, this
instrumentation communicates back to the tool as the generated application system runs,
allowing it to graphically depict the execution of the model using UML constructs. Thus,
statecharts animate, showing the acceptance of events and the transition within state
machines; sequence diagrams animate, showing the messages sent among objects; the
object browser animates, allowing you to view the current value of attributes and
associations – all as the application executes. This provides a model-level debugger that
can graphically show the execution of the system using the same diagram views used to
create it, complete with breakpoints, event insertions, scripting, and so on. This debugging
environment can be used while the generated system executes either on the user’s host
machine or on remote embedded target hardware.

The more traditional method for designing object-oriented software uses a different
approach. The analysis model is taken and elaborated with design detail. This process still
works by applying design patterns to the analysis model, but it is done by manually adding
the classes to the analysis diagrams and manually typing in code which implements the
modeled semantic constructs.

© I-Logix, 1999 32

One of the common questions I am asked about the elaborative approach is whether the
design model should be maintained as a distinct entity from the analysis model. There are
two schools of thought about this. The first school holds that the analysis model is a
“higher-level”, more abstract view and should be maintained separately. The second
school feels that it is important that the design and analysis models always coincide, and
the best way to achieve that is to add the design elements to the analysis model. There are
advantages to both approaches. However, my strong preference is the latter. I have seen
far too many problems arise from the deviation of the analysis and design models to
suggest any other approach. On the other hand, there are cases where the same analysis
model will be used in multiple designs. If this is true, then it might be best to live with the
potential for dual-maintenance of the analysis and design models. Care must be taken to
ensure their continuing consistency.

Architectural Design

Architectural design is concerned with the large-scale strategic decisions that affect most
or all software in the system.

Activities

The primary activities in architectural design are the

• Identification and characterization of threads

• Definition of software components and their distribution

• Application of architectural design patterns for
> global error handling
> safety processing
> fault tolerance

Some (even most) of the architecture may be dictated by the systems analysis. However,
there is still usually plenty of work left to define the concurrency and reliability/safety
model even if systems analysis is performed (small engineering projects may skip the
systems analysis step altogether).

Metamodel Entities Used

Since the design model is an elaboration of the analysis model, it consists of the same set
of elements. The basic elements are collaborations, classes, objects, and their relations. Of
particular concern in architectural design are the nodes, components, and active classes.
Nodes and components capture the physical deployment architecture. Active objects are
objects which are the root of threads. They form the basis of the UML concurrency model.
Finally, protocol classes are normally added to manage communications in a
multiprocessor environment.

© I-Logix, 1999 33

Artifacts

Artifacts from the Architectural design phase are shown in Table 5 below.

Table 5: Architectural Design Artifacts

Artifact Representation Description

Class and object
diagrams

Updated to include architectural design patterns

Component
diagrams

Identify development components, such as files and
documents, to enable team members to collaborate
by sharing work units.

Statecharts Finite state machines defined at the class level.
Activity diagrams UML diagrams that roughly correspond to

concurrent flowcharts. These have some of the
properties of Petri nets as well and can model
complex algorithms.

Sequence
diagrams

Paths of interest (such as typical and exceptional)
through the collaborations of identified classes.

Collaboration
diagrams

Same as sequence diagrams, but visually organized
similar to the object diagrams.

Architectural
Design Model

Timing diagrams Specifies the timing of operations and state
transitions in collaborations of identified classes.

Mechanistic Design

Mechanistic design is the “medium” level of design. The scope of design elements in this
sub-phase is normally from a few up to a dozen objects. Similar to architectural design,
most of the work in mechanistic design proceeds by the application of design patterns to
the analysis models.

Activities

In mechanistic design, the details of collaborations of objects are refined by adding
additional objects. For example, if a controller must manage many pending messages, the
Container-Iterator pattern can be applied. This results in the insertion of a container (such
as a FIFO queue to hold the messages) and iterators which allow the manipulation of that
container. The container and iterator classes serve as “glue” to facilitate the execution of
the collaboration.

Metamodel Entities Used

The metamodel elements used in mechanistic design are no different than those used in
object analysis. Most of the emphasis is at the level of the class and object.

© I-Logix, 1999 34

Artifacts
Artifacts from the Mechanistic design phase are shown in Table 6 below.

Table 6: Mechanistic Design Artifacts

Artifact Representation Description

Class and object
diagrams

Updated to include mechanistic design patterns

Component
diagrams

Identify development components, such as files and
documents, to enable team members to collaborate
by sharing work units.

Sequence
diagrams

Paths of interest (such as typical and exceptional)
through the collaborations of identified classes.

Collaboration
diagrams

Same as sequence diagrams, but visually organized
similar to the object diagrams.

Mechanistic
Design Model

Timing diagrams Specifies the timing of operations and state
transitions in collaborations of identified classes.

Detailed Design

Detailed design is the lowest level of design. It is concerned with the definition of the
internal structure and behavior of individual classes.

Activities

Most classes in a typical system are simple enough not to require much detailed design.
However, even there, the implementation of associations, aggregations, and compositions
must be defined. Additionally, the pre- and post-conditional invariants of the operations,
the exception-handling model of the class, and the precise types and valid ranges of
attributes must be specified. For some small set of classes, complex algorithms must be
clarified.

Artifacts

Artifacts from the Detailed design phase are shown in Table 7 below.

Table 7: Detailed Design Artifacts

Artifact Representation Description

Object model Define the structure and valid values for attributes,
and the decomposition of behaviors into a set of
operations within the class.

Detailed Design
Model

Statecharts Finite state machines defined at the class level.

© I-Logix, 1999 35

Artifact Representation Description

Activity diagram Definition of algorithmic behavior in terms of the
operations invoked, their sequence, and the
branching decisions.

Pseudocode Definition of algorithmic behavior

Translation

The translation phase turns the UML model into source code, and, via the compiler, into
an executable system as depicted in Figure 10 below.

Activities

In a translative development micro cycle, translation happens more or less automatically.
In the elaborative approach, the developer must map the UML model elements to
programming language elements. If an object-oriented language is used, this process is
fairly rote because all the important decisions have already been made during analysis and
design. If a non-object-oriented language is used, then the programming effort is more
“creative.” In this case, it is common to write a translation style guide. This guide defines
the translation rules to be used for the programmer to implement the UML model in the
target language, whether it is C, Pascal, or assembly language.

The ROPES process also includes unit testing in this phase. Unit testing is a set of white-
box tests that ensure that the unit under test is, in fact, internally correct and meets the
design. This normally consists of Unit Test Plan and Unit Test Procedures documents, and
culminates in a Unit Test Results document. The Unit Test Plan is normally organized
around the basic unit of the class. The document is normally written at the package or
component level. Each class within the package is represented in a separate chapter.
Within a class’ chapter, the set of tests for each operation are identified. The Unit Test
Procedures document is organized around identical lines, but includes much detail on the
actual execution of each test, including the operation of external equipment and test
fixtures. In my teams, we don’t even review source code until it passes its unit tests.
Properly run, unit level testing greatly increases quality and speeds the development
process by identifying errors early and with minimal impact.

Artifacts

Artifacts from the Translation phase are shown in Figure 10 and listed in Table 8 below.

Figure 10: ROPES Translation Model Artifacts

© I-Logix, 1999 36

Table 8: Translation Artifacts

Artifact Representation Description

Generated
Source Code

Textual source code Programming language statements in the target
language

Translation
Style Guide

Textual document A set of rules for converting the UML models
into source code statements.

Compiled
object code

Compiler-dependent
output format

Compiled executable code

Legacy code Source code
Compiled object
code

Existing source or compiled object code
providing services used by the application

Real-time
framework

Source code Framework classes from which application
classes are specialized

3rd party
components

Binary object code Libraries and components to be used by the
application such as container and math libraries

Unit test plan Text, organized by
object and operation

The internal white-box testing documentation for
the classes describing the breadth and depth of
testing

Unit test
procedures

Text, organized by
object and operation

Detailed, step-by-step instructions for unit test
execution, including pass/fail critieria

Real-Time
Framework

Application
Components

Design Object
Model

Legacy Code

3rd Party
Components

Generated
Source Code

Compiled Object
Code

Linked
Components

Translation

Automatic Code
Generation

Manual Code
Generation

Compilation

Linking

Unit Testing

Translation
Defects

Unit Test Plan

Unit Test
Procedures Unit Test Results

Translation Style
Guide

© I-Logix, 1999 37

Artifact Representation Description

Unit test results Textual document Test execution information, including tester,
date, unit under test and its version, and pass or
fail for each test

Linked
components

Executable
components or
applications

Components compiled and linked, but not yet
tested

Application
components

Executable
components or
applications

Components after they’ve been tested

Testing

The testing phase in the ROPES process includes both integration and validation testing.
Testing applies a set of test vectors to the application that have observable results. The
test vectors are based primarily upon the scenarios identified in the requirements and
object analysis phase. The resulting artifacts are a tested application and revealed defects,
as shown in Figure 10 below.

Figure 10: ROPES Testing Model Artifacts

Application
Components

Test Vectors

Tested
Application

Design Detects Analysis Defects

Integration TestingIntegration Test
Design

Integration Test
Plan

Integration Test
Procedures

Integration Test
Results

Validation Test
Plan

Validation Test
Procedures

Validation Test
Results

Validation Testing Validation Test
Design

Testing

Test Vectors

Integration Tested
Components

Defects
Translation Detects

© I-Logix, 1999 38

Activities

All tests should be executed against a test plan and in strict accordance with a test
procedures document. In integration testing, the system is constructed by adding a
component at a time. At each point where a new component is added, the interfaces
created by adding that component are tested. Validation tests are defined by a test team
and represent the set of requirements and system analysis done early on. Validation tests
are fundamentally black box. The only exceptions are the tests of the safety aspects. These
tests are white box because it is usually necessary to go inside the system and break
something to ensure that the safety action is correctly executed.

Artifacts

Artifacts from the Testing phase are shown below in Table 9.

Table 9: Testing Artifacts

Artifact Representation Description

Integration test
plan

Textual
document

Identifies and defines the order of addition of the
system components, and the set of tests to be
executed to test introduced interactions among the
components.

Integration test
Procedures

Textual
document

A detailed description of how to execute each test,
including clear and unambiguous pass/fail criteria.

Integration test
Results

Textual
document

The results from the execution of the integration
test plan including the tester, name and revision of
the components being integrated, date of test, and
pass or fail for each test

Integration
tested
components

Executable
component

Tested component

Validation test
plan

Textual
document

Identifies and defines the set of tests required to
show the system is correct. These tests are black
box and map to the requirements from the
requirements and systems analysis.

Validation test
procedures

Textual
document

A detailed description of how to execute each test,
including clear and unambiguous pass/fail criteria.

Validation test
results

Textual
document

The results from the execution of the validation
test plan including the tester, name and revision of
the application being tested, date of test, and pass
or fail for each test

© I-Logix, 1999 39

Artifact Representation Description

Tested
Application

Executable
application

Validated executable application

Summary

In this paper, we have looked at a number of issues surrounding the process of software
development. Early on, we looked at the process for the estimation of software work. As
an industry, we are dismal failures at predicting how long software development will take
and how much it will cost. There are both sociological and technical reasons for this. If the
sociological issues can be addressed, the technical solutions provided in this section can
greatly improve estimation accuracy. I’ve received many reports from companies for
whom I have consulted that their ability to accurately predict software projects has been
enhanced significantly as a result of the application of these techniques.

The remainder of the paper was spent on the ROPES process model. This model divides
software development into 4 primary phases: analysis, design, translation, and testing.
Analysis and design are further divided into sub-phases. Analysis is divided into
requirements, systems, and object analysis phases. Design is broken up into architectural,
mechanistic, and detailed designs. Each of these sub-phases has a set of deliverable
artifacts, which constitute the work products for the sub-phase.

The phases identified in the ROPES model are organized into an iterative lifecycle. Each
prototype typically implements one or more use cases, organized by risk (greater risk
first). This allows the early exploration of risks and minimizes the number of model
aspects that must be modified due to those risks. In order to explore those risks,
executable prototypes must be developed, since only executable things can be tested.
Thus, the key enabling technology which makes this process rapid and efficient is the
automatic translation of models into executable code. This reduces the time necessary to
do complete iterations from weeks or months to hours or days. ROPES supports both
elaborative and translative development micro cycles, but leans towards the latter.

About I-Logix
I-Logix Inc. is a leading provider of application development tools and methodologies that
automate the development of real-time embedded systems. The escalating power and
declining prices of microprocessors have fueled a dramatic increase in the functionality and
complexity of embedded systems—a trend which is driving developers to seek ways of
automating the traditionally manual process of designing and developing their software. I-
Logix, with its award-winning products, is exploiting this paradigm shift.

I-Logix technology supports the entire design flow, from concept to code, through an
iterative approach that links every facet of the design process, including behavior
validation and automatic “production quality” code generation. I-Logix solutions enable

© I-Logix, 1999 40

users to accelerate new product development, increase design competitiveness, and
generate quantifiable time and cost savings. I-Logix is headquartered in Andover,
Massachusetts, with sales and support locations throughout North America, Europe, and
the Far East. I-Logix can be found on the Internet at http://www.ilogix.com

References

[1] Booch, Grady Object Solutions: Managing the Object-Oriented Project; Reading,
MA. Addison-Wesley, 1996

[2] Kant, Immanuel, Guyer, Paul (Translator), and Wood, Allen (Translator) Critique of
Pure Reason; Cambridge, MA; Cambridge University Press, 1998

[3] Boheim, Barry Software Economics, Englewood Cliffs, NJ; Prentice Hall, 1981

[4] DeMarco and Lister Peopleware: Productive Projects and Teams New York, New
York, Dorset House Publishing Company, 1987

[5] Douglass, Bruce Powel Doing Hard Time: Developing Real-Time Systems using
UML, Objects, Frameworks, and Patterns Reading, MA: Addison-Wesley, 1999

[6] Douglass, Bruce Powel Real-Time UML: Developing Efficient Objects for Embedded
Systems Reading, MA: Addison-Wesley, 1998

