
Science of Computer Programming 55 (2005) 81–115

www.elsevier.com/locate/scico

A discrete-time UML semantics for concurrency and
communication in safety-critical applications✩

WernerDamma,∗, Bernhard Joskoa, Amir Pnuelib,
Angelika Votintsevaa

aOFFIS, Oldenburg, Germany
bThe Weizmann Institute of Science, Rehovot, Israel

Received 31 August 2003; received in revised form 15 April 2004; accepted 30 May 2004

Abstract

We define a subsetkrtUML of UML which is rich enough to express such modelling entities
of UML, used in real-time applications, as active objects, dynamic object creation and destruction,
dynamically changing communication topologies, combinations of synchronous and asynchronous
communication, and shared memory usage through object attributes. We define a formal interleaving
semantics for this kernel language by associating with each modelM ∈ krtUML a symbolic
transition systemSTS(M). We briefly outline how to compile models of industrial systems making
use of generalisation hierarchies, weak and strong aggregation, and hierarchical state-machines into
krtUML. The main aim of the paper is to provide an executable semantics forkrtUML suitable for
the formal verification of temporal model properties with existing model-checking tools.
© 2004 Published by Elsevier B.V.

✩ This research was partially supported by the Information Society DG of the European Commission within
the project IST-2001-33522 OMEGA.∗ Corresponding author.

E-mail addresses:damm@offis.de (W. Damm), josko@offis.de (B. Josko), amir@wisdom.weizmann.ac.il
(A. Pnueli), votintseva@offis.de (A. Votintseva).

0167-6423/$ - see front matter © 2004 Published by Elsevier B.V.
doi:10.1016/j.scico.2004.05.012

http://www.elsevier.com/locate/scico

82 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

1. Introduction

The establishment of a real-time profile for UML [25], the proposal for a UML action
language [24], and the installation of a special interest group shared between INCOSE
and OMG to develop a profile for UML addressing specification of real-time systems at
the system level all reflect the pressure put on standardisation bodies to give a rigorous
foundation to the increasing level of usage of UML to develop hard real-time systems.

Its increased use also for safety-critical applications mandates the need to complement
these modelling oriented activities with an agreement on the formal semantics of the
modelling constructs employed, as a prerequisite for rigorous formal analysis methods,
suchas formal verification of compliance to requirements. This need has been perceived
by the research community, leading to a substantial body of formalisation of various
subsets of UML. The precise UML group has in a series of papers [4–6] been proposing a
meta-modelling-based approach, which however lacks the capability to address dynamics
aspects at the level of detail required forformal verification. Approaches based on
translation into existing formalisms, e.g. theπ-calculus [27,28], ASMs [23], CASL [32],
Object-Z [17], fall short of covering the rich range of behavioural modelling constructs
covered in this paper. Other approaches to the UML semantics are discussed in detail in
Section 5of this paper. Closest to our work addressing the intricacies of understanding
active objects are [31,32].

Our approach takes into account functional aspects of real-time systems, considering a
discrete-time model allowing us to define different levels of step granularity. In this paper,
we focus our investigation on the semantic foundation of such critical features of real-time
applications as concurrency and two types of inter-object communication — synchronous
and asynchronous — including the specification of the time points for interferences. The
proposed semantics, being executable and abstract enough to cover different choices for
the final implementation anddeployment (such as different execution times, scheduling
strategy), is intended for the formal verification at earlier stages of the development
process, such as preliminary and detailed design. Such “early” verification would allow
us to find errors of possible further implementations already at the model level.

The approach described benefits from numerous discussions with industrial users
employing UML tools for the development of real-time systems, e.g. the partners of the
IST projects Omega1 and AIT-Wooddes.2 The IST project Omega has developed an agreed
specificationrtUML of those modelling concepts from UML required to support industrial
users in their application development [8], subsuming such concepts as inheritance,
polymorphism, weak and strong aggregation, hierarchical state-machines, rich action
language, active, passive, and reactive objects, etc., taking into account detailed issues
such as navigability, visibility, changeability, and ordering of association end-points, and
allowing unbounded multiplicity of these. This project alsoprovides a real-time extension
of the proposed semantics [13].

1 IST-2001-33522,http://www-omega.imag.fr/index.php.
2 IST-1999-10069,http://wooddes.intranet.gr.

http://www-omega.imag.fr/index.php
http://wooddes.intranet.gr

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 83

We propose a two-stage approach to give a formal semantics tortUML:
A pre-compilation step translatesrtUML models into a sufficiently compact sublanguage
krtUML, eliminating the need at the kernel level to address the various facets of
associations, generalisation, and hierarchical state-machines. We then give a formal
semantics ofkrtUML, using the formalism of symbolic transition systems [21]. In this
semantic framework, the state space of the transition system is given by valuations of a
set of typed system variables, and initial states and the transition relation are defined using
first-order predicate logic. We show how to capture a complete snapshot of the dynamic
execution state of a UML model, using unbounded arrays of object configurations to
maintain the current status of all objects, and a pending request table modelling the status of
all submitted, but not yet served operation calls. Object configurations include information
on the valuation of the object’s attributes, thestate configuration of its state-machine, as
well as the pending events collected in an event queue.

In this paper, we focus on the definition and formal semantics ofkrtUML, andonly
sketch some ideas of the pre-compilation phase, because most of the translation steps use
standard compiler techniques. We refer the reader to [8] for a full description of these steps,
as well as for the full specification ofrtUML.

The paper is organised as follows.Section 2outlines the aims for the semantics
proposed in the paper and gives a formal definition of the constituents of akrtUML
model.Section 3, the heart of this paper, develops the STS-based semantics, motivating
and introducing in consecutive sections the system variables spanning the state space of the
transition systems, and the transition relation itself.Section 4highlights aspects of the pre-
compilation step, addressing class relations and the hierarchical state-machine.Section 5
discusses related work.

2. The krtUML language

Our kernel language caters for the difference between active and passive objects. We
generalise this concept inSection 4by proposing to group one active object and a collection
of passive server objects into what we callcomponents. Another class dichotomy, orthog-
onal to the “active–passive” hierarchy, considered in the paper is the difference between
reactive and simple classes. All objects are assumed to have state-machines; that is, their
behaviour can be made dependent on the current state of the system. Some state-machines
can specify event receptions, which automatically implies a reactive behaviour of the cor-
responding class, i.e. its objects can react onthe external stimuli. We do not require any
restrictions on the combinations between active/passive and reactive/simple class notions.

Pre-compilation will have flattened thehierarchical state-machines ofrtUML into the
flat state-machines considered in our kernel language. It will also have split compound
transition annotations; hence within the kernel language, only atomic actions and triggering
guards (signal/operation names possibly with conditions) are allowed as labels of
transitions.

2.1. Basic notions

We first explain some UML related notions considered in the paper, as well as imposed
problems, when resolving ambiguity of semantic variation points deliberately left in

84 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

the UML specifications. We use the notionsof active class/object, thread (of control),
concurrency,multiplicity, state-machine, association, composition, generalisation, multiple
inheritance, dynamic classification, stimulus, signal, event, sender and receiver, method,
parameter as they are defined in the UML 2.0 proposal [26].
In developingkrtUML, we strivedto maintain in purified form those ingredients of UML
relating to the interaction of active objects.

Active classesare intended to be used to model threads — sequential executions —
where all threads can run concurrently. Active classes provide means to sequentialise (in-
dependent) executions. Intuitively, anactive object— an instance of an active class —
is like an event-driven task, which processes its incoming requests in a first-in–first-out
fashion. It comes equipped with a dispatcher, which picks the top-level event for the event
queue, and dispatches it for processing to either its own state-machine, or to one of the pas-
siveobjects associated with this active object, inducing a so-called run-to-completion step.

Passive classesare those containing no scheduling (or sequentialisation) mechanisms.
Their instances —passive objects— use such mechanisms from the assigned active
objects. In other words, passive objects perform their serviceson behalf of the
corresponding active ones.
Components.In this paper, we use the notion of a component which is a restriction of
the more general concept from the standardUML. We will call a set of objects executing
their services sequentially a component. This means that each component contains exactly
one active object and possibly several passive ones associated with the active one.
Within a component, all passive objects delegate event-handling to the one active object;
pre-compilation will capture this delegation relation by allowing reference throughmy_ac
to the active object responsible for event-handling of passive objects. We require static
assignment of passive objects to active ones, such that an object can belong only to one
component in its life-cycle.

A Run-To-Completion (RTC) stepis a sequence of fired transitions in an object state-
machine corresponding to the processing of a single event or operation call. An RTC step
cannot be interrupted. Only RTC steps from different components can run concurrently (in
our semantics, meaning all possible interleavings).

Semantic challenge. A problem for the semantic definition for concurrent executions,
solved in the paper:

• on one hand, to take into account the different execution speeds within different
components (executing concurrently and asynchronously),

• on the other hand, to find an abstraction from the actual execution durations (which can
be different on different platforms),

• providing a semantics allowing telling about both state and run (or temporal) properties
of complex systems.

Signalsare specifications of asynchronous stimuli, whose reception is handled by state-
machines. There can be several signal instances (called signal events) in a system at one
point of time. Signals can be generalised, which means that if a state-machine can handle
a reception of a generalised signal event, then it can also handle a more specialised event,
butnot vice versa.

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 85

Operations.We support so-calledtriggeredoperations, i.e. operation calls, whose return
value depends on the current state of the system, as distinguished from what we call
primitive operations, the body of which is defined by a program in the supported action
language. Since primitive operations only involve services of an object within the same
component, pre-compilation can eliminate all calls to primitive operations by inlining
their methods into state-machine transitions(assuming that the call-depth of primitive
operations is bounded). In contrast, for triggered operations the willingness of the object to
accept a particular operation call in a given state is expressed withinthe state-machine, by
labelling transitions emerging from the state with the operation name as a triggering guard,
in the same way as the willingness of the object to react to a given signal event is specified
by using this signal as a triggering guard. Reflecting the wish to make the return value
of triggered operations dependent on the object state, its “body” is “spread out” over the
state-machine itself: the acceptance of a call will induce a run-to-completion step; hence
the transition labels passed during this run-to-completion step determine the response for
this particular invocation of the triggered operation.

A general characteristic of reactive classes in UML is that they contain state-machines
specifying reactions on the stimuli by changing their states. This reaction can also
depend on the current state in the state-machine. In this article we propose a semantics,
where executions are defined with respect to transitions of state-machines, where object
creation and destruction are also explained in terms of (implicit) state-machine transitions.
Therefore, inkrtUML all classes have state-machines. We will define a slightly different
notion of a reactive class tocapture the proper reactive behaviour as follows.

A reactive classin krtUML is a class whose state-machine specifies event receptions
or operation acceptance also after the initialisation phase, i.e. when the state-machine
execution triggered by the creation operation is completed. Otherwise it is called asimple
class.

We consider two types of the intra- and inter-object communication:

• Asynchronous — via signal event emission. The caller does not need any reply;
therefore it proceeds further after the emission of a signal event. All emitted events
need to be stored in additional repositories to be accepted later by callees.

• Synchronous — via operation calls. InkrtUML we consider only triggered operations,
which trigger state-machine transitions. A caller sends a request that it wants to
synchronise with its callee (possibly to get a result of an operation) and becomes
suspended. The callee may accept the call, if it enters the corresponding state.

Semantic challenge. A problem for the semantic definition of models with the
combination of different kinds of communications, solved in the paper:

• on one hand, to distinguish semantically synchronous and asynchronous communica-
tions by treating them differently,

• on the other hand, to give a uniform state-machine-based semantics (also taking into
account communication structure from class diagrams),

• providing a suitable granularity for the interference of object executions to capture
properties of both synchronous and asynchronous communication schemes in complex
systems.

86 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

While the semantical model is rich enough to support communication through shared
attributes, operation calls, and signals, we restrict our communication model so that all
inter-component communications are purely asynchronous, i.e. via signal events.

In the following (sub)sections we will give formal definitions of the above-mentioned
notions with respect tokrtUML. The notion of components will be also considered in
Section 4.2at a higher level of modelling formalism, calledrtUML.

2.2. krtUML structure

We now elaborate on the formal definition ofkrtUML models. Note that the different
ingredients are mutually dependent; hence we collect them in one formal definition. Es-
sentially a kernel model contains a set of classes and signals; signals can be ordered by the
generalisation relation, with each class containing a state-machine, typed attributes, and
operations implemented via the class state-machine. Some classes are distinguished as be-
ing active. We only consider here flat state-machines extended with object initialisation and
object destruction phases. A designated root class serves later for the system initialisation.

Definition 1 (krtUML Model). A krtUML model

M = (T, F, Sig,<, C, croot, A)

consists of the following elements:

• T ⊇ {void, B, N}: A set of basic typescomprising at least booleans and natural
numbers.

• F: A set of typedpredefined primitive functions.
• Sig: A finite set ofsignals. Every instance of a signal is calledsignal event, or eventfor

brevity.
• < ⊂ Sig× Sig: A generalisation relationon signals, i.e. the transitive closure<+ is

irreflexive, whereev1 < ev2 denotes thatev2 is a generalisation ofev1. In the following,
we use≤ to denote the reflexive transitive closure of<.

• C: A finite, non-empty set ofclasses. A class

c = (c.isActive, c.attr, c.ops, c.sm)

consists of:
– c.isActive: A predicate. Classc ∈ C is calledactive iff c.isActive= true.
– c.attr: A finite set of typedattributes, which maynot be of typevoid.
– c.ops: A finite set of typedtriggeredoperations.
– c.sm: A c-state-machineas explained in (v) below in terms ofc-actions overc-

expressions.
Each class contains two specificimplicit attributes(introduced by the pre-processing):
self ∈ c.attr keeping the reference to the object itself, andmy_acfrom c.attr specifying
the event-handling object associated with classc.

• croot ∈ C: The class of theroot object(serving to specify system initialisation as defined
in Definition 7).

• A ⊂ C: A subset of active classes calledactorsand used to denote external objects (part
of the environment).

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 87

krtUML allows for some set of base typesT, as well as a setF of functions operating
on them, including, in particular, booleans and natural numbers together with all logical
and arithmetical operators. Signals as well as operations may have parameters of well-
defined types. Note that we support explicitly generalisation hierarchies on signals (while
generalisation hierarchies on objects areeliminated during pre-compilation).

We now elaborate on the elements ofkrtUML model defined so far, and start by defining
the supported types. Here we clearly distinguishbetween base types and reference types
(visible on the UML level), as well as a third category of types catering for implicit
attributes representing association end-points, which typically hold a number of references
depending on their multiplicity. By choosing to type these uniformly with functions from
the naturals to classes, wecater for unbounded multiplicity. Operationally, we hence view
such implicit attributes asunbounded arrays, with each indexpointing to an associated
object of a given class, or containing a nil-pointer.

Definition 1 (Continued).

(i) Typing. A krtUML modelM defines the set of types

T(M)
df= T ∪ TC ∪ Tas

whereTC
df= {Tc | c ∈ C} is the set ofreference typesand

Tas
df= {N → Tc | c ∈ C} the set ofassociation types, which will be used to

represent all kinds of associations described in [8] (i.e., composition, aggregation, and
neighbour).

For each typeτ ∈ T(M), we assume the existence ofa designated elementnilτ ∈ τ as
a default value.

We use ‘type’ to denote the type of attributes, functions, etc. as follows:
• For each classc ∈ C and each attributea ∈ c.attr, type(a) ∈ T(M) denotes the type

of a ∈ c.attr,
wheretype(self) = Tc ∈ TC andtype(c.my_ac) ∈ TC.

• For each classc ∈ C and each triggered operationop ∈ c.ops, typepar(op)
= T1 × · · · × Tn denotes the parameter type whereTi ∈ T(M) is the type of
the i -th parameter andtyper(op) ∈ T(M) denotes the type of thereply value
(typer(op) = void if opdoes not yield a return value). The type ofop is defined as
type(op) = typepar(op) → typer(op).

• For each f ∈ F, typepar(f) = T1 × · · · × Tn denotes the parameter type where
Ti ∈ T(M) is the type of thei -th parameter andtyper(f) denotes the value type of
f . The type of f is type(f) = typepar(f) → typer(f).

• For eachev ∈ Sig, typepar(ev) = T1 × · · · × Tn denotes the parameter type ofev
whereTi ∈ T(M) is the type of thei -th parameter.

We next introduce the expression language, supporting navigation expressions, accessing
objects through association end-points, and closing this under application of base-type
functions (including equality and boolean operations).Expressions are terms defined in
the scope of a class that can be used in transition guards or primitive actions of this class.

88 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

Definition 1 (Continued).

(ii) Expressions. For a classc ∈ C, ac-expression‘expr’ i s defined inductively as follows:
• Navigation expression:expr ::= r.a,

wherer ∈ c.attr with type(r) = Tc0 ∈ TC anda ∈ c0.attr. We settype(expr)
df=

type(a). Note that we only consider “flat” navigation expressions inkrtUML, where
r can also refer to the object itself (ifr = self).

• Association access: expr::= expr1[expr2],
whereexpr1 and expr2 are c-expressionstype(expr1) = (N → Tc′) ∈ Tas and

type(expr2) ∈ N. We settype(expr)
df= Tc′ .

• Function application: expr::= f (expr1, . . . , exprn),
whereexpr1, . . . , exprn arec-expressions, f ∈ F, andtype(expri) matches the type
of thei -th parameter off , 0 < i ≤ n. We definetype(expr) = typer(f).

In the following definition ofc-guards,c-actions, andc-state-machines, ‘expr’, ‘ expr1’,
and ‘expr2’ denotec-expressions.

Guards can be just boolean expressions, or express the willingness to accept a signal event
or an operation call, possibly conjoined with a boolean condition.

Definition 1 (Continued).

(iii) Guards. For a classc ∈ C, atriggering guardto be used in the state-machine of class
c ∈ C, c-guard for short, is one of the following:
• Signal trigger: ev[expr], whereev ∈ Sigandtype(expr) = B.
• Call trigger: op[expr], whereop ∈ c.opsandtype(expr) = B.
• Condition: [expr], wheretype(expr) = B.

We support a rich action language, allowing for object creation and destruction, operation
calls, event emission, and assignments of attributes and association end-points. The
expression passed in an object creation is intended to pass the identity of the active object
responsible for event-handling. Reply actions serve to define the return values of triggered
operations.

Definition 1 (Continued).

(iv) Actions. A (primitive) actionto be used in the state-machine of classc ∈ C, c-action
for short, is one of the following:
• Object creation: r.a := createc′(expr),

with r ∈ c.attr, type(r) = Tc0 ∈ TC, a ∈ c0.attr and type(a) = Tc′ ∈ TC, and
type(expr) = type(c′.my_ac).

• Object creation (into association place): r.a[expr1] := createc′(expr2),
with r ∈ c.attr, type(r) = Tc0 ∈ TC, a ∈ c0.attr,
type(a) = (N → Tc′) ∈ Tas, type(expr1) = N, and
type(expr2) = type(c′.my_ac).

• Attribute assignment: r.a := expr,
with r ∈ c.attr, type(r) = Tc0 ∈ TC, a ∈ c0.attr, andtype(a) = type(expr).

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 89

• Association place assignment: r.a[expr1] := expr2,
with r ∈ c.attr, type(r) = Tc0 ∈ TC, a ∈ c0.attr, type(expr1) = N,
type(a) = (N → Tc′ ∈ Tas), andtype(expr2) = Tc′ .

• Event emission: r.send(ev, expr1, . . . , exprn),
with r ∈ c.attr andtype(r) ∈ TC, ev ∈ Sig,
and(×n

i=0type(expri)) = typepar(ev).
• Operation call (ignoring reply value): r.call(op, expr1, . . . , exprn),

with r ∈ c.attr, type(r) ∈ TC, op ∈ type(r).ops,
and(×n

i=0type(expri)) = typepar(op).
• Operation call (assigning value): r.a := r ′.call(op, expr1, . . . , exprn),

with r ∈ c.attr, type(r) = Tc0 ∈ TC, a ∈ c0.attr, andr ′ ∈ c.attr,
type(r ′) ∈ TC, op ∈ type(r ′).ops, and(×n

i=0type(expri)) = typepar(op),
andtype(a) = typer(op).

• Operation call (assigning value into association place):
r.a[expr0] := r ′.call(op, expr1, . . . , exprn),
with r ∈ c.attr, type(r) = Tc0 ∈ TC, a ∈ c0.attr, andr ′ ∈ c.attr,
type(r ′) ∈ TC, op ∈ type(r ′).ops, and(×n

i=0type(expri)) = typepar(op),
andtype(a) = (N → c′) ∈ Tas, type(expr0) = N, andtyper(op) = c′.

• Setting reply value: replyτ (expr), with τ ∈ T ∪ TC andtype(expr) = τ .
• Object destruction: destroy(expr), with type(expr) ∈ TC.

Triggering guards and actions appear as labels of transitions in the class state-machines. We
assume a designated destruction state. Pre-compilation will extend the user-defined state-
machine by pre-fixing the initial state with a sequence of transitions modelling constructor
actions, while the destruction state, having no incoming transitions, is the unique point of
entry into a section added by pre-compilation modelling destructor code. Pre-compilation
also transfers hierarchical state-machines into flat state-machines.

Definition 1 (Continued).

(v) State-machines. A c-state-machine for a classc ∈ C is a tuple

c.sm= (c.Q, c.q0, c.qx, c.tr), where:

• c.Q is a finite set ofstates.
• c.q0 ∈ c.Q is theinitial state.
• c.qx ∈ c.Q is thedestruction state, which is used to mark the beginning of the

destructor’s actions.
• c.tr ⊆ c.Q × ({γ | γ is ac-guard orc-action}) × c.Q is the transition relation.

We require that there is the initial transition(c.q0, γ , q) ∈ c.tr with c-action
γ = “createc”.

• Classc ∈ C is called reactive if there is a transition(q, γ , q′) ∈ c.tr such
that q
= c.q0 andγ is in the formev[expr] or op[expr] for someev ∈ Sig or
op ∈ c.ops\ {createc}. �

We will usekrtUML to denote the set of allkrtUML models.
An abstract example of akrtUML model with four classes is shown onFig. 1.

90 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

Fig. 1. Class examples. ClassesCroot andC0 areactive, whereasC1 andC2 are passive, i.e. perform their services
within the sequences ofCroot andC0 executions, respectively. ClassesC0 andC2 are reactive, since they can
react to stimuli after the initialisation phase. ClassesCroot andC1 do not accept any stimuli other than creation.

Note that on thekrtUML level, there is intentionally no inheritance relation on classes,
since for each classc ∈ C, inheritance is explained by the introduction of implicit attributes
parent_typec′ andtype_tablefor each superclassc′ of c in the preprocessing step described
in Section 4.1. Association attributesparent_typec′ are used to keep the structure of the
inheritance hierarchy, whereastype_table reflects the actual type of each object, which
is available at each level of the dynamic classification (useful, e.g., for calls of abstract
operations with a deferred implementation [22]).

Further note that association access is restricted to accessing a single index; i.e. on the
krtUML level, there are no operations like iteration over associations or adding references.
We assume that such operations are also explained in terms of primitive actions by the
preprocessing.

The identification of actors is not considered necessary from a semantical point of view,
since actors should be treated as every other active classes. But the information on whether
an object is an actor instance can be exploited in formal verification: these objects need not
necessarily be encoded like ordinary objects but can be interpreted as an assumption about
environment behaviour, i.e. the expected sequences of input stimuli.

In the following, we assume that the preprocessing step as outlined inSection 4.1
establishes the following set of requirements regarding the sets of attributes and the
state-machines of akrtUML model, which we rely on in Section 3when explaining the
semantics.

(i) All a ttribute and triggered operation names of all classes are pairwise different, for
examplequalifiedby a classnamelike c::a, and all states of all state-machines are
pairwise different.

(ii) For each classc ∈ C, c.attr contains the attributec::my_acto store the reference to
the responsible active object such thatc::my_acis of typeTc′ andc′.isActive= true.

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 91

(iii) Values of the implicit attributesc::self and c::my_ac (as well astype_table and
parent_typec) are assigned once at the initialisation of the corresponding object and
do not change during the lifetime of the object.

(iv) For each triggered operationop ∈ c.ops, c ∈ C, there are attributesc::oppi
∈ c.attr,

1 ≤ i ≤ n for holding local copies of the parameters,
typed s.t.(c::opp1

, . . . , c::oppn
) = typepar(op).

(v) For eachev ∈ Sig which c ∈ C is willing to receive, i.e. there is a transition
(q, ev[expr], q′) ∈ c.tr, there are attributes c::ev pi ∈ c.attr, 1 ≤ i ≤ n, for
holding local copies of the signal parameters, typed s.t.(c::ev p1, . . . , c::ev pn) =
typepar(ev).

3. krtUML semantics

We will give the semantics ofkrtUML in terms of symbolic transition systems, proposed
in [21] under the name Synchronous Transition Systems. Separate subsections derive from
types ofkrtUML models the type structure of related symbolic transition systems, and
introduce the system variables required to represent a snapshot in the dynamic execution
of a krtUML model. We then elaborate the way in which snapshots can evolve, defining
for each of the possible cases a transition predicate. Finally, we define the predicate
characterising initial snapshots, and collect all pieces of the transition relation into a full
predicative definition of the transition relation, leading to a definition of the symbolic
transition system associated withkrtUML model.

3.1. Symbolic transition systems

We first introduce the semantic model of symbolic transition systems, which allows for
apurely syntactical description of a transition system by first-order logic predicates over a
set of typed system variables.

Definition 2 (STS). A symbolic transition system(STS) S = (V,Θ, ρ) consists ofV,
a finite set of typedsystem variables, Θ , a first-order predicate over variables inV
characterising the initial states, andρ, a transition predicate, that is a first-order predicate
overV, V ′, referring to both primed and unprimed versions of the system variables (their
current and next states).�

An STS inducesa transition system on the set of interpretations of its variables as
follows.

Definition 3 (Runs of an STS). Let S = (V,Θ, ρ) be anSTSandT the set oftypes of
variables inV. LetDτ be a semantic domain for eachτ ∈ T.

(i) A snapshot s: V → ⋃
τ∈T Dτ of S is a type-consistent interpretation ofV, assigning

to each variablev ∈ V a values(v) over itsdomain.Σ denotes the set of snapshots
of S.

(ii) A snapshots ∈ Σ inductively defines the value[[expr]](s) for first-order predicates
‘expr’ overV and the value[[expr]](s, s′) for first-order predicates ‘expr’ over V, V ′,

92 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

Fig. 2. System configuration. A variable of typeTsconf contains one object configuration for every object identifier
in OC . The example of an object configurationoconffor the object(Car, 5) is shown enlarged.

wheres provides the interpretation of unprimed ands′ the interpretation of primed
variables in ‘expr’.

(iii) A snapshots ∈ Σ is calledinitial , iff [[Θ]](s) = true.
(iv) Let s, s′ ∈ Σ be snapshots ofS. Snapshots′ is calledS-successorof s, iff [[ρ]](s, s′) =

true.
(v) A computation, or run, of S is an infinite sequence of snapshots

r = s0 s1 s2 . . ., satisfying the following requirements:
• Initiation: s0 is initial.
• Consecutiveness:Snapshotsj +1 is anS-successor ofsj , for eachj ∈ N0.

(vi) The set of all computations ofS is denoted asruns(S). We user (i) to denote thei -th
snapshotof a runr ∈ runs(S) and

r/ i
df= r (i) r (i + 1) r (i + 2) . . .

to denote the infinite suffix starting atr (i), i ∈ N0. �

3.2. System variables for the krtUML semantics

We motivate our choice of types and system variables using snapshots related to the
Automated Rail Car System described in [14], a model of autonomous rail-bound cars
which transport passengers between terminals and which adhere to a simple arrive and
departure protocol to allocate and de-allocate platforms inside the terminal. We refer the
reader to [14] for details.

Fig. 2 depicts the way in which an object configuration is captured. It shows enlarged
the entry of an object of classCar, currently executing. The current state-machine
configuration is illustrated by a state-machine, where in fact only the current state is stored.

An object configuration not only gives the current valuation of all its attributes as well
as its current state configuration, but also maintains the current object status (elaborated
below), the event queue (for active objects only), and a dispatcher status (for active objects
only) used to enforce a single thread of control within the objects grouped into one
component. The semantic entity representing a single class isa (potentially unbounded)

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 93

Fig. 3. The object life-cycle.

array of object configurations, with each entry corresponding to a single instance of this
class.

The object status reflects the phase in the object life-cycle (seeFig. 3). Prior to creation,
objects are perceived as being dormant. Creation of a new object instance will pick
a dormant index of the corresponding class, and awake the object to realities of life.
During life, objects become suspended when waiting for completion of an operation call,
and idle (except for the special case discussed below) when becoming stable, i.e. when
a run-to-completion step terminates. Thishappens when reaching a state, where all
outgoing transitions are either guarded by signal triggers (of the formev[expr]) or call
triggers (of the formop[expr]), or conditions (of the form[expr]) which are evaluated
to false. In the particular case of accepting destruction, the object status will switch to
dying, remaining in this status until its last run-to-completion step induced from the
objects’ destructor is finally completed. From then on, the object status will remain
dead.

Note that destruction of an aggregate object (w.r.t. the composition association, defined
in rtUML) induces destruction of all its parts; hence dying may be a long and painful
process. Our semantics thus allows us to observe nastiness such as sending events to dying
objects, as well as detecting dangling references.

For the restof this section, letM = (T, F, Sig,<, C, croot, A) be akrtUML model. We
now define for the semantic types employed in the definition of the associated symbolic
transition system, as well as the semantic domain of all semantic types. The type-system
of semantic types subsumes all types of thekrtUML model.

Definition 4 (Object Reference Types and Domains). For each basic typeτ ∈ T, we
assume the existence of a corresponding semantic typeTτ with domainDτ .

For each typeTc ∈ TC, we denote byOc or TTc the corresponding semantic type and

chooseDOc

df= {c} × N as its domain. We callOC with domainDOC

df= ⋃
c∈C DOc, the

object reference type or domain. For each object typeOc, we assume the existence of a
designated elementnilc ∈ DOc to serve as a default value.

For each association typeτ = (N → Tc) ∈ Tas, Dτ
df= (N → DOc) is the domain of

Tτ . �

We now define the semantic type of system configurations and its associated domain,
by first defining the semantic type of object configurations.

94 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

Definition 5 (Object and System Configuration). (i) An object configuration oconf=
(status, ac, sc, eq, ds) consists of the following elements:

• An object status‘status’ of type Tobjstatuswith associated semantic domain

DTobjstatus

df= {dormant, idle, executing, suspended, dying, dead}.
• An object attribute configuration‘ac’ of type Tac

df=
⋃
c∈C

(c.attr → TT(M)).

• An object state-machine configuration‘sc’ of typeTsc with associated semantic

domainDTsc

df=
⋃
c∈C

c.Q.

• Theevent queue eqof typeTeq
df= T ∗

eqe, i.e. a sequence of entries

(dest, ev, par) of typeTeqe
df= OC × Sig×

⋃
ev∈Sig

Ttypepar(ev).

For an event queue entry, ‘dest’ denotes thedestination, ‘ev’ the event type
(i.e. signal name), and ‘par’ the event parameters. We will use ε to denote empty
eventqueue.

• A dispatch reference dsof typeTds
df= OC, i.e. a reference to some object of any

class which is used to denote the object currently processing an event.

Thus the type of anobject configurationof M is

Toconf(M)
df= Tobjstatus× Tac × Tsc × Teq × Tds.

(ii) The type of asystem configurationis Tsconf(M)
df= OC → Toconf(M).

(iii) We will call a setCm(o) = {o′|o′.my_ac= o} of objects assigned to the same event
dispatchero a component.

(iv) We will call object o ∈ Oc of classc an active objectiff c.isActive = true (i.e.,
c is an active class). Otherwise we callo a passive object. We also will write
o.isActive = true to specify thato is an active object ando.isActive = false for
passive ones.

(v) We will call object o ∈ Oc of classc a reactive objectiff c is a reactive class.
Otherwise we callo asimpleobject. �

The symbolic transition system uses the variablesconf : Tsconf to maintain the object
configuration of all objects ofM. Note that, in general, the assignment of an event
dispatcher to a reactive object can be user defined. In [8], a default assignment is given
derived from thecomposition association.

We collect the status of all pending operation calls within a pending request table. An
example inFig. 4shows enlarged the entry for calls from an object of classCar. Currently
the call of triggered operationengage for a Cruiser is pending. Here we exploit the
fact that all objects become suspended on calling an operation. We can thus maintain the
status of all operation calls in a table indexed by sender objects or actors. Each entry in
the pending request table maintains the identity of the receiver, the name of the requested
operation, the list of parameters, a result field, and status information.

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 95

Fig. 4. The pending request table. The pending request table is a system variable of typeTprt. It contains one
entry for every object identifier inOC .

Fig. 5. The life-cycle of atriggered operation call.

The life-cycle of an entry in the pending request table is depicted inFig. 5. Whenever
the object owning the entry emits a new operation call, the status of the entry switches to
pending. It will remain in this status until the receiving object is willing to serve the call,
which causes the status to switch to busy. Once the run-to-completion step induced from
accepting the call is terminated, the result of the call is entered into the result field of the
entry, and its status changes to completed. This will allow the calling object to pick up the
result and resume computation, causing the status of the entry to become unused.

Definition 6 (Pending Request Table). (i) A pending request table entry opreq=
(dest, op, status, result, params) maintains:
• The receiver of a triggered operation call‘dest’ of type Tdest with associated

semanticdomainDTdest

df= OC.
• The triggered operation identifier‘op’ of type Top with associated semantic

domainDTop

df=
⋃
c∈C

c.ops.

• Thetriggered operation status‘status’ of typeTopstatuswith semantic domain

DTopstatus

df= {unused, pending, busy, completed}.
• Theresult(or reply) ‘ result’ of typeTres with associated semantic domain

DTres

df=
⋃
c∈C

op∈c.ops

typer(op).

• Theparameters‘params’ of typeTpar with associated semantic domain

DTpar

df=
⋃
c∈C

op∈c.ops

typepar(op).

96 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

Thus the type of a pending request table entry is

Topreq(M)
df= Tdest× Top × Topstatus× Tres× Tpar.

(ii) The type of thepending request tableis Tprt(M)
df= OC → Topreq(M). �

The symbolic transition system uses the variableprt : Tprt to maintain the operation
requests of all objects ofM.

For each typeτ considered, we assume the existence of a designated elementnilτ ∈ Dτ

to serve as a default, or undefined, value. Moreover, we assume that expressionsexprare
evaluated to⊥ in such situations as, for example, trying to read an attribute via a reference
with valuenil, or trying to execute division by 0 and other arithmetic exception situations.
In other words,[[expr= ⊥]](s) = true iff [[expr]](s) = nilτ for τ = type(expr).

Furthermore, we need a boolean flagsysfail, which is used to indicate an undefined
state of the system, e.g., if it tries to read an attribute of object referencenil or if the type of
the reply action does not match the type of the currently processed triggered operation.
Performing some arithmetic computations can also raise this flag in failure situations
(e.g., division by 0). Initially,sysfailis set tofalseand it remains set, once it has changed
to true.

For brevity, we will use the following abbreviations foro ∈ OC in the rest of this
section:

• o.status
df≡ sconf(o).statusand analogously forsc, ds, eq.

• o.a
df≡ sconf(o)(a), i.e. the value of attributea.

• o.a.b
df≡ sconf(sconf(o)(a))(b), for attributesb of reference type.

• For an eventor operation parameter tuplee, we useo.ev′
p := e to denote simultaneous

assignment of thei -th components ofe to their corresponding attributesevpi in o.

A primed abbreviation indicatesthat the primed system variable is to be used, for example
o.a′ ≡ sconf′(o).a.

For an event queueq = e1 . . . en ∈ DTeq we introduce the following elements:

• head(q)
df= e1 denotes the first entry of the queue ifq
= ε.

• tail(q)
df= e2 . . . en (with n ≥ 2) denotesq with the first entry removed, andtail(q) = ε

if n < 2.

• enqueue(e, q)
df= q edenotes the result of appending entrye : Teqe to q.

We will use logical XOR-operator for the following abbreviation:a ⊕ b
df= (a ∨ b) ∧

¬(a ∧ b).

3.3. The transition predicate

Intuitively, there is a transition between two snapshotss, s′ if there exists exactly one
objecto ∈ OC whose configuration changes for one of the following reasons:

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 97

• Object o is idle and an event is dispatched to it by its active object or an event
with destinationo is discarded since it is not enabled ino’s state-machine. (Coarse-
granularity flow of control is kept by elementsdsof active objects’ configurations.)

• Objecto is idle and accepts a triggered operationcall. (Fine-granularity flow of control
is kept by elementsdestof the pending request table.)

• Objecto is executing or dying, unstable, and takes a transition of its state-machine and
thereby executing an action, which can be either simple (taking only one fine step with
nochanges in the flow of control) or delayed, waiting for the results from other objects.

• Objecto is suspended and picks up the result of a triggered operation call which has
been completed by the callee. (Fine-granularity flow of control kept bydestin prt.)

The system may remain in snapshots if no object isexecutingand all event queues are
empty. In the following, we formalise each of the above conditions separately as first-order
logic predicates which are then used to construct the transition predicate of the semantics
STS(M).

Note that in the following incremental definition of the transition predicate, we use an
assignment symbol “:=” which has to be processed as explicated inDefinition 7 to yield
the final transition predicate. Informally, this symbol indicates that there is no difference
between the current and next states of the system variables other than specified explicitly
in the sequence of the “:=” expressions (or their constituents).

We first define for each objecto ∈ Oc the predicatestable(o) in the current system
configuration as follows:3

stable(o)
df= ∀ (q, γs, q′) ∈ c.tr : q = o.sc =⇒

((γs ≡ “ev[expr1]” ∧ sysfail′ := (sysfail∨ expr1 = ⊥))

∨ (γs ≡ “op[expr2]” ∧ sysfail′ := (sysfail∨ expr2 = ⊥))

∨ (γs ≡ “ [expr3]” ∧ ¬expr3 ∧ sysfail′ := (sysfail∨expr3 =⊥))).

We will define the individual steps that an object can perform, thus defining the
transitions locally to objects. Later, inDefinition 7, the global transition predicate is
combined out of these steps with additional conditions specifying a kind of “scheduling”.
Each such “partial” predicate, defined below for each kind of step, contains the following
specifications:

(a) the state when the step can be performed: conditions on the current, i.e. unprimed,
values ofthe system variables;
(b) changes in the values of object attributes or the pending request table induced by the
transition;
(c) raising the failure flag if some values referred to are undefined.

3 Here and later on:γ ≡ “ev[expr]” (γ ≡ “op[expr]” or γ ≡ “ [expr]”) means that the labelγ of the current
transition(q, γ, q′) is of the formev[expr] (op[expr] or [expr], respectively), i.e. a signal trigger (a call trigger or
a condition, respectively; cf.Definition 1 (iii)).

98 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

Fig. 6. The transition relation:ρget_event.

3.3.1. Getting an event
Intuitively, an eventev1 with destinationo can be dispatched too from the head of

the event queue of its active object if no other object in the same component is currently
processing an event reception (specified byo.my_ac.ds = nil) and if there is a transition
(q, γ , q′) guarded by a superclassev of ev1 is enabled in the current stateq (cf. Fig. 6):

ρget_event(o)
df= γ ≡ “ev[expr]” ∧ o.my_ac.ds= nil

∧ expr= true∧ sysfail′ := (sysfail∨ expr= ⊥)

∧ o.my_ac.eq
= ε ∧ head(o.my_ac.eq).dest= o

∧ o.my_ac.eq′ := tail(o.my_ac.eq)

∧ (∃ ev1 ∈ Sig :
∧ head(o.my_ac.eq).ev = ev1 ∧ ev1 ≤ ev

∧ (¬stable(o)′

=⇒ (o.my_ac.ds′ := o ∧ o.status′ := executing))

∧ o.ev′
p := head(o.my_ac.eq).par).

Elemento.my_ac.ds, whennot equal tonil, locks its component for processing a signal
event. It can be released (and the component can start to process the following event,
i.e. a new run-to-completion step) only when all computations within the component are
completed.

Note that we exploit the fact that the syntactic category of boolean expression used in
the definition ofkrtUML models is subsumed in the expression language of the first-order
logic used to define transition predicates. In particular, the above-defined abbreviations
apply to expressions of transition predicates thus providing the intended relation tosconf.

3.3.2. Accepting a triggered operation
Objecto can accept a triggered operation callop if a transition(q, γ , q′) guarded byop

is enabled in the current stateq and some other objecto1 has called op from o (there is an
entry point in the pending request table with this operation):

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 99

ρaccept_op(o)
df= γ ≡ “op[expr]” ∧ expr= true∧ sysfail′ := (sysfail∨ expr = ⊥)

∧ (∃ o1 ∈ OC : prt(o1).dest= o ∧ prt(o1).op= op

∧ prt(o1).status= pending

∧ (¬stable(o)′

=⇒ prt(o1).status′ := busy∧ o.status′ := executing)

∧ (stable(o)′ =⇒ prt(o1).status′ := completed)

∧ prt(o1).result′ := nil ∧ o.op′
p := prt(o1).opp).

Note that an object can call a trigger operation only from an object of the same component
because of the restrictions on the inter-component communication. Thus,o.my_ac.ds′ =
o.my_ac.ds = o1 during the execution of operations within one RTC step (the change of
the control between objects at this level of communication is captured byprt(o).destand
prt(o).status).

3.3.3. Skipping guards
Objecto can take a transition guarded with a boolean expression only, if the expression

evaluates totrue:

ρskip_guard(o)
df= γ ≡ “ [expr]” ∧ expr= true∧ sysfail′ := (sysfail∨ expr= ⊥).

3.3.4. Discarding events
If there is an event for objecto in thequeue ofo’s active object buto is not willing to

accept it, i.e. if no transition with a matching signal (or its generalisation) is enabled, then
the event is simply removed from the top of the queue:

ρdiscard_event(o)
df= o.my_ac.ds= nil

∧ o.my_ac.eq
= ε ∧ head(o.my_ac.eq).dest= o

∧ o.my_ac.eq′ := tail(o.my_ac.eq)

∧ (∀ (q, ev1[expr], q′) ∈ c.tr :
(expr= false∨ ev1
≤ head(o.my_ac.eq).ev)

∧ sysfail′ := (sysfail∨ expr= ⊥))

∧ (¬stable(o)

=⇒ (o.my_ac.ds′ := o ∧ o.status′ := executing)).

Note that a discarded signal event can nevertheless trigger a transition, if the object is no
longer in its stable state (the value of a guarding condition on a transition without signal
or call trigger became true). Note also that triggered operation calls are not discarded, but
remain until the callee accepts the call.

3.3.5. Executing simple actions
Objecto can execute an action if the current transition(q, γ , q′) is enabled and an-

notated with the action. We distinguish two types of action — simple (or non-operation)
actions and operation calls (or synchronisation delays) — treating them in different ways.

100 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

These subformulas will be combined with different contexts — conditions on their perfor-
mance — in the final transition predicate. There are four kinds of non-operation action:

ρnon_op_action(o)
df= ρassign(o) ⊕ ρsend_event(o) ⊕ ρreply(o) ⊕ ρdestroy(o).

• An assignment action simply assigns a value to the destination attribute:

ρassign(o)
df= γ ≡ “r.a := expr” ∧ (expr
= ⊥ =⇒ o.r.a′ := expr)

∧ sysfail′ := (sysfail∨ o.r = nil ∨ expr= ⊥).

• An event-sending action causes a new event to be appended to the queue of the
destination’s active object:

ρsend_event(o)
df= γ ≡ “r.send(ev, expr1, . . . , exprn)”

∧ sysfail′ :=
(

sysfail∨ o.r = nil ∨
n∨

i=0

expri = ⊥
)

∧ o.r.my_ac.eq′ :=
enqueue(o.r.my_ac.eq, (o.r, ev, (expr1, . . . , exprn))).

• A reply action causes the parameter value to be written into the reply field of the pen-
ding request table ato1 if o processes the call from another objecto1; otherwise system
failure is indicated:

ρreply(o)
df= γ ≡ “ replyτ (expr)”

∧ [(∃ o1 ∈ OC :
prt(o1).dest= o ∧ prt(o1).status= busy

=⇒ prt(o1).result′ := expr

∧ sysfail′ := (sysfail∨ τ
= typer(o1) ∨ expr= ⊥))

⊕ sysfail′ := true].
• A destroyaction causes the destination’s state-machine configuration to be changed, so

qx is the current state and the status is “dying”. Then the subsequent steps will execute
the actions of the destructor. Killing a dying or dead object causes a system failure:

ρdestroy(o)
df= γ ≡ “destroy(expr)”

∧ [(expr
= ⊥ ∧ ∃ o1 ∈ OC : o1 = expr
= nil

∧ o1.my_ac= o.my_ac

∧ (o1.status′
∈ {dormant, dying, dead}
=⇒ [o1.sc′ := qx

∧ (¬stable(o1)
′ =⇒ o1.status′ := dying)

∧ (stable(o1)
′ =⇒ o1.status′ := dead)]))

⊕ sysfail′ := true].

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 101

3.3.6. Synchronisations via operation calls
Operation call actions differ from the justdefined simple actions, because they are not

treated atomically. An operation call suspends objecto and configureso’s entry of the
pending request table, so that it denotes the callee, the called triggered operation, and the
parameters. Initially the status of a called operation is “pending”. Besides this, an additional
check is performed to guarantee operation calls only from the same component (otherwise
a run-time failure is observed).

ρinit_opcall(o)
df= (γ ≡ “r.call(op, expr1, . . . , exprn)”

∨ γ ≡ “r1.a := r.call(op, expr1, . . . , exprn)”)

∧ o.r.my_ac= o.my_ac

∧ sysfail′ :=
(

sysfail∨ o.r = nil ∨
n∨

i=1

expri = ⊥

∨o.r.my_ac
= o.my_ac

)

∧ o.status′ := suspended∧ prt(o).dest′ := o.r

∧ prt(o).op′ := op∧ prt(o).status′ := pending

∧ prt(o).result′ := nil ∧ prt(o).op′
p := (expr1, . . . , exprn).

3.3.7. Creating a new object
A creation action is handled like a triggered operation since the caller should be

blocked until an object of the desired class is readily created with all inherited parts and
all aggregated parts (possibly with attribute initialisation). This is modelled by implicit
operationscreatec attended at the pre-compilation step to the initial transitions of all state-
machines. A creation action looks for a dormant object, wakes it up, assigns it to an
appropriate component (or creates it as a new component, if the created object is active),
and then calls operationcreatec from the new object:

ρcall_create(o)
df= γ ≡ “r.a := createc1(expr)” ∧ o.my_ac= expr

∧ sysfail′ := (sysfail∨ expr= ⊥ ∨ o.my_ac
= expr

∨ (expr= o1 ∈ OC

∧ o1.status∈ {dormant, dying, dead}))
∧ (∃ o1 ∈ Oc1 \ {nilc1} :

o1.status= dormant∧ o1.status′ := idle

∧ (¬c1.isActive =⇒ o1.my_ac′ := expr)

∧ (c1.isActive =⇒ o1.my_ac′ := o1)

∧ o.r.a′ := o1 ∧ o.status′ := suspended

∧ prt(o).dest′ := o1 ∧ prt(o).op′ := createc1

∧ prt(o).status′ := pending

∧ prt(o).result′ := nil ∧ prt(o).params′ := nil).

102 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

Fig. 7. The call of an object creation. Changing status of the callerO, calleeO1, and inserting the called operation
createc1 into the pending request table: the values of selected elements fromsconfandprt.

An example of some essential changes in the system configuration corresponding to a
creation action is shown inFig. 7. Here, only the creation of a passive object is shown. Note
that newly created passive objects can be assigned only to the current component (defined
in the corresponding attributemy_ac), within which the creation action has been called.

When a synchronisation took place and the callee completed the required operation,
additional bookkeeping was needed at the end of the operation execution to raise the flag
“the result is ready”, formalised in the following subsection.

3.3.8. Becoming stable
If object o becomes stable, some bookkeeping takes place. Ifo was processing an

event,the dispatch reference of its active object is reset. Ifo was executing a triggered
operation, the pending request table status is set to “completed” to let the caller know that
the operation has been completed. In both cases,o becomes idle. Ifo is executing the
run-to-completion step starting atqx, then it becomes dead:

ρbecoming_stable(o)
df= (stable(o)′ =⇒ [o.my_ac.ds= o =⇒

(o.my_ac.ds′ := nil ∧ o.status′ := idle)]
∧ [∀ o1 ∈ OC :

prt(o1).dest= o ∧ prt(o1).status= busy

=⇒ (prt(o1).status′ := completed

∧ o.status′ := idle)])
∧ (o.status= dying =⇒ o.status′ := dead).

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 103

Fig. 8. The triggered operation call. Changing status of the callerc, calleem, and thecalled operationengage in
the pending request table between the beginning (unprimed variables, not depicted here) and the end (at timet ′′′′)
of the operation call: the values of selected elements ofsconf andprt.

3.3.9. Picking up a result
Objecto can pick up the result of a previous operation call if the callee has set the status

of o’s pending request table entry to “completed”. Picking up a result means not only the
change of the corresponding attribute, but also changes of caller’s status and removing the
corresponding entry in the pending request table:

ρpick_up_result(o)
df= (prt(o).status= completed=⇒ prt′(o) := nil)

∧ (¬stable(o)′ =⇒ o.status′ := executing)

∧ ((γ ≡ “r1.a := r0.call(op, expr1, . . . , exprn)”

∧ ¬o.r1 = nil) =⇒ o.r1.a
′ := prt(o).result)

∧ sysfail′ := (sysfail∨ o.r1 = nil).

The complete execution of an example of a triggered operationengage() is illustrated
in Fig. 8. The first row of the tables show the relevant part of the system configuration at
time t ′, just afterc has entered the call into the pending request table. Note thatc has not
yet taken the transition; it remains in its previous state. The second row shows timet ′′,
just after theCruiser m has accepted the call. At timet ′′′, m has just completed its run-to-
completion step, i.e. written the result, changed the operation’s status to “completed”, and
become idle. This is an indicator forc to pick up the result at timet ′′′′, i.e. readthe reply
valuefrom the table, clear the table entry, and now take the transition.c is executing and
continues its run-to-completion step, assuming thatc does not become stable.

3.4. The STS semantics of a krtUML model

Putting all specifications of different kinds of transitions together we define the
semantics ofkrtUML as a symbolic transition system over the three system variables

104 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

(from Section 3.2) with the initial condition andcombined transition relation specified in
the following definition.

Definition 7 (krtUML Semantics). Let M = (T, F, Sig,<, C, croot, A) be a krtUML
model. Thesemantics of Mis the STS

STS(M) = (V,Θ, ρ), where

System Variables. V
df= {sconf : Tsconf(M), prt : Tprt(M), sysfail: B}.

Initial condition. Initially a single object of classcroot exists and has status “executing”.
All other objects aredormant, all attributes have default values, there is no system failure,
and there are no entries in the pending request table:

Θ
df= ∃ o0 ∈ Ocroot \ {nilcroot} :

(o0.status= executing∧ o0.ds= o0

∧ o0.sc= croot.q0 ∧ o0.eq= ε ∧ o0.my_ac= o0

∧ ∀ o1 = (c1, n1) ∈ OC \ {o0} :
(o1.status= dormant∧ o1.sc= c1.q0

∧ o1.ds= nil ∧ o1.eq= ε))

∧ ∀ o = (c, n) ∈ OC : (o.c::self = o ∧ prt(o) = nil

∧ ∀ a ∈ c.attr : o.a = niltype(a))

∧ sysfail= false.

The unique single object of classcroot which is alive at the beginning of a runr is called
theroot objectof r .

Transition relation. The intermediate predicateρ0 composes the above-introduced
subpredicates and additional conditions on their application within objects’ life-cycles as
follows:

ρ0
df= ∀ o ∈ OC : o.status
= executing∧ o.eq= ε

∨ (¬sysfail∧ ∃ o = (c, n) ∈ OC ∃ (q, γ , q′) ∈ c.tr :
o.sc= q ∧ (o.sc′ := q′ ∧ (

[o.status= idle ∧ (ρget_event(o) ⊕ ρaccept_op(o))]
∨ [(o.status= executing∨ o.status= dying)

∧ (ρskip_guard(o) ⊕ ρnon_op_action(o))]
∨ [o.status= suspended∧ ρpick_up_result(o)])
∧ ρbecoming_stable(o)

)
∨ (o.sc′ := o.sc∧ ([o.status= idle ∧ ρdiscard_event(o)]

∨ [o.status= executing∧ (ρinit_opcall(o) ⊕ ρcall_create(o))]))).
The final transition relationρ is obtained fromρ0 by adding aframe axiom which

requires that only those places ofs are allowed to change in the transition tos′, which

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 105

get new values by an assignment “:=” in ρ0, and changing the assignments to “=”.
The semantics of akrtUML modelM is given as the setruns(STS(M)) of all computations
in M (starting atΘ). �

It is easy to see thatρ effectively restricts activity to at most one object, resulting in
an interleaving of actions from different objects. The definition of transitions inSTS(M)

uses a very refined notion of step. The following definition formalises two coarser levels
of steps in a complex system.

Definition 8 (Run-to-Completion Step). Let V0, . . . , Vi ∈ Σ be snapshots ofSTS(M).

(i) A run-to-completion — RTC — step in an object ois a subsequencertc(o) =
(Vi . . . Vi+k) (k > 0) of a runr = (V0 . . . Vi . . . Vi+k . . .) ∈ runs(STS(M)) such
that all the following conditions hold:
• sconfi (o)
= sconfi+k(o) (changes required in the objecto’s configuration during

the step);
• sconfi (o).sc= qx ∨ sconfi (o).status= idle (objecto was stable);
• sconfi+k(o).status∈ {idle, dead} (objecto became stable after the step);
• ∀0 < j < k : sconfi+ j (o).status ∈ {executing, suspended, dying} (objecto is

unstable during the step execution).
(ii) An RTC step in a component Cm(o) is a subsequenceRTC(Cm(o)) = (Vi . . . Vi+k)

(k > 0) of a run such that all the following conditions hold:
• sconfi (o).ds= nil = sconfi+k(o).ds(no object is scheduled for an event reception

at the beginning and at the end of the step);
• sconfi (o

′)
= sconfi+k(o
′) for someo′ ∈ Cm(o) (changes required in the component

during the step);
• sconfi (o).status= idle (the active object of the component was stable)
• sconfi+k(o).status∈ {idle, dead} (the active object of the component became stable

after the step)
• ∀0 < j < k : (sconfi+ j (o).status ∈ {executing, dying} ∨ sconfi+ j (o).ds
= nil)

(the active object of the component either was performing its own computation or
scheduled a reception of an event to its passive servant).

(iii) For an object/component RTC step(Vi . . . Vi+k), Vi is called the beginning of the
RTC step, andVi+k is called the end of the RTC step.

The relation between the notion of an object RTC step and a component RTC step in
the proposed semantics can be formalised as the following proposition.

Proposition. Let seq = (V1 . . . Vn) be an RTC step in a component Cm(o) and
sconfi (o

′′).status
= dying for all 1 ≤ i ≤ n and for all o ′′ ∈ Cm(o). Then exactly one
of the following holds:

• seq is an RTC step in object o or
• seq is an RTC step in some object o′ ∈ Cm(o) such that sconf2(o).ds= o′.

The following consequence fromDefinitions 3, 7 and8 formalisesthe main properties
of thekrtUML semantics described.

106 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

Consequence 1. Let M be akrtUML model,r ∈ runs(STS(M)), wherer = (V0 . . . Vn . . .)

with Vi = (sconfi , prti , sysfaili) (0 ≤ i). Let o
= ō ∈ OC. Then the followinginvariants
hold:

(i) (Level of the computation concurrency)
sconfi (o).status = sconfi (ō).status = executing =⇒ o ∈ Cm(o1), ō ∈ Cm(o2) ∧
o1
= o2 — only objects from different components can be executing at the same time.

(ii) (Asynchronous interference points)
(Vi , Vi+1) ∈ ρget_event(o) =⇒ Vi is the beginning of a RTC step(Vi . . . Vi+k) of the
componentCm(o1), whereo1 = sconfi (o).my_ac.

(iii) (Synchronous interference points)
(Vi , Vi+1) ∈ ρaccept_op(o) =⇒ Vi is the beginning of a RTC step(Vi . . . Vi+m) of
objecto. An objecto can accept operation calls only on the borders of its own RTC
steps. �

Thus, the semantics STS(M) encodes all system executions as interleavings of
component RTC steps, allowing event receptions by its objects only at the borders of
component RTC steps (when other objects from the component are not currently executing
or suspended by an uncompleted operationcalls). On the other hand, each component RTC
step is a chain of invocations of objects’ RTC steps, each of these started by suspending
the previous one with an operation call.

Since the semantics is given from the local point of view of objects, the sequentialisation
mechanism within a component is implemented via the shared variables:o.my_ac.ds,
o.my_ac.eq, andprt(o).
The following consequence summarises these means of the sequentialisation in the
proposed semantics.

Consequence 2 (Sequentialisation of Component Computations). For each component
Cm(o) (with o.isActive = true), the shared variableso.ds, o.eq, andprt play the main
roles for the scheduling between several computations available in the component objects.
For all objectso′ ∈ Cm(o):

eq: o′.isActive= false =⇒ ∀r = (V0V1 . . .) ∈ runs(STS(M)) ∀i ≥ 0 : sconfi (o
′).eq=

ε (only one event queue is used in a component to store asynchronous stimuli
sequentially).

ds: (Vi , Vi+1) ∈ ρget_event(o′) =⇒ sconfi (o
′).my_ac.ds= nil (an object can receive an

event only if no other object is executing its event reception).
prt: prt(o′).status = busy =⇒ o′.status = suspended(beginning of a synchronisation:

an operation can be executed only if the calling object is suspended); and(Vi , Vi+1) ∈
ρpick_up_result(o′) =⇒ (prti (o

′).dest = o′′ =⇒ sconfi (o
′′).status = idle) (end of a

synchronisation: an object can proceed with the result of an operation call only if the
callee became stable).�

It is easy to see that at each transitionρ = (Vi , Vi+1) in each system runr =
(V0 . . . Vn . . .) at most one state-machine transition can be taken, and transitions enabled
in different component are chosen non-deterministically. By considering all possible

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 107

runs, we provide semantics covering different execution speeds and scheduling between
components.

4. Assessing the expressiveness of krtUML

In this section we indicate how to reduce richer UML models fromrtUML as supported
in the IST project Omega [8] to thekrtUML subset defined inSection 2. Besides this, we
explain the choice of the design decision behind the formal semantics. The subset of UML
chosen to be translated tokrtUML and calledrtUML contains the following additional
features (not presented inkrtUML):

• Primitive operations in classes’ definition, i.e. those implemented by methods (with
actions defined inDefinition 1(iv) extended with richer navigation expressions and
constructs for branching and loops).

• Three kinds of operation concurrencies: sequential, guarded, concurrent.
• Two specific kinds of primitive operations for eachclass: constructor and destructor.
• Three kinds of associations between classes (semanticallydistinguished): composition,

aggregation, neighbour.
• Three kinds of visibilities of attributes, operations, and association ends: public, private,

protected.
• A generalisation relation (inheritance) between classes: (a) multiple inheritance

under the assumption of no naming conflicts; (b) attributes and operations as
redefinable elements; (c) dynamic classification (sometimes called casting). This
implies polymorphism, in particular for abstract operations (corresponding to virtual
in C++ or deferred in Eiffel [22]).

• Hierarchical state-machines containing:
– Hierarchical states (in addition to simple states): both AND-states (concurrent

regions) and OR-states.
– Pseudo-states: initial, deep history, shallow history.
– Instead of using join- and fork-vertices we consider transitions with multiple sources

and targets.
– Entry- and exit-actions in states.
– Transitions can be complex, i.e. containingboth guards and (non-primitive) actions.

4.1. Translating rtUML to krtUML

The translation fromrtUML to krtUML comes in several steps. Most of them are
technical and beyond the scope of this paper.In the following subsection we only outline
some more interesting steps. The extended explanations can be found in [8].

UML defines associationsand association end-pointsto capture relations between
classes. Semantically, association end-points maintain pointers to objects accessible
through this association end-point (subject torestrictions on visibility and navigability).
Our pre-compilation introduces these as what we callimplicit attributes(e.g. the attribute
self of typec within each classc), and translates code invoked when creating compound

108 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

objects for establishing links employing a set ofimplicit operationssuchas ‘add_to_as-
sociation_end’, ‘ initialise_association_end’, ‘ delete_from_association_end’. Note the
introduction of the special typeTas provided for such attributes in thekrtUML model.
In particular, pre-compilation will create implicit attributes for maintaining knowledge
about all (possibly dynamically created) component objects4 of a strong aggregation
(also called composition); it will include calls for creation of component objects with
bounded multiplicity in the constructor code of the aggregate object; it will contain calls
for destroying every existing component object within the destructor code of the aggregate
object. Thus, for each classc with direct successors under the aggregate or composite
relation to classesc1, . . ., cn we require that preprocessingdefines operationscreatecj (pj)

anddestroy(p′
j) with type(pj) = cj .my_ac and type(p′

j) = cj . We preclude any user
defined constructor and destructor bodies (invoked fromcreatec(ref) and destroy(ref)
respectively) by the sequential composition of the action catering for the recursive creation
and deletion of the component parts.

As a trivial pre-processing step, we eliminate complex navigation expressions by
introducing auxiliary attributes, reducing the level of de-referencing to at most one (as used
in Definition 1). In the scope of one thread, we also inline recursively primitive operation
bodies directly into transitions of state-machines containing their calls.

Regarding class generalisation, we create private instances for each segment descriptor
(of the class itself and of all its predecessors in the generalisation hierarchy) much as
the creation of a compound objects induces creation of its components. Implicit “offset”
attributesparent_typec′ serve to navigate from the current (segment) object to the definition
of inherited attributes and operations (not overridden in the current class). Such hierarchical
structure of object allocation allows us to keep access to all operation implementation and
state-machines overridden in the specialised objects, e.g., for easy casting (assignment of a
specialised object to an attribute of the generalised class with “forgetting” the specialised
attributes and operations). Attributesparent_typec′ , defined within each object and for each
immediate ancestorc′ in the generalisation class hierarchy, are also used for a sanity check
of qualified operation calls: if an operationCi :: opj is called from an objecto of typeCk,
thenCi must be a generalisation ofCk (opj must be defined inCk but maybe overridden).
Attributesparent_typec are used for “static” polymorphism, where the “current” type of
each object at each operation invocation is defined as the type of the attribute referring
to it, which is statically detectable within class definitions. The “actual” type of reference
attributes (or descriptor pointer), which is the type of the object at its creation time, is kept
in another implicit association attribute which we calltype_table.

The semantics proposed in this paper is defined from the objects’ local point of view
with statically inlined methods (which is necessary for the formal verification). “Current”
type of an object is a specification from the point of view of a calling object aimed at hiding
non-necessary details or unacceptable behaviour, whereas “actual” type is used to find
the correct implementation of abstract operations, that is having deferred implementation.

4 Note the difference between a component object, specified by the composition association as a “part” of an
aggregate object and used at thertUML level, and the notion of component as a group of one active and several
passive objects, used at thekrtUML level.

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 109

Fig. 9. Inlining object initialisation and destruction.

We also preclude any constructor and destructor bodies by the action sequences catering
for the recursive creation and deletion of the segments in the hierarchical descriptors.

We do not require any restrictions on the state-machine inheritance: a subclass
might have state-machine overwritten independently from that of the corresponding
superclass. All private copies maintaintheir own object-configurations; hence e.g.
accepting a triggered operation will only changethe state-configuration of that state-
machine corresponding to the object offering theoperation in the generalisation hierarchy.

Another pre-compilation step transfers hierarchical UML state-machines from
rtUML to flat state-machines ofkrtUML without changing the behaviour. The states in a
flattened state-machine correspond to state configurations from the original state-machine
(sets of states which can be active at thesame time) extended with a function called
the history configuration (keeping information for the history connectors). A transition
in a flattened state-machine relates two state configurations iff one configuration can be
reached from another by triggering a transition with the corresponding guard in the original
state-machine. The effect of such a transition in the flattened state-machine is constructed
as a sequential composition of exit-actions, the effect of the corresponding transition in
the original (hierarchical) state-machine, and entry-actions (which may comprise non-
deterministic sequentialisation of concurrent exit/entry-actions from different concurrent
substates). Besides this, for the state-machine of each classc we add the following kinds
of auxiliary states:

• One or several “creation” states q0, . . . , qn (n ≥ 0), whereq0 has the outgoing
transition guarded by triggered operationcreatec and followed by the constructor code,
ending with the initial state of the original (hierarchical) state-machine. Only the state-
machine of the root class does not contain any triggered operation at its “creation”
transitions.

• A “ destruction” stateqx with outgoing transitions containing the destructor code. Then
every state in the flattened state-machine containing termination vertices (from the
original state-machine) has an outgoingtransition to some auxiliary state without a
triggering guard and with actiondestroy(self) (theresult of the inlining of initialisation
and destruction codes to a flattened state-machine is shown schematically inFig. 9);

• Several “internal” states necessary to split complex transitions, e.g. transitions con-
taining a sequence of actions or construction actions. An example of splitting a tran-
sition with sequential composition of actions and a branching construct is shown in
Fig. 10.

110 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

Fig. 10. Splitting a complex transition.

To preserve the original execution granularity and avoid some other transition being
enabled when inside the execution of a split transition (containing an action block),
we have to introduce some kind of semaphore, which blocks other transitions to be
executed. To do this, every transition will obtain an additional guardnot(inside_trans).
Splitting a complex action into simple parts will first set this Boolean variable totrue. At
the end that variable will be reset tofalse. This will avoid another transition being started
while being in the middle of another one.

4.2. The choice of rtUML communication scheme

Certain transformations in the pre-compilation steps are based on modelling
assumptions. In this paper we only elaborate on the concept ofcomponentsas introduced in
Definition 5(iii). When targeting distributed system implementations of real-time systems,
synchronous operation calls clearly cannot be used for component communication. Indeed,
any estimation of worst-case execution time would have to cater for a waiting delay
until the receiving component is able to accept a call, which itself may be blocked
while awaiting serving of an operation call by yet a third component. We thus assume
a modelling style where inter-component communication is restricted to signal-based
communication. To exploit this, we allow the grouping of objects intocomponents; within a
component, no restrictions are placed as regards inter-object communication. On the basis
of the pragmatics of active objects in UML, we mandate that each such component-group
contains exactly one active object, and allow it to include (also dynamically in run-time)
an arbitrary number of passive objects in thegroup. Reactive passiveobjects are required
to delegate their event-handling to the one active object within the group.

Figs. 11 and 12 illustrate the concepts of components and inter-component
communication using the AutomatedRail Cars Systemexample from [14]. The graphical
representation of a snapshot of a model onFig. 11showsobjects on thekrtUML level. Each
reactive object has a link to an active object viamy_ac which is assumed to be constant
for the object’s lifetime. Objects referring to the same active object form a component.
Fig. 11shows two components with a single link across a component-boundary. All event-
handling is delegated to the component’s active object, which keeps all events in its event
queue. When the event has reached the top ofthe queue, the active object may decide to

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 111

Fig. 11. Component structure. A snapshot of a model part shows active objectscar and term (with their
event queues) and passive objectscrs, hnd, and mgr. Reactive objectscar, crs, and hnd are denoted by
associated schematic state-machines. Active objectscar and term designate their componentsComp.1 and
Comp.2, respectively.

Fig. 12. Event communication between components. Sending an event ofDepartReq from car to hnd in fact
enters the event into the event queue ofterm, which isthe active object associated withhnd.

take the event from thequeue and dispatch it to the destination. This is indicated inFig. 12
by light grey arrows. The semantics inSection 3is explained from the perspective of the
destination.

The semantics enforces that at most a single thread of control is active within one
component. We feel that deviating from this modelling paradigm, and in particular allowing
multiple threads to execute within one object, could easily cause modelling errors not
acceptable for hard real-time applications.

112 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

5. Related works

Al l attempts to define UML semantics can be classified into different orthogonal
dimensions.

One direction in the semantics classification is the level of UML coverage. Many people
have been trying to build the semantics of individual diagrams of the UML — [19,3]
etc. on state-machines, [10] on collaboration diagrams, [12,15] etc. on class diagrams,
[29] on usecases, [2] on activity diagrams — or just to give formal foundations for
action language (e.g., [24,1]). In our approach a symbolic transition system represents
both static and dynamic aspects. The combination of statics and dynamics is also given
in [31] which considers the problem of defining active classes with associated state-ma-
chines. At variance with our approach, the authors do not give precise semantics for event
queue handling, consider a limited inheritance, and they treat only flat UML state-machines
without action semantics.

Another coverage level relates to the problem of an adequate formalisation for
concurrency as well as for aspects of communication between objects, which have been
uncovered in [31] andnot addressed in the original UML documents. Open problems are
typical for so-calledloose semanticsintroduced in [15], where the aspects of concurrency
and object communication are not fixed to some design decision, but cover different
variation points. Such loose semantics is not suitable for formal verification. Our paper
tries to overcome this problem by providing an executable semantics as an example of the
feasibility of UML precise formalisation, in particular for verification purposes. On the
other hand, there are a number of UML modelling and/or verification tools implementing
precise semantics by translating UML models to programming languages or model checker
internal formats [16,30,34,20]. These tools have different limitations on the supported
UML features and do not provide a formal description of the implemented semantics. So,
such translations can be used only at the later stages of system design, not at the modelling
levels.

H. Hußmann [15] proposes the third dimension for the classification of attempts towards
the UML formal semantics, dividing approaches into the following groups:

(1) Naive set-theoretic approach.M. Richters and M. Gogolla [33] have suggested
using a simple set-theoretic interpretation for UML class diagrams. In this approach, the
semantics of a class diagram is described as a set of hypergraphs, corresponding to a
configuration of objects. This kind of semantics is mostly used for the formal definition
of OCL constraints within UML models. We do not consider OCL in our approach.

(2) Meta-modelling semantics.This group of approaches is based on the application of
a “bootstrapping” principle [6], where the semantics of UML is described using a small
subset of UML as a core based on static semantics only. The approach of the pUML
group to the UML semantics is given in [5,4,1]. Essentially, an algebraic specification is
used to describe legal (local) snapshots of the system without treating actions. The biggest
issue, not covered by these approaches, is how to deal with complex aspects of dynamic
behaviour concerned with concurrency andinter-object communication. The study of A.
Kleppe and J. Warmer [18] is based on the pUML OO meta-modelling approach. In
addition, it takes into account that static and dynamic viewpoints on the system cannot
be separated. But the formal semantics for state-machines is not really defined, the set

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 113

of primitive actions is very restrictive (object creation, attribute manipulation), and the
transporting mechanism forsignal inter-object communication is not specified. In our
approach, we give a formal semantics for actual state-machines (not their unfolding
into actions) with a larger set of primitive actions. We also resolved open issues with
concurrency.

(3) Translation semantics.An approach which tries to keepthe right abstraction level
defines translation from UML class diagrams to traditional specification languages (Z
[11], Object-Z [17], CASL [32], etc.). For example, G. Reggio et al. [32] proposed a
general scheme of the UML semantics by using an extension of the algebraic language
CASL for describing individual diagrams (class diagrams and state-machines) and then
their semantics are composed to get the semantics of the overall model. Also other UML
diagram types have been translated to formal notations, e.g., using Abstract State Machines
[3,2,23,7]. E. Börger et al. [3] defined the dynamic semantics of UML in terms of ASM
extended by new construct to cover UML state-machine features. The model covers
the event-handling and the run-to-completion step, and formalises object interaction by
combining control and data flow features. However, the authors did not give a complete
solution for solving transition conflicts and it is not clear how firable transitions are
selected. Unlike these approaches, our study provides one formalism (STS) for both static
and dynamic semantics, which also contains a (restricted) action language.

Indeed, different approaches mentioned above can be combined as shown in [23]. In
this research, static semantics is defined using the meta-modelling mechanism of UML;
the execution semantics is expressed as ASMprograms. The study covers all features
contained in the class diagrams, and in the body of the operations. The aspects of inter-
object communications were not really covered and the semantics of UML state-machines
was not addressed, although it can be accompanied by the complementary papers [2]
and [3]. But these articles consider state-machines separated from the rest of UML,
whereas our approach providesone semantics for model structure (class diagrams) and
behaviour(state-machines). We also allow more flexibility for the combination of different
orthogonal aspects: concurrency and reactivity, synchronous and asynchronous inter-object
communication.

6. Conclusion

As regards the investigation results sketched above, the main novelty of our approach is
that it resolves the ambiguity of the formal UML specification w.r.t. concurrency and object
communication by giving a formal semantics for a chosen concrete decision. W. Damm and
B. Westphal [9] have shown thatthis semantics can be used for formal verification.5

In our approach we allow both active and passiveobjects to be reactive, thus considering
event communication between all objects. We also capture the combination of two

5 The proposed semantics choice was evaluated with a prototype of a discrete-time verification environment
under the UML modelling tool Rhapsody [16] as well as with a more abstract, XMI-based, representation of
UML models.

114 W.Damm et al. / Science of Computer Programming 55 (2005) 81–115

different kinds of inter-object communication — synchronous (via operation calls) and
asynchronous (via signal events).

Thus, we have provided the semantical foundation for a sublanguage of UML which is
expressive enough to deal with industrial UML models for real-time applications. Our
partners from Verimag have proposed extensions of the semantical model focused on
real time, in particular taking into account the need to support annotations for real-time
scheduling. Ongoing work within Omega builds on the semantical foundation laid down in
this paper to develop a verification environment for real-time UML.

Acknowledgement

We gratefully acknowledge the contribution of our Omega partners in fine-tuning the
semantics.

References

[1] J.M. Alvarez, T. Clark, A. Evans, P. Sammut, An action semantics for MML, in: Proc. UML 2001, 2001.
http://www.cs.york.ac.uk/puml/mmf/AlvarezUML2001.pdf.

[2] E. Börger, A. Cavarra, E. Riccobene, An ASM semantics for UML activity diagrams, in: T. Rus (Ed.), Proc.
AMAST 2000, LNCS, vol. 1816, Springer-Verlag, 2000, pp. 293–308.

[3] E. Börger, A. Cavarra, E. Riccobene, Modeling the dynamics of UML state machines, in: Y. Gurevich,
Ph.W. Kutter, M. Odersky, L. Thiele (Eds.), AbstractState Machines, Theory and Applications,
International Workshop, ASM 2000, Proceedings, LNCS, vol. 1912, Springer-Verlag, 2000, pp. 223–241.
DBLP http://dblp.uni-trier.de.

[4] T. Clark, A. Evans, S. Kent, The metamodelling language calculus: foundation semantics for UML, in: Proc.
FASE 2001, 2001, pp. 17–31.www.dcs.kcl.ac.uk/staff/tony/docs/MMLCalculus.ps.

[5] T. Clark, A. Evans, S. Kent, S. Brodsky, S. Cook,A feasibility study in rearchitecting UML as a family
of languages using a precise OO meta-modelling approach, version 1.0, September, 2000. Available from
http://www.puml.org.

[6] T. Clark, A. Evans, S. Kent, P. Sammut, The MMFapproach to engineering object-oriented design
languages, in: Proc. Workshop on Language Descriptions, Tools and Applications, LDTA2001, 2001.
Available viahttp://www.puml.org.

[7] K. Compton, J. Huggins, W. Shen, A semantic model for the state machine in the UML,
in: G. Reggio, A. Knapp, B. Rumpe, B. Selic, R. Wieringa (Eds.), Dynamic Behaviour in
UML Models: Semantic Questions, Workshop Proceedings, UML 2000 Workshop, Bericht 0006,
October 2000, Ludwig-Maximilians-Universität München, Institut für Informatik, 2000, pp. 25–31.
http://www.kettering.edu/∼ jhuggins/papers/uml2000.ps.

[8] W. Damm, B. Josko, A. Pnueli, A. Votintseva, A formal semantics for a UML kernel language, Omega
Technical Report, part 1 of the deliverable D1.1.2, Project IST-2001-33522 OMEGA, January, 2003.
Available fromhttp://www-omega.imag.fr/doc/d1000009_6/D112_KL.pdf.

[9] W. Damm, B. Westphal, Live and Let Die: LSC-based Verification of UML-Models, in: F.S.d. Boer et al.
(Eds.), Proceedings of the First International Symposium on Formal Methods for Components and Objects,
FMCO, October, LNCS, vol.2852, Springer-Verlag, 2003.

[10] G. Engels, J.H. Hausmann, R.Heckel, S. Sauer, Dynamic meta modeling: a graphical approach to the
operational semantics of behavioral diagrams in UML, in: Proceed. of the 3rd International Conference on
the UML 2000, October 2000.

[11] A.S. Evans, A.N. Clark, Foundations of the unified modeling language, in: 2nd Northern
Formal Methods Workshop, Ilkley, Electronic Workshops in Computing, Springer-Verlag, 1998.
http://www.cs.york.ac.uk/puml/papers/nfmw97.ps.

http://www.cs.york.ac.uk/puml/mmf/AlvarezUML2001.pdf
http://dblp.uni-trier.de
http://www.dcs.kcl.ac.uk/staff/tony/docs/MMLCalculus.ps
http://www.puml.org
http://www.puml.org
http://www.kettering.edu/~jhuggins/papers/uml2000.ps
http://www-omega.imag.fr/doc/d1000009_6/D112_KL.pdf
http://www.cs.york.ac.uk/puml/papers/nfmw97.ps

W.Damm et al. / Science of Computer Programming 55 (2005) 81–115 115

[12] A. Evans, R.France, K. Lano, B. Rumpe, The UML as a formal modeling notation, in: The Unified Modeling
Language: the First International Workshop, June 1998, Springer-Verlag, 1999.

[13] S. Graf, I. Ober, Semantics of time extensions, Omega Technical Report, Deliverable D1.1.4,
Project IST-2001-33522 OMEGA, December, 2003.
Available fromhttp://www-omega.imag.fr/doc/d1000199_2/D1.1.4-time-extensions-v2.pdf.

[14] D. Harel, E. Gery, Executable object modeling with statecharts, IEEE Computer 30 (7) (1997) 31–42.
[15] H. Hußmann, Loose semantics for UML, OCL, in: Proceedings 6th World Conference on Integrated Design

and Process Technology, IDPT 2002, June, Society for Design and Process Science, 2002.
[16] I-Logix Inc. Rhapsody, 2002.http://www.ilogix.com/products/rhapsody/index.cfm.
[17] S.-K. Kim, D. Carrington, Formalizing the UML class diagramsusing object-Z, in: France, Rumpe (Eds.),

Proc. UML’99, LNCS, vol. 1723, Springer-Verlag, 1999, pp. 83–98.
[18] A. Kleppe, J. Warmer, Unification of static and dynamic semantics of UML, 2001.

http://www.klasse.nl/english/uml/unification-report.pdf.
[19] G. Kwon, Rewrite rules and operational semantics for model checking UML statcharts, in: Proceed. of the

3rd International Conference on the UML2000, October, University of York, 2000.
[20] J. Lilius, I.P. Paltor, vUML: a tool for verifying UML models. Turku Centre for Computer Science, Abo

Akademi University, Finland, 1999. Technical Report.
[21] Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems: Specification, Springer-

Verlag, New York, 1991.
[22] B. Meyer, Eiffel: TheLanguage, Prentice-Hall, 1998.
[23] I. Ober, Harmonizing design languages with object-oriented extensions and an executable semantics, Ph.D.

Thesis. Institut National Polytechnique de Toulouse, France, April 2001.
[24] Object Management Group. UML 1.4 with Action Semantics, Final Adopted Specification, ptc/02-01-09,

January, 2002. Available fromhttp://www.kc.com/as_site/home.html.
[25] Object Management Group. UML Profile for Schedulability, Performance, and Time Specification,

September 2003, V.1.0, formal/03-09-01. Available athttp://www.omg.org/docs/formal/03-09-01.pdf.
[26] Object Management Group. UnifiedModeling Language: Superstructure, v.2.0, Final Adopted Specification

ptc/03-08-02, August, 2003. Available fromhttp://www.omg.org/cgi-bin/doc?ptc/03-08-02.
[27] G. Övergaard, Formal specification of object-oriented meta-modelling, in: T. Maibaum (Ed.), Proceedings

Fundamental Approaches to Software Engineering, FASE, LNCS, vol. 1783, Springer-Verlag, 2000.
[28] G. Övergaard, Using the BOOM framework for formal specification of the UML, in: Proceedings of

Defining Precise Semantics for UML, 2000.
[29] G. Övergaard, K. Palmkvist, A formal approachto use cases and their relationships, in: UML 1998, 1998.
[30] Rational Software Corporation. Rational Rose Family, 2003.

http://www.rational.com/products/rose/index.jsp.
[31] G. Reggio, E. Astesiano, C. Choppy, H. Hußmann,Analyzing UML active classes and associated state

machines—a lightweight formal approach, in: FEAS 2000, 2000.
ftp://ftp.disi.unige.it/pub/person/ReggioG/Reggio99a.ps.

[32] G. Reggio, M. Cerioli, E. Astesiano, Towards a rigorous semantics of UML supporting its multiview
approach, in: FASE 2001, 2001.ftp://ftp.disi.unige.it/pub/person/CerioliM/FASE2001.pdf.

[33] M. Richters, M. Gogolla, On formalizing the UMLobject constraint language OCL, in: T.-W. Ling, S. Ram,
M.L. Lee (Eds.), Proc. 17th International Conference Conceptual Modelling, ER’98, LNCS, vol. 1507,
Springer-Verlag, 1998, pp. 449–464.

[34] Telelogic AB. Telelogic Tau, 2003.http://www.telelogic.com/products/tau/index.cfm.

http://www-omega.imag.fr/doc/d1000199_2/D1.1.4-time-extensions-v2.pdf
http://www.ilogix.com/products/rhapsody/index.cfm
http://www.klasse.nl/english/uml/unification-report.pdf
http://www.kc.com/as_site/home.html
http://www.omg.org/docs/formal/03-09-01.pdf
http://www.omg.org/cgi-bin/doc?ptc/03-08-02
http://www.rational.com/products/rose/index.jsp
ftp://ftp.disi.unige.it/pub/person/ReggioG/Reggio99a.ps
ftp://ftp.disi.unige.it/pub/person/CerioliM/FASE2001.pdf
http://www.telelogic.com/products/tau/index.cfm

	A discrete-time UML semantics for concurrency and communication in safety-critical applications
	Introduction
	The krtUML language
	Basic notions
	krtUML structure

	krtUML semantics
	Symbolic transition systems
	System variables for the krtUML semantics
	The transition predicate
	Getting an event
	Accepting a triggered operation
	Skipping guards
	Discarding events
	Executing simple actions
	Synchronisations via operation calls
	Creating a new object
	Becoming stable
	Picking up a result

	The STS semantics of a krtUML model

	Assessing the expressiveness of krtUML
	Translating rtUML to krtUML
	The choice of rtUML communication scheme

	Related works
	Conclusion
	References

