
Software Design, Modelling and Analysis in UML

Lecture 1: Introduction

2011-10-25

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
1

–
2
0
1
1
-1

0
-2

5
–

m
a
in

–



Contents & Goals

This Lecture:

• Educational Objectives: After this lecture you should

• be able to explain the term model.

• know the idea (and hopes and promises) of model-based SW development.

• be able to explain how UML fits into this general picture.

• know what we’ll do in the course, and why.

• thus be able to decide whether you want to stay with us...

• Content:

• Analogy: Model-based/-driven development by construction engineers.

• Software engineers: “me too” – Model-based/-driven Software Engineering.

• UML Mode of the Lecture: Blueprint.

• Contents of the course

• Formalia

–
1

–
2
0
1
1
-1

0
-2

5
–

S
p
re

li
m

–

2/38



Modelling

–
1

–
2
0
1
1
-1

0
-2

5
–

m
a
in

–

3/38



Disclaimer

• The following slides may raise thoughts such as:

• “everybody knows this”,

• “completely obvious”,

• “trivial”,

• “clear”,

• “irrelevant”,

• “oversimplified”

• . . .

Which is true, in some sense,

• but: “everybody” is a strong claim, and I want to be sure that this holds
for the audience from now on.

In other words: that we’re talking about the same things.

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

o
d
el

–

4/38



An Analogy: The House-Building Problem (Oversimplified)

Given a set of Requirements, such as:

• The house shall fit on the given piece of land.

• Each room shall have a door, the doors shall open.

• The given furniture shall fit into the living room.

• The bathroom shall have a window.

• The cost shall be in budget.

Wanted: a house which satisfies the requirements.

Now, strictly speaking, a house is a complex system:

• Consists of a huge number of bricks.

• Consists of subsystems, such as windows.

• Water pipes and wirings have to be in place.

• Doors have to open consistently.

• Floors depend on each other (load-bearing walls).

• . . .

How do construction engineers handle this complexity...?–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

o
d
el

–

5/38



Approach: Floorplan

1. Requirements

• Shall fit on given
piece of land.

• Each room shall
have a door.

• Furniture shall fit
into living room.

• Bathroom shall
have a window.

• Cost shall be in

budget.

2. Design

h
tt

p
:/

/
w

ik
im

ed
ia

.o
rg

(C
C

n
c-

sa
3
.0

,
O

tt
o
k
la

g
es

) 3. System

http://wikimedia.org
(CC nc-sa 3.0,
Bobthebuilder82)

Observation: Floorplan abstracts from, e.g., . . .

• kind, number, and placement of bricks,

• subsystem details (e.g., window style),
• water pipes/wiring, and

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

o
d
el

–

6/38



Approach: Floorplan

1. Requirements

• Shall fit on given
piece of land.

• Each room shall
have a door.

• Furniture shall fit
into living room.

• Bathroom shall
have a window.

• Cost shall be in

budget.

2. Design

h
tt

p
:/

/
w

ik
im

ed
ia

.o
rg

(C
C

n
c-

sa
3
.0

,
O

tt
o
k
la

g
es

) 3. System

http://wikimedia.org
(CC nc-sa 3.0,
Bobthebuilder82)

Observation: Floorplan preserves, e.g., . . .

• house and room extensions (to scale),

• presence/absence of windows and doors,

• placement of subsystems
(such as windows).

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

o
d
el

–

6/38



Floorplan as an Abstraction

•

•

•

•

all houses

F

H

γ

α

α

• Floorplan F denotes a set γ(F ) of houses (concretisations of F ),
which differ, e.g. in colour of bricks, or making of windows.

• Floorplan F represents house H according to abstraction α.

• By adding information to F (such as making of windows),
we can narrow down γ(F ).

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

o
d
el

–

7/38



What is it good for? Build by Plan.

• As said before, the floorplan abstraction α preserves some properties.
For instance, we have:

Room R has window in H if and only if R-representation in α(H) has window.

• And we have the general rule:

If a house H ′ is (or: will have been) built according to plan F , and
if plan F has property φ, and if α/γ preserve this property,
then H ′ has (or: will have) property φ.

• So we can answer some questions about H
before even building it, e.g.:

• Bathroom shall have a window.

• Shall fit on given piece of land.

• Each room shall have a door.

• Furniture shall fit into living room.

• Cost shall be in budget.

• And: it’s typically easier (and cheaper) to correct errors in the plan,
rather than in the finished house.–

1
–

2
0
1
1
-1

0
-2

5
–

S
m

o
d
el

–

8/38

westphal
Bleistift



“Silver Bullet” or Can Anything Go Wrong...?

• If the requirements are already contradictory (or inconsistent),
then there is no sense in drawing a plan.

Example:

• The house shall fit on the given piece of land.

• The given furniture shall fit into the living room.

What if the land is 10m narrow and the couch is 11m × 11m?

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

o
d
el

–

9/38

westphal
Bleistift



Good for Anything Else? Documentation.

• Given: a house.

• Wanted: a concise description for potential buyers.

• Approach: draw a floorplan.

Distinguish:

• Sometimes the plan F is first, and the realisation H ∈ γ(F ) comes later.

• Sometimes the realisation H is first, and the “plan” F = α(H) comes later.

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

o
d
el

–

10/38



What’s the Essence?

Definition. [Folk] A model is an abstract, formal, mathematical repre-
sentation or description of structure or behaviour of a (software) system.

Definition. [Glinz, 2008, 425]
A model is a concrete or mental image (Abbild) of something
or a concrete or mental archetype (Vorbild) for something.

Three properties are constituent:

(i) the image attribute (Abbildungsmerkmal), i.e. there is an entity
(called original) whose image or archetype the model is,

(ii) the reduction attribute (Verkürzungsmerkmal), i.e. only those at-
tributes of the original that are relevant in the modelling context
are represented,

(iii) the pragmatic attribute, i.e. the model is built in a specific context
for a specific purpose.

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

o
d
el

–

11/38

westphal
Bleistift



Model-Based/-Driven Software Engineering

–
1

–
2
0
1
1
-1

0
-2

5
–

m
a
in

–

12/38



Software System (Very Abstract View)

We see software M as a transition system.

• It has a (possibly infinite) set of states S, (structure)

• an initial state s0, and

• a (possibly L-labelled) transition relation

→⊆ S × L × S. (behaviour)

Software may have infinite and finite runs, i.e. sequences of consecutive states.

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

b
se

–

13/38

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Software System (Very Abstract View)

We see software M as a transition system.

• It has a (possibly infinite) set of states S, (structure)

• an initial state s0, and

• a (possibly L-labelled) transition relation

→⊆ S × L × S. (behaviour)

Software may have infinite and finite runs, i.e. sequences of consecutive states.

The software engineering problem:

• Given: informal requirements ϕ.

• Desired: correct software, i.e. software M such that M satisfies ϕ.

Two prominent obstacles:

• Getting ϕ formal in order to reason about ϕ and M , e.g. prove M correct.

• M typically too large to “write it down” at once.

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

b
se

–

13/38

westphal
Bleistift



Model-Driven Software Engineering

Idea

Structure Declarative
Behaviour

︸
︷
︷

︸

Declarative
Behaviour′

︸
︷
︷

︸

Structure′ Constructive
Behaviour

︸
︷
︷

︸

Structure′′ Constructive
Behaviour′

︸
︷
︷

︸

Implementation

elicit

refine

refine

refine refine

requirements

model

requirements/
constraints

design

system model

|=
?

|=
?

generate/
program

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

b
se

–

14/38

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Model-Driven Software Engineering with UML

Idea

Class
Diagram

Sequence
Diagram

︸
︷
︷

︸

Sequence
Diagram′

︸
︷
︷

︸

Class
Diagram′

State
Machine

︸
︷
︷

︸

Class
Diagram′′

State
Machine′

︸
︷
︷

︸

Implementation

elicit

refine

refine

refine refine

requirements

model

requirements/
constraints

design

system model

|=
?

|=
?

generate/
program

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

b
se

–

15/38



Model-Driven Software Engineering with UML

Idea

Class
Diagram

Sequence
Diagram

︸
︷
︷

︸

Sequence
Diagram′

︸
︷
︷

︸

Class
Diagram′

State
Machine

︸
︷
︷

︸

Class
Diagram′′

State
Machine′

︸
︷
︷

︸

Implementation

elicit

refine

refine

refine refine

requirements

model

requirements/
constraints

design

system model

|=
?

|=
?

generate/
program

ClassB

id {redefines name}
shape: Square
height = 7
/ width

ClassA

name: String
shape: Rectangle
+ size: Integer [0..1]
/ area: Integer {readOnly}
height: Integer= 5
width: Integer

[OMG, 2007a, 135]

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

b
se

–

15/38



Model-Driven Software Engineering with UML

Idea

Class
Diagram

Sequence
Diagram

︸
︷
︷

︸

Sequence
Diagram′

︸
︷
︷

︸

Class
Diagram′

State
Machine

︸
︷
︷

︸

Class
Diagram′′

State
Machine′

︸
︷
︷

︸

Implementation

elicit

refine

refine

refine refine

requirements

model

requirements/
constraints

design

system model

|=
?

|=
?

generate/
program

ClassB

id {redefines name}
shape: Square
height = 7
/ width

ClassA

name: String
shape: Rectangle
+ size: Integer [0..1]
/ area: Integer {readOnly}
height: Integer= 5
width: Integer

[OMG, 2007a, 135]

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

b
se

–

15/38



Model-Driven Software Engineering with UML

Idea

Class
Diagram

Sequence
Diagram

︸
︷
︷

︸

Sequence
Diagram′

︸
︷
︷

︸

Class
Diagram′

State
Machine

︸
︷
︷

︸

Class
Diagram′′

State
Machine′

︸
︷
︷

︸

Implementation

elicit

refine

refine

refine refine

requirements

model

requirements/
constraints

design

system model

|=
?

|=
?

generate/
program

ClassB

id {redefines name}
shape: Square
height = 7
/ width

ClassA

name: String
shape: Rectangle
+ size: Integer [0..1]
/ area: Integer {readOnly}
height: Integer= 5
width: Integer

[OMG, 2007a, 135]

Team

Year

Player

PlayedInYear

year

*

*season

* *

goalieteam

W

[OMG, 2007b, 44]

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

b
se

–

15/38



Model-Driven Software Engineering with UML

Idea

Class
Diagram

Sequence
Diagram

︸
︷
︷

︸

Sequence
Diagram′

︸
︷
︷

︸

Class
Diagram′

State
Machine

︸
︷
︷

︸

Class
Diagram′′

State
Machine′

︸
︷
︷

︸

Implementation

elicit

refine

refine

refine refine

requirements

model

requirements/
constraints

design

system model

|=
?

|=
?

generate/
program

ClassB

id {redefines name}
shape: Square
height = 7
/ width

ClassA

name: String
shape: Rectangle
+ size: Integer [0..1]
/ area: Integer {readOnly}
height: Integer= 5
width: Integer

[OMG, 2007a, 135]

Team

Year

Player

PlayedInYear

year

*

*season

* *

goalieteam

W

[OMG, 2007b, 44]

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

b
se

–

15/38



Model-Driven Software Engineering with UML

Idea

Class
Diagram

Sequence
Diagram

︸
︷
︷

︸

Sequence
Diagram′

︸
︷
︷

︸

Class
Diagram′

State
Machine

︸
︷
︷

︸

Class
Diagram′′

State
Machine′

︸
︷
︷

︸

Implementation

elicit

refine

refine

refine refine

requirements

model

requirements/
constraints

design

system model

|=
?

|=
?

generate/
program

ClassB

id {redefines name}
shape: Square
height = 7
/ width

ClassA

name: String
shape: Rectangle
+ size: Integer [0..1]
/ area: Integer {readOnly}
height: Integer= 5
width: Integer

[OMG, 2007a, 135]

Team

Year

Player

PlayedInYear

year

*

*season

* *

goalieteam

W

[OMG, 2007b, 44]

sd UserAccepted

:User :ACSystem

Code d=duration

CardOut {0..13}

OK
Unlock

{d..3*d}

t=now

{t..t+3}

DurationConstraint

TimeObservation

TimeConstraint

DurationObservation

[OMG, 2007b, 513]

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

b
se

–

15/38



Model-Driven Software Engineering with UML

Idea

Class
Diagram

Sequence
Diagram

︸
︷
︷

︸

Sequence
Diagram′

︸
︷
︷

︸

Class
Diagram′

State
Machine

︸
︷
︷

︸

Class
Diagram′′

State
Machine′

︸
︷
︷

︸

Implementation

elicit

refine

refine

refine refine

requirements

model

requirements/
constraints

design

system model

|=
?

|=
?

generate/
program

ClassB

id {redefines name}
shape: Square
height = 7
/ width

ClassA

name: String
shape: Rectangle
+ size: Integer [0..1]
/ area: Integer {readOnly}
height: Integer= 5
width: Integer

[OMG, 2007a, 135]

Team

Year

Player

PlayedInYear

year

*

*season

* *

goalieteam

W

[OMG, 2007b, 44]

sd UserAccepted

:User :ACSystem

Code d=duration

CardOut {0..13}

OK
Unlock

{d..3*d}

t=now

{t..t+3}

DurationConstraint

TimeObservation

TimeConstraint

DurationObservation

[OMG, 2007b, 513]

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

b
se

–

15/38



Model-Driven Software Engineering with UML

Idea

Class
Diagram

Sequence
Diagram

︸
︷
︷

︸

Sequence
Diagram′

︸
︷
︷

︸

Class
Diagram′

State
Machine

︸
︷
︷

︸

Class
Diagram′′

State
Machine′

︸
︷
︷

︸

Implementation

elicit

refine

refine

refine refine

requirements

model

requirements/
constraints

design

system model

|=
?

|=
?

generate/
program

ClassB

id {redefines name}
shape: Square
height = 7
/ width

ClassA

name: String
shape: Rectangle
+ size: Integer [0..1]
/ area: Integer {readOnly}
height: Integer= 5
width: Integer

[OMG, 2007a, 135]

Team

Year

Player

PlayedInYear

year

*

*season

* *

goalieteam

W

[OMG, 2007b, 44]

sd UserAccepted

:User :ACSystem

Code d=duration

CardOut {0..13}

OK
Unlock

{d..3*d}

t=now

{t..t+3}

DurationConstraint

TimeObservation

TimeConstraint

DurationObservation

[OMG, 2007b, 513]

DialTone
Dialing

Talking
Ringing

Busy

dial digit(n)

connected

callee answers

Idle

busy

lift
receiver

caller
hangs up

callee
hangs up

Active

dial digit(n)

/get dial tone

do/ play busy
tone

do/ play ringing
tone/enable speech

/disconnect

do/ play dial tone

Pinned

callee
answers

Connecting

dial digit(n)[valid]

Time-out

do/ play message

dial digit(n)[invalid]

/connectInvalid

do/ play message

[incomplete]after (15 sec.)

after (15 sec.)

activeEntry

aborted

abort terminate

[OMG, 2007b, 567]

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

b
se

–

15/38



Needed: A Modelling Language for SW-Engineering

• What would be a “from scratch” approach?

(i) Define a formal language to define requirements and designs.

(ii) Equip it with a formal semantics.

(iii) Define consistency/satisfaction relation in terms of semantics.

• The approach in this course:

(i) Introduce a common semantical domain — what is a very abstract
mathematical characterisation of object based transitions systems?
Why? Because in the end SW-Engineering is about the creation of (object
based) transitions systems and Modeling is about describing them.

(ii) Take (a fragment of) the visual formal language UML as syntax.

(iii) Introduce an abstract mathematical representation of diagrams.
Why? Because it is easier to handle than “pictures”; it abstracts from
details such as graphical layout (which don’t contribute to the semantics —
note: in floor plans it does).

(iv) Study the UML standard documents for the informal semantics.

(v) Define a mapping from (abstract representations of) diagrams to the
semantical domain: assign meaning to diagrams.

(vi) Define (in terms of the meaning) when a diagram is, e.g., consistent.

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

b
se

–

16/38



Course Map

UML
M

o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr ), SM

(ΣDS , AS ,→SM ) = M

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→ (σ1, ε1)

(cons1,Snd1)
−−−−−−−−→ . . .

G = (N, E, f) Mathematics

OD UML

–
1

–
2
0
1
1
-1

0
-2

5
–

S
m

b
se

–

17/38

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift


westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



UML Mode

–
1

–
2
0
1
1
-1

0
-2

5
–

m
a
in

–

18/38



Consequences of the Pragmatic Attribute

Recall [Glinz, 2008, 425]:

[...] (iii) the pragmatic attribute, i.e. the model is built in a specific
context for a specific purpose.

Examples for context/purpose:

Floorplan as sketch: Floorplan as blueprint: Floorplan as program:

+ wiringplan

+ windows

+ ...

–
1

–
2
0
1
1
-1

0
-2

5
–

S
u
m

lm
o
d
e

–

19/38



With UML it’s the Same[http://martinfowler.com/bliki]

Actually, the last slide is inspired by Martin Fowler, who puts it like this:

“[...] people differ about what should be in the UML because there are
differing fundamental views about what the UML should be.

I came up with three primary classifications for thinking about the UML:

UmlAsSketch, UmlAsBlueprint, and UmlAsProgrammingLanguage.

([...] S. Mellor independently came up with the same classifications.)

So when someone else’s view of the UML seems rather different to yours, it
may be because they use a different UmlMode to you.”

Claim:

• And this not only applies to UML as a language (what should be in it?)

• but at least as well to individual UML models.

–
1

–
2
0
1
1
-1

0
-2

5
–

S
u
m

lm
o
d
e

–

20/38



With UML it’s the Same[http://martinfowler.com/bliki]

Actually, the last slide is inspired by Martin Fowler, who puts it like this:

“[...] people differ about what should be in the UML because there are
differing fundamental views about what the UML should be.

I came up with three primary classifications for thinking about the UML:

UmlAsSketch, UmlAsBlueprint, and UmlAsProgrammingLanguage.

([...] S. Mellor independently came up with the same classifications.)

So when someone else’s view of the UML seems rather different to yours, it
may be because they use a different UmlMode to you.”

Claim:

• And this not only applies to UML as a language (what should be in it?)

• but at least as well to individual UML models.

Sketch

In this UmlMode developers
use the UML to help
communicate some aspects
of a system. [...]

Sketches are also useful in
documents, in which case the
focus is communication ra-
ther than completeness. [...]

The tools used for sketching
are lightweight drawing tools
and often people aren’t too
particular about keeping to
every strict rule of the UML.
Most UML diagrams shown
in books, such as mine, are
sketches.
Their emphasis is on selective
communication rather than
complete specification.

Hence my sound-bite “com-

prehensiveness is the enemy

of comprehensibility”

Blueprint

[...] In forward engineering
the idea is that blueprints are
developed by a designer
whose job is to build a
detailed design for a
programmer to code up.
That design should be
sufficiently complete that all
design decisions are laid out
and the programming should
follow as a pretty
straightforward activity that
requires little thought. [...]

Blueprints require much
more sophisticated tools than
sketches in order to handle
the details required for the
task. [...]

Forward engineering tools

support diagram drawing and

back it up with a repository

to hold the information. [...]

ProgrammingLanguage

If you can detail the UML
enough, and provide
semantics for everything you
need in software, you can
make the UML be your
programming language.

Tools can take the UML
diagrams you draw and
compile them into executable
code.

The promise of this is that
UML is a higher level
language and thus more
productive than current
programming languages.

The question, of course, is
whether this promise is true.

I don’t believe that graphical

programming will succeed just

because it’s graphical. [...]

–
1

–
2
0
1
1
-1

0
-2

5
–

S
u
m

lm
o
d
e

–

20/38

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



UML-Mode of the Lecture: As Blueprint

• The “mode” fitting the lecture best is AsBlueprint.

• The purpose of the lecture’s formal semantics is:

• to be precise to avoid misunderstandings.

• to allow formal analysis of consistency/implication
on the design level — find errors early.

while being consistent with the (informal semantics) from the standard [?,
OMG, 2007b] as far as possible.

–
1

–
2
0
1
1
-1

0
-2

5
–

S
u
m

lm
o
d
e

–

21/38



UML-Mode of the Lecture: As Blueprint

• The “mode” fitting the lecture best is AsBlueprint.

• The purpose of the lecture’s formal semantics is:

• to be precise to avoid misunderstandings.

• to allow formal analysis of consistency/implication
on the design level — find errors early.

while being consistent with the (informal semantics) from the standard [?,
OMG, 2007b] as far as possible.

�������������	����������

���

��

��

��

�

����������������	
�����
�

	�����������������������	���	�������	�

�������	�����

��������	
����

�
��������	���	����������

 

!

�

�

�

�

"�������������

����
	

#��������

����
	��	��

�	���	������	�$�

�	��
�����	

���������	�

�	��$����

��	��������	

������	


(C) Dr. C. Thomas, Airbus

–
1

–
2
0
1
1
-1

0
-2

5
–

S
u
m

lm
o
d
e

–

21/38



UML-Mode of the Lecture: As Blueprint

• The “mode” fitting the lecture best is AsBlueprint.

• The purpose of the lecture’s formal semantics is:

• to be precise to avoid misunderstandings.

• to allow formal analysis of consistency/implication
on the design level — find errors early.

while being consistent with the (informal semantics) from the standard [?,
OMG, 2007b] as far as possible.

• Being precise also helps for mode AsSketch:
it should be easier to “fill in” missing parts or resolve inconsistencies.

• Lecture serves as a starting point to define your semantics for your
context/purpose (maybe obtaining a Domain Specific Language).

• Lecture could be worked out into mode AsProgrammingLanguage.

–
1

–
2
0
1
1
-1

0
-2

5
–

S
u
m

lm
o
d
e

–

21/38



Course Overview

–
1

–
2
0
1
1
-1

0
-2

5
–

m
a
in

–

22/38



Table of Contents

• Motivation and Overview (VL 01)

• Semantical Domain (VL 02)

• OCL (VL 03)

• Object Diagrams (VL 04)

• Modelling Structure:
Class Diagrams (VL 05–08)

• Modelling Behaviour

• Constructive:
State Machines (VL 09–16)

• Reflective:
Live Sequence Charts (VL 17–19)

• Inheritance (VL 20–21)

• Meta-Modeling (VL 22)

• Putting it all together:
MDA, MDSE (VL 23)

Idea

Class
Diagram

Sequence
Diagram

︸
︷
︷

︸

Sequence
Diagram′

︸
︷
︷

︸

Class
Diagram′

State
Machine

︸
︷
︷

︸

Class
Diagram′′

State
Machine′

︸
︷
︷

︸

Implementation

elicit

refine

refine

refine refine

requirements

model

requirements/
constraints

design

system model

|=
?

|=
?

generate/
program

–
1

–
2
0
1
1
-1

0
-2

5
–

S
co

n
te

n
t

–

23/38



Course Path: Over Map

• Motivation

• Semantical
Domain

• OCL

• Object
Diagrams

• Class Diagrams

• State Machines

• Live Sequence
Charts

• Real-Time

• Components

• Inheritance

• Meta-Modeling

• MDA, MDSE

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

CD, SM

S = (T,C, V, atr ), SM

(ΣDS , AS ,→SM ) = M

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→ (σ1, ε1)

(cons1,Snd1)
−−−−−−−−→ . . .

G = (N, E, f) Mathematics

OD UML

–
1

–
2
0
1
1
-1

0
-2

5
–

S
co

n
te

n
t

–

24/38



Course Path: Over Time
–

1
–

2
0
1
1
-1

0
-2

5
–

S
co

n
te

n
t

–

25/38



Table of Non-Contents

Everything else, including

• Development Process
UML is only the language for artefacts. But: we’ll discuss exemplarily,
where in an abstract development process which means could be used.

• How to come up with a good design
UML is only the language to write down designs. But: we’ll have a
couple of examples.

• Requirements Management
Versioning, Propagation of Changes

• Every little bit and piece of UML
Boring. Instead we learn how to read the standard.

• Object Oriented Programming
Interesting: inheritance is one of the last lectures.

–
1

–
2
0
1
1
-1

0
-2

5
–

S
co

n
te

n
t

–

26/38



Formalia

–
1

–
2
0
1
1
-1

0
-2

5
–

m
a
in

–

27/38



Formalia: Event

• Lecturer: Dr. Bernd Westphal

• Support: Evis Plaku

• Homepage:
http://swt.informatik.uni-freiburg.de/teaching/

winter-term-2011-2012/sdmauml/sdmauml

• Questions:

• “online”:
(i) ask immediately or in the break

• “offline”:
(i) try to solve yourself
(ii) discuss with colleagues
(iii) • Exercises: contact tutor by mail (cf. homepage)

• Rest: contact lecturer by mail (cf. homepage)
or just drop by: Building 52, Room 00-020

–
1

–
2
0
1
1
-1

0
-2

5
–

S
fo

rm
a
li
a

–

28/38



Formalia: Dates/Times, Break

• Location:

• Tuesday, Wednesday: here (bldg. 106, room 00-007)

• Schedule:

Week N , Wednesday, 12–14 lecture (exercise sheet K online)

Week N + 1, Tuesday, 12–14 lecture

Wednesday, 12–14 lecture

Week N + 2, Monday, 9:00 (exercises K early submission)

Tuesday, 12:00 (exercises K late submission)

12–14 tutorial

With a prefix of lectures, see homepage for details.

• Break:

• Unless a majority objects now,
we’ll have a 15 min. break in the middle of each event from now on.

–
1

–
2
0
1
1
-1

0
-2

5
–

S
fo

rm
a
li
a

–

29/38

westphal
Bleistift



Formalia: Lectures

• Course language: English
(slides/writing, presentation, questions/discussions)

• Presentation:
half slides/half on-screen hand-writing — for reasons

• Script/Media:

• slides with annotations on homepage, 2-up for printing,
typically soon after the lecture

• recording on eLectures portal with max. 1 week delay
(link on homepage)

• Interaction:
absence often moaned but it takes two,
so please ask/comment immediately.

–
1

–
2
0
1
1
-1

0
-2

5
–

S
fo

rm
a
li
a

–

30/38

westphal
Bleistift



Formalia: Exercises and Tutorials

• Schedule/Submission:

• hand-out on Wednesday after lecture,
early turn in on following Monday by 9:00 local time
regular turn in on following Tuesday by 12:00 local time

• should work in groups of approx. 3, clearly give names on submission

• please submit electronically by Mail to B. Westphal (cf. homepage),
paper submissions are tolerated

• Rating system: “most complicated rating system ever”

• Admission points (good-will rating, upper bound)
(“reasonable proposal given student’s knowledge before tutorial”)

• Exam-like points (evil rating, lower bound)
(“reasonable proposal given student’s knowledge after tutorial”)

10% bonus for early submission.

• Tutorial: Plenary.

• Together develop one good proposal,
starting from discussion of the early submissions (anonymous).–

1
–

2
0
1
1
-1

0
-2

5
–

S
fo

rm
a
li
a

–

31/38

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Formalia: Exam

• Exam Admission:

Achieving 50% of the regular admission points in total
is sufficient for admission to exam.

Typically, 20 regular admission points per exercise sheet.

• Exam Form:

• oral for BSc and on special demand,

• written for everybody else (if sufficiently many candidates remain).

Scores from the exercises do not contribute to the final grade.

–
1

–
2
0
1
1
-1

0
-2

5
–

S
fo

rm
a
li
a

–

32/38

westphal
Bleistift



Formalia: Evaluation

• Mid-term Evaluation:

• We will have a mid-term evaluation
(early December, roughly 1/3 of the course’s time).

• If you decide to leave the course earlier you may want to do us a
favour and tell us the reasons – by participating in the mid-term
evaluation (will be announced on homepage).

• Note: we’re always interested in

comments/hints/proposals/wishes/...

concerning form or content.

Feel free to approach us (tutors, me) in any form.
We don’t bite.

–
1

–
2
0
1
1
-1

0
-2

5
–

S
fo

rm
a
li
a

–

33/38

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Literature

–
1

–
2
0
1
1
-1

0
-2

5
–

m
a
in

–

34/38



Literature: UML

• OMG: Unified Modeling Language Specification, Infrastructure, 2.1.2

• OMG: Unified Modeling Language Specification, Superstructure, 2.1.2

• OMG: Object Constraint Language Specification, 2.0
All three: http://www.omg.org (cf. hyperlinks on course homepage)

• A. Kleppe, J. Warmer: The Object Constraint Language,
Second Edition, Addison-Wesley, 2003.

• D. Harel, E. Gery: Executable Object Modeling with Statecharts,
IEEE Computer, 30(7):31-42, 1997.

• B. P. Douglass: Doing Hard Time, Addison-Wesley, 1999.

• B. P. Douglass: ROPES: Rapid Object-Oriented Process for Embedded
Systems, i-Logix Inc., Whitepaper, 1999.

• B. Oesterreich: Analyse und Design mit UML 2.1,
8. Auflage, Oldenbourg, 2006.

• H. Stoerrle: UML 2 für Studenten, Pearson Studium Verlag, 2005.

–
1

–
2
0
1
1
-1

0
-2

5
–

S
li
t

–

35/38



Literature: Modelling

• • W. Hesse, H. C. Mayr: Modellierung in der
Softwaretechnik: eine Bestandsaufnahme,
Informatik Spektrum, 31(5):377-393, 2008.

• O. Pastor, S. Espana, J. I. Panach, N.
Aquino: Model-Driven Development,
Informatik Spektrum, 31(5):394-407, 2008.

• M. Glinz: Modellierung in der Lehre an
Hochschulen: Thesen und Erfahrungen,
Informatik Spektrum, 31(5):408-424, 2008.

http://www.springerlink.com/content/0170-6012

• U. Kastens, H. Kleine Büning: Modellierung – Grundlagen und Formale
Methoden, 2. Auflage, Hanser-Verlag, 2008.

–
1

–
2
0
1
1
-1

0
-2

5
–

S
li
t

–

36/38



Questions?

–
1

–
2
0
1
1
-1

0
-2

5
–

m
a
in

–

37/38



References

[Dobing and Parsons, 2006] Dobing, B. and Parsons, J. (2006). How UML is used.
Communications of the ACM, 49(5):109–114.

[Glinz, 2008] Glinz, M. (2008). Modellierung in der Lehre an Hochschulen: Thesen
und Erfahrungen. Informatik Spektrum, 31(5):425–434.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

–
1

–
2
0
1
1
-1

0
-2

5
–

m
a
in

–

38/38


	Contents & Goals
	Contents & Goals

	Modelling
	Disclaimer
	An Analogy: The House-Building Problem (Oversimplified)
	An Analogy: The House-Building Problem (Oversimplified)
	An Analogy: The House-Building Problem (Oversimplified)

	Approach: Floorplan
	Approach: Floorplan
	Approach: Floorplan

	Floorplan as an Abstraction
	What is it good for? Build by Plan.
	What is it good for? Build by Plan.
	What is it good for? Build by Plan.
	What is it good for? Build by Plan.

	``Silver Bullet'' or Can Anything Go Wrong...?
	``Silver Bullet'' or Can Anything Go Wrong...?

	Good for Anything Else? Documentation.
	What's the Essence?
	What's the Essence?

	Model-Based/-Driven Software Engineering
	Software System (Very Abstract View)
	Software System (Very Abstract View)
	Software System (Very Abstract View)

	Model-Driven Software Engineering
	Model-Driven Software Engineering with UML
	Model-Driven Software Engineering with UML
	Model-Driven Software Engineering with UML
	Model-Driven Software Engineering with UML
	Model-Driven Software Engineering with UML
	Model-Driven Software Engineering with UML
	Model-Driven Software Engineering with UML
	Model-Driven Software Engineering with UML
	Model-Driven Software Engineering with UML

	Needed: A Modelling Language for SW-Engineering
	Needed: A Modelling Language for SW-Engineering
	Needed: A Modelling Language for SW-Engineering
	Needed: A Modelling Language for SW-Engineering
	Needed: A Modelling Language for SW-Engineering
	Needed: A Modelling Language for SW-Engineering
	Needed: A Modelling Language for SW-Engineering

	Course Map
	UML Mode
	Consequences of the Pragmatic Attribute
	Consequences of the Pragmatic Attribute
	Consequences of the Pragmatic Attribute
	Consequences of the Pragmatic Attribute

	With UML it's the Same {small uniblau $[${	t http://martinfowler.com/bliki}$]$}
	With UML it's the Same {small uniblau $[${	t http://martinfowler.com/bliki}$]$}

	UML-Mode of the Lecture: As Blueprint
	UML-Mode of the Lecture: As Blueprint
	UML-Mode of the Lecture: As Blueprint

	Course Overview
	Table of Contents
	Course Path: Over Map
	Course Path: Over Time
	Table of Non-Contents
	Formalia
	Formalia: Event
	Formalia: Dates/Times, Break
	Formalia: Lectures
	Formalia: Exercises and Tutorials
	Formalia: Exercises and Tutorials
	Formalia: Exercises and Tutorials

	Formalia: Exam
	Formalia: Evaluation
	Literature
	Literature: UML
	Literature: Modelling
	Questions?
	 



