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Contents & Goals

Last Lecture:

• OCL Syntax and Semantics

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What is an object diagram? What are object diagrams good for?

• When is an object diagram called partial? What are partial ones good for?

• When is an object diagram an object diagram (wrt. what)?

• Is this an object diagram wrt. to that other thing?

• How are system states and object diagrams related?

• What does it mean that an OCL expression is satisfiable?

• When is a set of OCL constraints said to be consistent?

• Can you think of an object diagram which violates this OCL constraint?

• Content:

• Object Diagrams

• Example: Object Diagrams for Documentation

• OCL: consistency, satisfiability–
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You Are Here.

UML
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N

S

W E

CD, SM

S = (T,C, V, atr ), SM

(ΣDS , AS ,→SM ) = M

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→ (σ1, ε1)

(cons1,Snd1)
−−−−−−−−→ . . .

G = (N, E, f) Mathematics

OD UML

✔

✔

!!

!!

✔

✔
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Object Diagrams
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Graph

Definition. A node labelled graph is a triple

G = (N, E, f)

consisting of
• vertexes N ,

• edges E,

• node labeling f : N → X , where X is some label domain,
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Object Diagrams

Definition. Let D be a structure of signature S = (T,C, V, atr )
and σ ∈ ΣDS a system state.

Then any graph G = (N, E, f) with

• nodes are identities (not necessarily alive), i.e.

N ⊂ D(C ) finite,

• edges correspond to “links” of objects, i.e.

E ⊆ N × {v : τ ∈ V | τ ∈ {C0,1, C∗ | C ∈ C }} × N,

∀ (u1, r, u2) ∈ E : u1 ∈ dom(σ) ∧ u2 ∈ σ(u1)(r),

• objects are labelled with attribute valuations and non-alive
identities marked with “X”, i.e.

X = {X} ∪̇ (V 9 (D(T ) ∪D(C∗)))

∀u ∈ N ∩ dom(σ) : f(u) ⊆ σ(u)

∀u ∈ N \ dom(σ) : f(u) = {X}

is called object diagram of σ.
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Graphical Representation of Object Diagrams

N ⊂ D(C ) finite, E ⊂ N × V0,1,∗ × N , X = {X} ∪̇ (V 9 (D(T ) ∪D(C∗)))
u1 ∈ dom(σ) ∧ u2 ∈ σ(u1)(r), f(u) ⊆ σ(u) or f(u) = {X}

• Assume S = ({Int}, {C}, {v1 : Int , v2 : Int , r : C∗}, {C 7→ {v1, v2, r}}).

• Consider
σ = {u1 7→ {v1 7→ 1, v2 7→ 2, r 7→ {u2}}, u2 7→ {v1 7→ 3, v2 7→ 4, r 7→ ∅}}

• Then G = (N, E, f)

= ({u1, u2}, {(u1, r, u2)}, {u1 7→ {v1 7→ 1, v2 7→ 2}, u2 7→ {v1 7→ 3, v2 7→ 4}},

is an object diagram of σ wrt. S and any D with D(Int) ⊇ {1, 2, 3, 4}.

–
0
4

–
2
0
1
1
-1

1
-0

9
–

S
o
d

–

8/30



Graphical Representation of Object Diagrams

N ⊂ D(C ) finite, E ⊂ N × V0,1,∗ × N , X = {X} ∪̇ (V 9 (D(T ) ∪D(C∗)))
u1 ∈ dom(σ) ∧ u2 ∈ σ(u1)(r), f(u) ⊆ σ(u) or f(u) = {X}

• Assume S = ({Int}, {C}, {v1 : Int , v2 : Int , r : C∗}, {C 7→ {v1, v2, r}}).

• Consider
σ = {u1 7→ {v1 7→ 1, v2 7→ 2, r 7→ {u2}}, u2 7→ {v1 7→ 3, v2 7→ 4, r 7→ ∅}}

• Then G = (N, E, f)

= ({u1, u2}, {(u1, r, u2)}, {u1 7→ {v1 7→ 1, v2 7→ 2}, u2 7→ {v1 7→ 3, v2 7→ 4}},

is an object diagram of σ wrt. S and any D with D(Int) ⊇ {1, 2, 3, 4}.

• We may equivalently (!) represent G graphically as follows:

u1 : C

v1 = 1

v2 = 2

u2 : C

v1 = 3

v2 = 4

r

–
0
4

–
2
0
1
1
-1

1
-0

9
–

S
o
d

–

8/30

UML Notation for Object Diagrams

id : class

v1 = d1

...

vn = dn

id : class

r

optional

mandatory

︸
︷
︷

︸

“compartment”

optional

optional
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Object Diagrams: More Examples

N ⊂ D(C ) finite, E ⊂ N × V0,1,∗ × N , X = {X} ∪̇ (V 9 (D(T ) ∪D(C∗)))
u1 ∈ dom(σ) ∧ u2 ∈ σ(u1)(r), f(u) ⊆ σ(u) or f(u) = {X}

σ = {1C 7→ {p 7→ ∅, n 7→ {5C}}, 5C 7→ {p 7→ ∅, n 7→ ∅}, 1D 7→ {x 7→ 23}}

vs.

• (∅, ∅, ∅)

•
1C : C

p = ∅

5C : C

n = ∅

p = ∅

1D : D

x = 23

n

•
1C : C 5C : C 1D : D

x = 23

n

• 1C : C 5C : C 1D : D

•
1C : C 5C : C 1D : D

x = 23

x

–
0
4

–
2
0
1
1
-1

1
-0

9
–

S
o
d

–

10/30

Complete vs. Partial Object Diagram

Definition. Let G = (N, E, f) be an object diagram of system
state σ ∈ ΣDS .

We call G complete wrt. σ if and only if

• G is object complete, i.e.

• G comprises all alive objects, i.e. N ⊇ dom(σ),

• G is attribute complete, i.e.

• G comprises all “links” between alive objects, i.e.
if u2 ∈ σ(u1)(r) for some u1, u2 ∈ dom(σ) and r ∈ V ,
then (u1, r, u2) ∈ E, and

• each node is labelled with the values of all T -typed attributes,
i.e. for each u ∈ dom(σ),

f(u) = σ(u)|VT ∪{r 7→ (σ(u)(r)\N) | r ∈ V : σ(u)(r)\N 6= ∅}

where VT := {v : τ ∈ V | τ ∈ T }.

Otherwise we call G partial.
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Complete vs. Partial Examples

• N = dom(σ), if u2 ∈ σ(u1)(r), then (u1, r, u2) ∈ E,

• f(u) = σ(u)|VT ∪ {r 7→ (σ(u)(r) \ N) | σ(u)(r) \ N}

Complete or partial?

σ = {1C 7→ {p 7→ ∅, n 7→ {5C}}, 5C 7→ {p 7→ ∅, n 7→ ∅}, 1D 7→ {x 7→ 23}}

•
1C : C

p = ∅

5C : C

n = ∅

p = ∅

1D : D

x = 23

n

•
1C : C 5C : C 1D : D

x = 23

n

• 1C : C 5C : C 1D : D
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Complete/Partial is Relative

• Claim:

• Each finite system state has exactly one complete object diagram.

• A finite system state can have many partial object diagrams.

• Each object diagram G represents a set of system states, namely

G−1 := {σ ∈ ΣDS | G is an object diagram of σ}

• Observation: If somebody tells us, that a given object diagram G is
complete, we can uniquely reconstruct the corresponding system state.

In other words: G−1 is then a singleton.
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Corner Cases
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Closed Object Diagrams vs. Dangling References

Find the 10 differences! (Both diagrams shall be complete.)

1C : C 5C : C

p = {1C}

n 1C : C 5C : C

p = {7C}

n

Definition. Let σ be a system state. We say attribute v ∈ V0,1,∗ has
a dangling reference in object u ∈ dom(σ) if and only if the attribute’s
value comprises an object which is not alive in σ, i.e. if

σ(u)(v) 6⊂ dom(σ).

We call σ closed if and only if no attribute has a dangling reference in
any object alive in σ.

Observation: Let G be the (!) complete object diagram of a closed system state σ.
Then the nodes in G are labelled with T -typed attribute/value pairs only.
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Special Notation

• S = ({Int}, {C}, {n, p : C∗}, {C 7→ {n, p}}).

• Instead of

1C : C 5C : Cn

we want to write

1C : C

p = ∅

5C : C

p = ∅

n

or

1C : C 5C : Cn
|

p
|

p

to explicitly indicate that attribute p : C∗ has value ∅ (also for p : C0,1).

–
0
4

–
2
0
1
1
-1

1
-0

9
–

S
o
d
sc

o
n
f
–

16/30

Aftermath

We slightly deviate from the standard (for reasons):

• In the course, C0,1 and C∗-typed attributes only have sets as values.
UML also considers multisets, that is, they can have

u1 : C u2 : C
n

n

(This is not an object diagram in the sense of our definition because of the

requirement on the edges E. Extension is straightforward but tedious.)

• We allow to give the valuation of C0,1- or C∗-typed attributes in the
values compartment.

• Allows us to indicate that a certain r is not referring to another object.

• Allows us to represent “dangling references”, i.e. references to objects
which are not alive in the current system state.

• We introduce a graphical representation of ∅ values.
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The Other Way Round
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Example: Object Diagrams for Documentation
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Example: Data Structure [Schumann et al., 2008]
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Example: Illustrative Object Diagram [Schumann et al., 2008]
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OCL Consistency
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OCL Satisfaction Relation

In the following, S denotes a signature and D a structure of S .

Definition (Satisfaction Relation).

Let ϕ be an OCL constraint over S and σ ∈ ΣDS a system state.

We write

• σ |= ϕ if and only if IJϕK(σ, ∅) = true.

• σ 6|= ϕ if and only if IJϕK(σ, ∅) = false.

Note: In general we can’t conclude from ¬(σ |= ϕ) to σ 6|= ϕ or vice versa.
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Object Diagrams and OCL

• Let G be an object diagram of signature S wrt. structure D .
Let expr be an OCL expression over S .

We say G satisfies expr , denoted by G |= expr , if and only if

∀σ ∈ G−1 : σ |= expr .

• If G is complete, we can also talk about “6|=”.

(Otherwise better not to avoid confusion: G−1 could comprise different system

states in which expr evaluates to true, false, and ⊥.)

• Example: (complete — what if not complete wrt. object/attribute/both?)

1C : C

p = ∅

5C : C

n = ∅

p = ∅

1D : D

x = 23

n

• context C inv : n -> isEmpty()

• context C inv : p . n -> isEmpty()

• context D inv : x 6= 0
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OCL Consistency

Definition (Consistency). A set Inv = {ϕ1, . . . , ϕn} of OCL
constraints over S is called consistent (or satisfiable) if and only if
there exists a system state of S wrt. D which satisfies all of them,
i.e. if

∃σ ∈ ΣDS : σ |= ϕ1 ∧ ... ∧ σ |= ϕn

and inconsistent (or unrealizable) otherwise.
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OCL Inconsistency Example

((C) Prof. Dr. P. Thiemann, http://proglang.informatik.uni-freiburg.de/teaching/swt/2008/)

TeamMember

name : String

age : Integer

name : String

Location

participants

2..* meetings

*
title : String

numParticipants : Integer

start : Date

duration: Time

Meeting

move(newStart : Date)

1

* lo
ca

ti
o
n

m
ee

ti
n
g

• context Location inv :
name = ’Lobby’ implies meeting -> isEmpty()

• context Meeting inv :
title = ’Reception’ implies location . name = ”Lobby”

• allInstancesMeeting -> exists(w : Meeting | w . title = ’Reception’)
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Deciding OCL Consistency

• Whether a set of OCL constraints is satisfiable or not is in general not
as obvious as in the made-up example.

• Wanted: A procedure which decides the OCL satisfiability problem.

• Unfortunately: in general undecidable.

Otherwise we could, for instance, solve diophantine equations

c1x
n1

1 + · · · + cmxnm

m = d.

Encoding in OCL:

allInstancesC -> exists(w : C | c1 ∗ w.xn1

1 + · · · + cm ∗ w.xnm

m = d).
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Deciding OCL Consistency

• Whether a set of OCL constraints is satisfiable or not is in general not
as obvious as in the made-up example.

• Wanted: A procedure which decides the OCL satisfiability problem.

• Unfortunately: in general undecidable.

Otherwise we could, for instance, solve diophantine equations

c1x
n1

1 + · · · + cmxnm

m = d.

Encoding in OCL:

allInstancesC -> exists(w : C | c1 ∗ w.xn1

1 + · · · + cm ∗ w.xnm

m = d).

• And now? Options: [Cabot and Clarisó, 2008]

• Constrain OCL, use a less rich fragment of OCL.

• Revert to finite domains — basic types vs. number of objects.
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OCL Critique

• Expressive Power:

• “Pure OCL expressions only compute primitive recursive functions, but not
recursive functions in general.” [Cengarle and Knapp, 2001]

• Evolution over Time: “finally self .x > 0”

Proposals for fixes e.g. [Flake and Müller, 2003]. (Or: sequence diagrams.)

• Real-Time: “Objects respond within 10s”

Proposals for fixes e.g. [Cengarle and Knapp, 2002]

• Reachability: “After insert operation, node shall be reachable.”

Fix: add transitive closure.

• Concrete Syntax
“The syntax of OCL has been criticized – e.g., by the authors of Catalysis [...]
– for being hard to read and write.

• OCL’s expressions are stacked in the style of Smalltalk, which makes it hard
to see the scope of quantified variables.

• Navigations are applied to atoms and not sets of atoms, although there is a
collect operation that maps a function over a set.

• Attributes, [...], are partial functions in OCL, and result in expressions with
undefined value.” [Jackson, 2002]–
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