Sdtware Design, Modelling andAnalysisin UML

Ledure 06. Type Systems andVisihility
201111-23

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

— 06 — 2011-11-23 — main

Contents & Goals

Last Lecture:

Representing class diagrams as (extended) signatures — for the moment
without associations (see Lectures 07 and 08).

Insight: visibility doesn't contribute to semantics in the sense that if .4 and
> only differ in visibility of some attributes, then 221 = E?@ for each 2.

And: in Lecture 03, implicit assumption of well-typedness of OCL expressions.

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.
Is this OCL expression well-typed or not? Why?
How/in what form did we define well-definedness?

What is visibility good for?

Content:
Recall: type theory/static type systems.
Well-typedness for OCL expression.
Visibility as a matter of well-typedness.

— 06 — 2011-11-23 — Sprelim —

2/32

— 06 — 2011-11-23 — main

Excursus: Type Theory (cf. Thiemann 2008

3/32

Type Theory

- 06 — 2011-11-23 — Stypth —

Recall: In lecture 03, we introduced OCL expressions with types, for instance:

erpr = w iT ... logical variable w
| true | false : Bool ...constants
|0 —=1]1]... :Int ...constants
| expry + expry @ Int x Int — Int ...operation
| size(expry) : Set(1) — Int

Wanted: A procedure to tell well-typed, such as (w : Bool)
not w
from not well-typed, such as,
size(w).

Approach: Derivation System, that is, a finite set of derivation rules.
We then say expr is well-typed if and only if we can derive
A CtFexpr:T (read: “expression expr has type 7")

for some OCL type 7, i.e. 7 € T UTw U {Set(ry) | 70 € T UTw}, C € F. 4
32

— 06 — 2011-11-23 — main

A Type System for OCL

- 06 — 2011-11-23 — Socltyp —

A Type System for OCL
We will give a finite set of type rules (a type system) of the form
“premises”
(“name” p—| “side condition”
conclusion
These rules will establish well-typedness statements (type sentences)
of three different “qualities”:
(i) Universal well-typedness:
Foexpr:T
F142:Int
(i) Well-typedness in a type environment A: (for logical variables)
At expr:T
self 1 1o & self.v: Int
(i) Well-typedness in type environment A and context D: (for visibility)

A DbFexpr:T
self :17¢,CFself .r.v: Int

5/32

6/32

Constants and Operations

— 06 — 2011-11-23 — Socltyp —

precvise
If expr is a bgblean constany/ then expr is of type Bool:
BOOig "B Boo B € {true, false}
.\ Y ~sile — cadibin,

7/32

Constants and Operations

- 06 — 2011-11-23 — Socltyp —

If expr is a boolean constant, then expr is of type Bool:
(BOOL) B Bool ! B € {true, false}

If expr is an integer constant, then expr is of type Int:
(INT) TN T Ne{0,1,-1,...}

If expr is the application of operation w: 7 X --- X 7, — T to expressions
expry, ..., expr, which are of type 71,...,7,, then expr is of type 7:

Ferpry:m ... Fexpr, T
'_pl ! p”. L WITI X X Ty — T,
w(expry,...,expr,) : T n>1wé atr(%)

(Fung)

(Note: this rule also covers ‘=;", ‘isEmpty’, and 'size".)

7/32

Constants and Operations Example

— 06 — 2011-11-23 — Socltyp

(BOOL) m, B e {true, false}

DTy T ... S o
L S W:iTL X -+ X Tp — T,

&

w*
Exan\p

Fe
Bt

ck <HOH
true + 3 GGTSJ‘DJHILE /IDI—‘W:'M{
® u
F e € F3u
(Fss)

I-“f'(‘l"‘“elz)"l"é
How QA g £ is wet L_e[/—gﬁzat/

Type Environment

- 06 — 2011-11-23 — Socltyp —

o Problem: Whether

w—+ 3

is well-typed or not depends on the type of logical variable w € W.

o Approach: Type Environments

s
« not (true) F : (Fnas) C’D wotlee) &
- et

o vt ("l

7

\

Definition. A type environment is a (possibly empty) finite se-

quence of type declarations.
The set of type environments for a given set W of logical variables

and types T is defined by the grammar
Aw=0Aw:T

where w e W, 7 €T.

N

/

Clear: We use this definition for the set of OCL logical variables W and

the types T =T U Ty U {Set(?’o) | 0 €T U T<g}.

8/32

9/32

Environment Introduction andLogical Variables

— 06 — 2011-11-23 — Socltyp —

o If expr is of type 7, then it is of type 7 in any type environment:

F :
(EnviIntro) T T

Al expr:T

o Care for logical variables in sub-expressions of operator application:

AFexpry:m ... AFexpr, 7,

(Funy)

At w(expry,...,expr,): T

WiTy X X Ty — T,
n>1 wé atr(¥)

o If expr is a logical variable such that w : 7 occurs in A,
then we say w is of type T,

w:T €A

(Var) AFw:T

Type Environment Example

— 06 — 2011-11-23 — Socltyp —

Fexpr:T
Envl _
(Enelntro) Al expr:T
(Funy) AI—Aela_Uprl TL ... Al—exprflzrn R R
w(expry,...,expr,) : T n>1 ¢ atr(®)
w:T €A
(Var) o
Example:

o w+3, A=w: Int
Cr—>

=A

Wit F o4 (0,3): e

—— (1)
“"**_,_z"‘ B i) Qﬂ“‘
Ar b A"3-k(,(%4’ 15¢3

b A

10/32

1132

All Instances and Attributes in Type Environment

— 06 — 2011-11-23 — Socltyp

If expr refers to all instances of class C, then it is of type Set(7¢),

Alllnst
(Allnst) F alllnstancesc : Set(7¢)

If expr is an attribute access of an attribute of type 7 for an object of
C as denoted by ezpr,, then the premise is that ezpr; is of type 7¢:

At expry : o

A :
(Attro) AT olezpr;) : 7 v:t€atr(C), 7€ T
At expr, : o
Attry! ! :D t
(Attro™) At ri(expry): ' r i Do € atr(C)
Ak :
(Attr?) T TC___ 4, D, € atr(C)

AF ro(expry) : Set(tp)

12/32

Attributes in Type Environment Example

Al expry : ¢ .
(Attro) AT vleapry) i v:tT €atr(C), 7€ T

A& expry : 1c
Attrd? — v :D tr(C
(Attro™) At ri(expry) : o 71 i Do € atn(C)
Al expr,:1c
Attry . , : D, € atr(C
(Atérs) At ro(expry) : Set(mp) "2 € air(©)
C D
T
x: Int y: Int

0.1

self - 7o b self x s 3 et

5«-(144"“(oY/

self o - self.r.x’yv)‘% Y e ok (@

self - o - self.’r.y‘\"/"J<

wt
self : p F self.xi\)(X K‘,,\a ®)

13/32

- 06 — 2011-11-23 — Socltyp —

—2011-11-23 — Socltyp —

- 06

Iterate { opia v T

X ST
Nz,H4 74&“ ,Mbu re
If expr is an iterate expression, then How A lare

the iterator variable has to be type copSistent with the base set, and
initial and update expressions have tp be consistent with the result
variable:

[

A I-e)cp.f.,:Seé('n) A')l- expl: T2 Al Fexprz T,
A& expri—>iterate(wy : Ty ; wa : To = expry | expry) : To
® syt p}& p /& O
where A’ = A® (w1 : 11) & (w2 : T2). wit, waf,,,
Y ruge

(Iter)

of W2

ore™ -bg‘)iv‘a A (wewz bids owke Zpe)

i et o nbe (5T, Tl [€ ol %20
¢

14/32

¢ -
Y: i R xilt
S—

Rets evaluade expz A avks gope (4)
msteod of A' as expr; weeds b be

o ven - e Loz s (& pwvee
Q/\m,(uak F{‘J égf:’;‘/‘}

|terate Example

— 06 — 2011-11-23 — Socltyp —

A& expr, : ¢
Alllnst AF eapry it
(0 = allinstancesc : Set(7c) (Ater) At ov(expry): 7
(Iter) AF expr, : Set(r1) A"V expry:my A’k eapry:m
A& expr,->iterate(wy : T1 ; w2 : T2 = expry | expry) : T2

where A/ =A D (’LU1 B 7'1) (&) (’U)z 8 Tz).

Example: (& = ({Int},{C},{x: Int},{C — {z}))

context C'inv:z =0

First Recapitulation

- 06 — 2011-11-23 — Socltyp —

m I only defined for well-typed expressions.

What can hinder something, which looks like a well-typed OCL
expression, from being a well-typed OCL expression...?

& = {Int},{C,D},{z : Int,n: Do 1},{C — {n},{D +— {z})

Pl asn &1»‘4&): eqy -

context C : false

Subtle S\1t.4ux K

context C'inv:y =0

TB(’U ey -

context self : C'inv: self .n=self . n.x

15/32

16/32

— 06 — 2011-11-23 — main

Casting in the Type System

17/32

One Possble Extension: I mplicit Casts

— 06 — 2011-11-23 — Scast —

We may wish to have

1 and false : Bool (%)

In other words: We may wish that the type system allows to use
0,1 : Int instead of true and false without breaking well-typedness.

Then just have a rule:
At expr: Int
At expr : Bool

(Cast)

With (Cast) (and (Int), and (Bool), and (Funy)),
we can derive the sentence (), thus conclude well-typedness.

But: that's only half of the story — the definition of the interpretation
function I that we have is not prepared, it doesn't tell us what () means...

18/32

Impli cit Casts Cont’d

— 06 — 2011-11-23 — Scast

So, why isn’t there an interpretation for (1 and false)?
First of all, we have (syntax)

expr, and expry : Bool x Bool — Bool

Thus,
I(and) : I(Bool) x I(Bool) — I(Bool)
where I(Bool) = {true, false} U {Lpoo}-

By definition,
I[1 and false](o, 8) = I(and)(I[1](c,3), I[false](o,B)),

and there we’re stuck.

19/32

Implicit Casts: Quickfix

— 06 — 2011-11-23 — Scast —

Explicitly define

bi Aba i by # LBoo # b2
1 Boot , otherwise

I[and(ezpry, exprsy)](o, B) == {

where
by := toBool(I[expr,] (o, 3)),
by := toBool(I[exprs] (o, 3)),
and where
toBool : I(Int) U I(Bool) — I(Bool)

true , if x € e U I(lit) \90/ L 1e}
x— < false ,if xe]flse,0f

1 Boor . Otherwise

20/32

Bottomline

— 06 — 2011-11-23 — Scast —

There are wishes for the type-system which require changes in both,
the definition of I and the type system.
In most cases not difficult, but tedious.

Note: the extension is still a basic type system.

Note: OCL has a far more elaborate type system which in particular
addresses the relation between Bool and Int (cf. [OMG, 2006]).

21/32

Misihility in the Type System

— 06 — 2011-11-23 — main —

22/32

MVisibility — The Intuition

& = {Int},{C,D},{n: Do,

— 06 — 2011-11-23 — Svisityp —

Let's study an Example:

m DO,la (LIZ : Int?é-, expry, 0>}7
{C— {n},D — {x,m}}

D
n

C & x: Int = expr,
0,1 [
0,1
and Wa "

c:C d:D m da: D

r=1

Assume w1 : T¢ and wsz : Tp are logical variables. Which of the following syntacti-
cally correct (?) OCL expressions shall we consider to be well-typed?

~ 06 — 2011-11-23 — Svisityp

£ of x: public private protected package
wy.n.x=0 | O] O later not
O 0] /fqtn,c(edzss ic
? ? / % 7 1 ;’AQ‘
=" b=
wy.m.x=0| 0| o j later &% *J ot
O O]
? ?
Context
Example: A problem?
, D
0,1
0,1
D
self :mp Hself .y.v>0

self : 1o |7‘.v >0
c

That is, whether an expression involving attributes with visibility is
well-typed depends on the class of objects for which it is evaluated.

Therefore: well-typedness in type environment A and context D € ¥

In a sense, already preparing to treat “protected” later (when doing inheritance).

A, D& expr:

T

23/32

2432

Attribute Accessin Context

o If expr is of type 7 in a type environment, then it is in any context:

Al expr:T

(ContextIntro)

A DtF expr:T

o Accessing an attribute v of an object of class C' is well-typed

o if v is public, or

o if the expression ezpr; denotes an object of class C"

(Att?"l)

o Acessing Cy. 1- or C-typed attributes: similar.

— 06 — 2011-11-23 — Svisityp —

Attribute Accessin Context Example

A DF :
: o i—ﬁ77 ga ETPTy, P‘f> %'

A, D+ v(erpry) : 7 E=+,oré=—and C=D

25/32

Al expr:T

(CO’I’LtGLIJtInt’!‘O) W
(Attrq) A, DI eapr, : 7 . (v:T, & expry, Pg) € atr(C),

A, D\ v(expry): T =4 oré=—and C=D

D

r

|
0,1

—0,1
<uck:

Example:

Al - er([)-"D
A C Fv(r(satt)): bt

ko
4 ¥

—
A

— 06 — 2011-11-23 — Svisityp —

self :17¢, CFself.r.v>0

The Semantics of Visihility

Observation:
Whether an expression does or does not respect visibility is a matter
of well-typedness only.

We only evaluate (= apply I to) well-typed expressions.

— We need not adjust the interpretation function I to support visibility.

— 06 — 2011-11-23 — Svisityp —

2732

What is Visibility Good For? A

Visibility is a property of attributes —
n
is it useful to consider it in OCL? He

In other words: given the picture above,
is it useful to state the following invariant (even though z is private in D)

context C inv:nig > 07
4e+%()

— 06 — 2011-11-23 — Svisityp —

28/32

What is Visihility Good For? A

— 06 — 2011-11-23 — Svisityp —

— 06 — 2011-11-23 — main

0,1

Visibility is a property of attributes — 5
n .

is it useful to consider it in OCL? E —

=3

In other words: given the picture above,
is it useful to state the following invariant (even though z is private in D)

context Cinv:n.xz >07

It depends. (cf. [OMG, 2006], Sect. 12 and 9.2.2)

Constraints and pre/post conditions:
Visibility is sometimes not taken into account. To state “global” requirements,
it may be adequate to have a “global view", be able to look into all objects.

But: visibility supports “narrow interfaces”, “information hiding”, and
similar good design practices. To be more robust against changes, try to
state requirements only in the terms which are visible to a class.

Rule-of-thumb: if attributes are important to state requirements on design
models, leave them public or provide get-methods (later).

Guards and operation bodies:
If in doubt, yes (= do take visibility into account).

Any so-called action language typically takes visibility into account. 28/3

Recpitulation

29/32

Recpitulation

— 06 — 2011-11-23 — Srecap —

— 06 — 2011-11-23 — main —

Class Diagrams €2
% induces M"[':S

extended (!) signature ¥ (€' 2)
% gives rise to ‘b‘é‘g

Basic Type System

We extended the type system for
(e casts (requires change of I) and)

visibility (no change of I).

Later: navigability of associations.

Good: well-typedness is decidable for these type-systems. That is, we can have
automatic tools that check, whether OCL expressions in a model are well-typed.

References

30/32

31/32

References

[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0. Technical
Report formal/06-05-01.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

— 06 — 2011-11-23 — main

32/32

