
Software Design, Modelling and Analysis in UML

Lecture 09: Class Diagrams IV

2011-12-07

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
0
9

–
2
0
1
1
-1

2
-0

7
–

m
a
in

–

Contents & Goals

Last Lectures:

• Started to discuss “associations”, the general case.

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• Cont’d: Please explain this class diagram with associations.

• When is a class diagram a good class diagram?

• What are purposes of modelling guidelines? (Example?)

• Discuss the style of this class diagram.

• Content:

• Treat “the rest”.

• Where do we put OCL constraints?

• Modelling guidelines, in particular for class diagrams (following [Ambler, 2005])

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
p
re

li
m

–

2/42

Associations: The Rest

–
0
9

–
2
0
1
1
-1

2
-0

7
–

m
a
in

–

3/42

The Rest

Recapitulation: Consider the following association:

〈r : 〈role1 : C1, µ1, P1, ξ1, ν1, o1〉, . . . , 〈rolen : Cn, µn, Pn, ξn, νn, on〉〉

• Association name r and role names/types
rolei/Ci induce extended system states λ.

• Multiplicity µ is considered in OCL syntax.

• Visibility ξ/Navigability ν: well-typedness.

Now the rest:

• Multiplicity µ: we propose to view them as constraints.

• Properties Pi: even more typing.

• Ownership o: getting closer to pointers/references.

• Diamonds: exercise.

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
a
ss

o
cr

es
t

–

4/42

Visibility

Not so surprising: Visibility of role-names is treated completely similar to visi-
bility of attributes, namely by typing rules.

Question: given

C

D

x : Int
1

ξ role

is the following OCL expression well-typed or not (wrt. visibility):

context C inv : self .role.x > 0

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
a
ss

o
cr

es
t

–

5/42

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Visibility

Not so surprising: Visibility of role-names is treated completely similar to visi-
bility of attributes, namely by typing rules.

Question: given

C

D

x : Int
1

ξ role

is the following OCL expression well-typed or not (wrt. visibility):

context C inv : self .role.x > 0

Basically same rule as before: (analogously for other multiplicities)

(Assoc1)
A, D ⊢ expr1 : τC

A, D ⊢ role(expr1) : τD

, µ = 0..1 or µ = 1,
ξ = +, or ξ = − and C = D

〈r : . . . 〈role : D, µ, , ξ, , 〉, . . . 〈role ′ : C, , , , , 〉, . . . 〉 ∈ V

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
a
ss

o
cr

es
t

–

5/42

westphal
Bleistift

Navigability

Navigability is similar to visibility: expressions over non-navigable association
ends (ν = ×) are basically type-correct, but forbidden.

Question: given

C

x : Int D
role
×

is the following OCL expression well-typed or not (wrt. navigability):

context D inv : self .role.x > 0

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
a
ss

o
cr

es
t

–

6/42

westphal
Bleistift

westphal
Bleistift

Navigability

Navigability is similar to visibility: expressions over non-navigable association
ends (ν = ×) are basically type-correct, but forbidden.

Question: given

C

x : Int D
role
×

is the following OCL expression well-typed or not (wrt. navigability):

context D inv : self .role.x > 0

The standard says:
• ’−’: navigation is possible

• ’>’: navigation is efficient

• ’×’: navigation is not possible

So: In general, UML associations are different from pointers/references!

But: Pointers/references can faithfully be modelled by UML associations.

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
a
ss

o
cr

es
t

–

6/42

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

The Rest of the Rest

Recapitulation: Consider the following association:

〈r : 〈role1 : C1, µ1, P1, ξ1, ν1, o1〉, . . . , 〈rolen : Cn, µn, Pn, ξn, νn, on〉〉

• Association name r and role names/types
rolei/Ci induce extended system states λ.

• Multiplicity µ is considered in OCL syntax.

• Visibility ξ/Navigability ν: well-typedness.

Now the rest:

• Multiplicity µ: we propose to view them as constraints.

• Properties Pi: even more typing.

• Ownership o: getting closer to pointers/references.

• Diamonds: exercise.

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
a
ss

o
cr

es
t

–

7/42

westphal
Bleistift

Multiplicities as Constraints

Recall: The multiplicity of an association end is a term of the form:

µ ::= ∗ | N | N..M | N..∗ | µ, µ (N, M ∈ N)

Proposal: View multiplicities (except 0..1, 1) as additional invariants/constraints.

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
a
ss

o
cr

es
t

–

8/42

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Multiplicities as Constraints

Recall: The multiplicity of an association end is a term of the form:

µ ::= ∗ | N | N..M | N..∗ | µ, µ (N, M ∈ N)

Proposal: View multiplicities (except 0..1, 1) as additional invariants/constraints.

Recall: we can normalize each multiplicity µ to the form

N1..N2, . . . , N2k−1..N2k

where Ni ≤ Ni+1 for 1 ≤ i ≤ 2k, N1, . . . , N2k−1 ∈ N, N2k ∈ N ∪ {∗}.

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
a
ss

o
cr

es
t

–

8/42

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Multiplicities as Constraints

µ = N1..N2, . . . , N2k−1..N2k

where Ni ≤ Ni+1 for 1 ≤ i ≤ 2k, N1, . . . , N2k−1 ∈ N, N2k ∈ N ∪ {∗}.

Define µC
OCL(role) := context C inv :

(N1 ≤ role -> size() ≤ N2) or . . . or (N2k−1 ≤ role -> size()≤ N2k
︸ ︷︷ ︸

omit if N2k = ∗

)

for each µ 6= 0..1, µ 6= 1,

〈r : . . . , 〈role : D, µ, , , , 〉, . . . , 〈role′ : C, , , , , 〉, . . . 〉 ∈ V or

〈r : . . . , 〈role ′ : C, , , , , 〉, . . . , 〈role : D, µ, , , , 〉, . . . 〉 ∈ V, role 6= role
′

.

And define

µ
C
OCL(role) := context C inv : not(oclIsUndefined(role))

for each µ = 1.

Note: in n-ary associations with n > 2, there is redundancy.

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
a
ss

o
cr

es
t

–

9/42

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Multiplicities as Constraints of Class Diagram

Recall/Later: CD = {CD1, . . . , CDn}

signature S (CD) invariants Inv(CD)

basic

(classes and

attributes)

extended

(visibility)

J · K

distinguish

From now on: Inv(CD) = {constraints occurring in notes} ∪
{
µC

OCL(role) |

〈r : . . . , 〈role : D, µ, , , , 〉, . . . , 〈role′ : C, , , , , 〉, . . . 〉 ∈ V or

〈r : . . . , 〈role′ : C, , , , , 〉, . . . , 〈role : D, µ, , , , 〉, . . . 〉 ∈ V,

role 6= role ′, µ /∈ {0..1}
}
.

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
a
ss

o
cr

es
t

–

10/42

westphal
Bleistift

westphal
Bleistift

Multiplicities as Constraints Example

µC
OCL(role) = context C inv :

(N1 ≤ role -> size() ≤ N2) or . . . or (N2k−1 ≤ role -> size() ≤ N2k)

CD :
C

v : Int

role1

0..1

role2

4, 17

role3 3..∗

Inv(CD) =

• {context C inv : 4 ≤ role2 -> size() ≤ 4 or 17 ≤ role2 -> size() ≤ 17}
= {context C inv : role2 -> size() = 4 or role2 -> size() = 17}

• ∪ {context C inv : 3 ≤ role3 -> size()}

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
a
ss

o
cr

es
t

–

11/42

Why Multiplicities as Constraints?

More precise, can’t we just use types? (cf. Slide 26)

• µ = 0..1, µ = 1:
many programming language have direct correspondences (the first corresponds
to type pointer, the second to type reference) — therefore treated specially.

• µ = ∗:
could be represented by a set data-structure type without fixed bounds — no
problem with our approach, we have µOCL = true anyway.

• µ = 0..3 :
use array of size 4 — if model behaviour (or the implementation) adds 5th
identity, we’ll get a runtime error, and thereby see that the constraint is
violated. Principally acceptable, but: checks for array bounds everywhere...?

• µ = 5..7 :
could be represented by an array of size 7 — but: few programming
languages/data structure libraries allow lower bounds for arrays (other than 0).
If we have 5 identities and the model behaviour removes one, this should be a
violation of the constraints imposed by the model.

The implementation which does this removal is wrong. How do we see this...?

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
a
ss

o
cr

es
t

–

12/42

westphal
Bleistift

Multiplicities Never as Types...?

Well, if the target platform is known and fixed,
and the target platform has, for instance,

• reference types,

• range-checked arrays with positions 0, . . . , N ,

• set types,

then we could simply restrict the syntax of multiplicities to

µ ::= 1 | 0..N | ∗

and don’t think about constraints
(but use the obvious 1-to-1 mapping to types)...

In general, unfortunately, we don’t know.

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
a
ss

o
cr

es
t

–

13/42

Properties

We don’t want to cover association properties in detail,
only some observations (assume binary associations):

Property Intuition Semantical Effect

unique one object has at most one r-link to a
single other object

current setting

bag one object may have multiple r-links to
a single other object

have λ(r) yield
multi-sets

ordered,
sequence

an r-link is a sequence of object identi-
ties (possibly including duplicates)

have λ(r) yield se-
quences

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
a
ss

o
cr

es
t

–

14/42

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Properties

We don’t want to cover association properties in detail,
only some observations (assume binary associations):

Property Intuition Semantical Effect

unique one object has at most one r-link to a
single other object

current setting

bag one object may have multiple r-links to
a single other object

have λ(r) yield
multi-sets

ordered,
sequence

an r-link is a sequence of object identi-
ties (possibly including duplicates)

have λ(r) yield se-
quences

Property OCL Typing of expression role(expr)

unique τD → Set(τC)

bag τD → Bag(τC)

ordered, sequence τD → Seq(τC)

For subsets, redefines, union, etc. see [OMG, 2007a, 127].

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
a
ss

o
cr

es
t

–

14/42

Ownership

C D•
role

r
×

Intuitively it says:

Association r is not a “thing on its own” (i.e. provided by λ),
but association end ‘role’ is owned by C (!).
(That is, it’s stored inside C object and provided by σ).

So: if multiplicity of role is 0..1 or 1, then the picture above is very close to
concepts of pointers/references.

Actually, ownership is seldom seen in UML diagrams. Again: if target platform
is clear, one may well live without (cf. [OMG, 2007b, 42] for more details).

Not clear to me:

C1 C2

...

Cn

role
•⋄

r

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
a
ss

o
cr

es
t

–

15/42

westphal
Bleistift

Back to the Main Track

–
0
9

–
2
0
1
1
-1

2
-0

7
–

m
a
in

–

16/42

Back to the main track:

Recall: on some earlier slides we said, the extension of the signature is only
to study associations in “full beauty”.
For the remainder of the course, we should look for something simpler...

Proposal:

• from now on, we only use associations of the form

(i) C D•
0..1

role
×

(ii) C D•
∗

role
×

(And we may omit the non-navigability and ownership symbols.)

• Form (i) introduces role : C0,1, and form (ii) introduces role : C∗ in V .

• In both cases, role ∈ atr(C).

• We drop λ and go back to our nice σ with σ(u)(role) ⊆ D(D).

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
b
a
ck

–

17/42

westphal
Bleistift

OCL Constraints in (Class) Diagrams

–
0
9

–
2
0
1
1
-1

2
-0

7
–

m
a
in

–

18/42

Where Shall We Put OCL Constraints?

Numerous options:

(i) Additional documents.

(ii) Notes.

(iii) Particular dedicated places.

(i) Notes:

A UML note is a picture of the form

text

text can principally be everything, in particular comments and constraints.

Sometimes, content is explicitly classified for clarity:

OCL:

expr

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
o
cl

d
ia

–

19/42

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

OCL in Notes: Conventions

C

. . .

. . .

expr

stands for

C

. . .

. . .

context C inv : expr

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
o
cl

d
ia

–

20/42

Where Shall We Put OCL Constraints?

(ii) Particular dedicated places in class diagrams: (behav. feature: later)

C

ξ v : τ {p1, . . . , pn} {expr}

ξ f(v1 : τ, . . . , vn : τn) : τ {p1, . . . , pn} {pre : expr1

post : expr2}

For simplicity, we view the above as an abbreviation for

C

ξ v : τ {p1, . . . , pn}

expr

context f pre : expr1 post : expr2

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
o
cl

d
ia

–

21/42

Invariants of a Class Diagram

• Let CD be a class diagram.

• As we (now) are able to recognise OCL constraints when we see them,
we can define

Inv(CD)

as the set {ϕ1, . . . , ϕn} of OCL constraints occurring in notes in CD —
after unfolding all abbreviations (cf. next slides).

• As usual: Inv(CD) :=
⋃

CD∈CD Inv(CD).

• Principally clear: Inv(·) for any kind of diagram.

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
o
cl

d
ia

–

22/42

Invariant in Class Diagram Example

C

v : τ {v > 3}

If CD consists of only CD with the single class C, then

• Inv(CD) = Inv(CD) =

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
o
cl

d
ia

–

23/42

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Semantics of a Class Diagram

Definition. Let CD be a set of class diagrams.

We say, the semantics of CD is the signature it induces and the set of
OCL constraints occurring in CD , denotedJCDK := 〈S (CD), Inv(CD)〉.

Given a structure D of S (and thus of CD), the class diagrams describe

the system states ΣDS . Of those, some satisfy Inv(CD) and some don’t.

We call a system state σ ∈ ΣDS consistent if and only if σ |= Inv(CD).

In pictures: CD = {CD1, . . . , CDn}

signature S (CD) invariants Inv(CD)

basic

(classes and attributes)

extended

(visibility)

(σ ∈) ΣDS
J · K

distinguish

induce

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
o
cl

d
ia

–

24/42

Pragmatics

Recall: a UML model is an image or pre-image of a software system.

A set of class diagrams CD with invariants Inv(CD) describes the structure
of system states.

Together with the invariants it can be used to state:

• Pre-image: Dear programmer, please provide an implementation which
uses only system states that satisfy Inv(CD).

• Post-image: Dear user/maintainer, in the existing system, only system
states which satisfy Inv(CD) are used.

(The exact meaning of “use” will become clear when we study behaviour — intuitively: the system states that
are reachable from the initial system state(s) by calling methods or firing transitions in state-machines.)

Example: highly abstract model of traffic lights controller.

TLCtrl

red : Bool

green : Bool

not(red and green)

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
o
cl

d
ia

–

25/42

Constraints vs. Types

Find the 10 differences:

C

x : Int {x = 3 ∨ x > 17}

C

x : T

D(T) = {3}
∪{n ∈ N | n > 17}

• x = 4 is well-typed in the left context,
a system state satisfying x = 4 violates the constraints of the diagram.

• x = 4 is not even well-typed in the right context,
there cannot be a system state with σ(u)(x) = 4 because σ(u)(x) is
supposed to be in D(T) (by definition of system state).

Rule-of-thumb:

• If something “feels like” a type (one criterion: has a natural
correspondence in the application domain), then make it a type.

• If something is a requirement or restriction of an otherwise useful type,
then make it a constraint.

–
0
9

–
2
0
1
1
-1

2
-0

7
–

S
o
cl

d
ia

–

26/42

References

–
0
9

–
2
0
1
1
-1

2
-0

7
–

m
a
in

–

41/42

References

[Ambler, 2005] Ambler, S. W. (2005). The Elements of UML 2.0 Style. Cambridge
University Press.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

–
0
9

–
2
0
1
1
-1

2
-0

7
–

m
a
in

–

42/42

	Contents & Goals
	Associations: The Rest
	The Rest
	Visibility
	Visibility

	Navigability
	Navigability

	The Rest of the Rest
	Multiplicities as Constraints
	Multiplicities as Constraints

	Multiplicities as Constraints
	Multiplicities as Constraints

	Multiplicities as Constraints of Class Diagram
	Multiplicities as Constraints Example
	Why Multiplicities as Constraints?
	Why Multiplicities as Constraints?
	Why Multiplicities as Constraints?
	Why Multiplicities as Constraints?
	Why Multiplicities as Constraints?

	Multiplicities Never as Types...?
	Properties
	Properties

	Ownership
	Ownership
	Ownership

	Back to the Main Track
	Back to the main track:
	OCL Constraints in (Class)
Diagrams
	Where Shall We Put OCL Constraints?
	Where Shall We Put OCL Constraints?

	OCL in Notes: Conventions
	Where Shall We Put OCL Constraints?
	Where Shall We Put OCL Constraints?

	Invariants of a Class Diagram
	Invariants of a Class Diagram

	Invariant in Class Diagram Example
	Semantics of a Class Diagram
	Pragmatics
	Pragmatics

	Constraints versus {} Types
	Constraints versus {} Types

	Design Guidelines for (Class)
Diagramput [rt](2.25,-1.75){�egin {minipage}{5.5cm} gray
ormalsize
Be careful whose advice you buy, but, be patient with those who supply
it. \[medskipamount] small mbox {}hfill Baz Luhrmann/Mary Schmich
end {minipage} }\[medskipamount]{
ormalsize (partly following cite {Ambler2005})}
	Main and General Modelling Guideline {small (admittedly: trivial and obvious)}
	Main and General Modelling Guideline {small (admittedly: trivial and obvious)}
	Main and General Modelling Guideline {small (admittedly: trivial and obvious)}

	Main and General Quality Criterion {small (again: trivial and obvious)}
	Main and General Quality Criterion {small (again: trivial and obvious)}
	Main and General Quality Criterion {small (again: trivial and obvious)}
	Main and General Quality Criterion {small (again: trivial and obvious)}
	Main and General Quality Criterion {small (again: trivial and obvious)}
	Main and General Quality Criterion {small (again: trivial and obvious)}
	Main and General Quality Criterion {small (again: trivial and obvious)}

	General Diagramming Guidelines~cite {Ambler2005}
	General Diagramming Guidelines~cite {Ambler2005}
	General Diagramming Guidelines~cite {Ambler2005}
	General Diagramming Guidelines~cite {Ambler2005}
	General Diagramming Guidelines~cite {Ambler2005}

	General Diagramming Guidelines~cite {Ambler2005}
	General Diagramming Guidelines~cite {Ambler2005}
	General Diagramming Guidelines~cite {Ambler2005}

	Class Diagram Guidelines~cite {Ambler2005}
	Class Diagram Guidelines~cite {Ambler2005}

	Class Diagram Guidelines~cite {Ambler2005}
	Class Diagram Guidelines~cite {Ambler2005}
	Class Diagram Guidelines~cite {Ambler2005}
	Class Diagram Guidelines~cite {Ambler2005}

	put [rt](6.25,-1.75){�egin
{minipage}{5.5cm} gray
ormalsize [...] But trust me on the sunscreen.
\[medskipamount] small mbox {}hfill Baz Luhrmann/Mary Schmich
end {minipage} }
	Example: Modelling Games
	Task: Game Development
	Task: Game Development

	Modelling Structure: 2D-Tron
	Modelling Structure: 2D-Tron
	References
	
	blank.pdf
	ifdefined SblankTitle SblankTitle �i
	ifdefined SblankTitle SblankTitle �i
	ifdefined SblankTitle SblankTitle �i

