Software Design, Modelling and Analysis in UML

Lecture 13: Hierarchical State Machines I

2012-01-11

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Run-to-Completion Step: Discussion.

What people may dislike on our definition of RTC-step is that it takes a global and non-compositional view. That is:

- In the projection onto a single object we still see the effect of interaction with other objects.
- Adding classes (or even objects) may change the divergence behaviour of existing ones.
- Compositional would be: the behaviour of a set of objects is determined by the behaviour of each object "in isolation".

Our semantics and notion of RTC-step doesn't have this (often desired) property.

Can we give (syntactical) criteria such that any global run-to-completion step is an interleaving of local ones?

Maybe: Strict interfaces.

(Proof left as exercise...)

(A): Refer to private features only via "self".

(Recall that other objects of the same class can modify private attributes.)

• (B): Let objects only communicate by events, i.e.

don't let them modify each other's local state via links at all.

Contents & Goals

Last Lecture:

- RTC-Rules: Discard, Dispatch, Commence.
- Step, RTC, Divergence

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- What does this State Machine mean? What happens if I inject this event?
- Can you please model the following behaviour.
- What is: initial state.
- What does this hierarchical State Machine mean? What may happen if I inject this event?
- What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, .

2/62

Content

- Putting It All Together
- · Hierarchical State Machines Syntax

Putting It All Together

Step and Run-to-completion Step

The Missing Piece: Initial States

Recall: a labelled transition system is (S, \rightarrow, S_0) . We have

- S: system configurations (σ, ε)
- \rightarrow : labelled transition relation $(\sigma, \varepsilon) \xrightarrow{(cons, Snd)} (\sigma', \varepsilon')$.

Wanted: initial states S_0 .

Proposal:

Require a (finite) set of **object diagrams** \mathcal{OD} as part of a UML model

 $(\mathscr{C}\,\mathscr{D},\mathscr{SM}\,,\mathscr{O}\,\mathscr{D}).$

And set $S_0=\{(\sigma,\varepsilon)\mid \sigma\in G^{-1}(\mathcal{OD}), \mathcal{OD}\in\mathscr{OD}, \varepsilon\text{ empty}\}.$

Other Approach: (used by Rhapsody tool) multiplicity of classes. We can read that as an abbreviation for an object diagram.

5/02

Semantics of UML Model — So Far

The semantics of the UML model

 $\mathcal{M} = (\mathscr{CD}, \mathscr{SM}, \mathscr{OD})$

where

 \bullet some classes in $\mathscr{C}\mathscr{D}$ are stereotyped as 'signal' (standard), some signals and attributes are stereotyped as 'external' (non-standard),

7/62

- there is a 1-to-1 relation between classes and state machines.
- O𝒯 is a set of object diagrams over 𝒞𝒯,

is the transition system (S, \rightarrow, S_0) constructed on the previous slide.

The computations of \mathcal{M} are the computations of (S, \rightarrow, S_0) .

OCL Constraints and Behaviour

- Let $\mathcal{M} = (\mathscr{C}\mathscr{D}, \mathscr{SM}, \mathscr{O}\mathscr{D})$ be a UML model.
- We call $\mathcal M$ consistent iff, for each OCL constraint $expr \in Inv(\mathscr{CD})$, $\sigma \models expr$ for each "reasonable point" (σ, ε) of computations of \mathcal{M} .

(Cf. exercises and tutorial for discussion of "reasonable point".)

Note: we could define $Inv(\mathscr{SM})$ similar to $Inv(\mathscr{SP})$.

Pragmatics:

• In UML-as-blueprint mode, if \mathscr{SM} doesn't exist yet, then $\mathcal{M} = (\mathscr{C}\mathscr{D}, \emptyset, \mathscr{O}\mathscr{D})$ is typically asking the developer to provide \mathscr{SM} such that $\mathcal{M}' = (\mathscr{C}\mathscr{D}, \mathscr{M}, \mathscr{O}\mathscr{D})$ is consistent.

context c inv: (st = s.) implies x>0

If the developer makes a mistake, then \mathcal{M}' is inconsistent.

ullet Not common: if ${\mathscr S}{\mathscr M}$ is given, then constraints are also considered when choosing transitions in the RTC-algorithm. In other words: even in presence of mistakes, the SM never move to inconsistent configurations.

11/62

Hierarchical State Machines

The Full Story

UML distinguishes the following kinds of states:

		example		example
	simple state		pseudo-state initial (shallow) history deep history	(H) (H)
– 13 – 2012-01-11 – Shiersyn –	final state composite state	•	fork/join junction, choice	**
	OR	* To To	entry point	0
	AND		terminate submachine state	× S:s

Representing All Kinds of States

Until now:

 $(S,s_0,\rightarrow),\quad s_0\in S, \rightarrow \ \subseteq S\times (\mathscr{E}\cup\{\,_\})\times \mathit{Expr}_{\mathscr{S}}\times \mathit{Act}_{\mathscr{S}}\times S$

12/62

SM(1 *
$$\sum_{s \in S} E' \rightarrow (S_2)$$

graphic of $\{s, \epsilon, r, \omega, s'\}$

which $SM_d(S_1, s_0, -)$
 $= \{3, 3, 2\}, 5, \{5, \ldots, \epsilon_2\}\}$
 $\sum_{j=1}^{n} x \not\in M_j \cup \{\#\}$
 $[M] = \{S, \Rightarrow_j S_0\}$
 $[(c, \epsilon], \omega, (o', \epsilon')]$

14/62

Representing All Kinds of States

• Until now:

 $(S,s_0,\rightarrow),\quad s_0\in S,\rightarrow \ \subseteq S\times (\mathscr{E}\cup\{\underline{\ }\})\times \mathit{Expr}_{\mathscr{S}}\times \mathit{Act}_{\mathscr{S}}\times S$

• From now on: (hierarchical) state machines

 $(S, kind, region, \rightarrow, \psi, annot)$

(state modius)

(as before).

15/62

S ⊇ {top} is a finite set of states

• $kind: S \rightarrow \{st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term\}$ is a function which labels states with their kind,

* region: $S=2^2$ is a function which characterises the regions of a state, k and k such as k s (changed)

annot: (→) → (ℰ∪{_-}) × Expr_¬ × Act_¬ provides an annotation for

(s_0 is then redundant — replaced by proper state (!) of kind 'init'.)

Well-Formedness: Regions (follows from diagram)

		-		
				De√:
Have Du. +	$\in S$	kind	$region \subseteq 2^S, S_i \subseteq S$	$child_{\mathcal{I}} \subseteq S$
simple state	s	st	Ø	(d) 0
final state	s	fin	Ø	Ø
composite state	s	st	$\{S_1,\ldots,S_n\}, n \geq 1$	$S_1 \cup \cdots \cup S_n$
pseudo-state	s	init,	Ø	Ø
implicit top state	top	st	$\{S_1\}$	S_1
WFR/Observations: cliss () cliss ()				

WFR/Observations:

Each state (except for top) lies in exactly one region,

• States $s \in S$ with kind(s) = st may comprise regions.

 No region: simple state. • One region: OR-state.

Two or more regions: AND-state.

• Final and pseudo states don't comprise regions.

• The region function induces a child function

From UML to Hierarchical State Machines: By Example

Each State (exc. top) lies in exactly one region be cause we may not draw

Well-Formedness: Initial State (requirement on diagram)

- · Each non-empty region has a reasonable initial state and at least one transition from there, i.e.
- for each $s \in S$ with $region(s) = \{S_1, \dots, S_n\}, n \ge 1$, for each $1 \le i \le n$,
- there exists exactly one initial pseudo-state $(s_1^i, init) \in S_i$ and at least one transition $t \in -$ with s_1^i as source.
 and such transition's target s_2^i is in S_i , and
- (for simplicity!) $kind(s_2^i) = st$, and
- $annot(t) = (_true, act).$

• Recall:

- . No ingoing transitions to initial states. No outgoing transitions from final states.

Plan

- · Initial pseudostate, final state.
- Composite states.
- . Entry/do/exit actions, internal transitions.
- . History and other pseudostates, the rest.

16.60

17.00

20/62

Initial Pseudostates and Final States

19/62

Initial Pseudostate

Principle:

- · when entering a region without a specific destination state,
- . then go to a state which is destination of an initiation transition,
- execute the action of the chosen initiation transitions between exit and entry actions.

Special case: the region of top.

- $\bullet\,$ If class C has a state-machine, then "create- $\!C$ transformer" is the concatenation of
- ullet the transformer of the "constructor" of C (here not introduced explicitly) and
- a transformer corresponding to (one) initiation transition of the top region.

Towards Final States: Completion of States

- Transitions without trigger can conceptionally be viewed as being sensitive for the "completion event"
- \bullet Dispatching (here: E) can then alternatively be viewed as
- (i) fetch event (here: E) from the ether,
- (ii) take an enabled transition (here: to s_2),
- (iii) remove event from the ether,
- (iv) after having finished entry and do action of current state (here: s_2) the state is then called completed --,
- (v) raise a completion event with strict priority over events from ether!
- (vi) if there is a transition enabled which is sensitive for the completion event,
 - then take it (here: (s₂, s₃)).
 - otherwise become stable.

Final States

- ullet a step of object u moves u into a final state (s, fin) , and
- · all sibling regions are in a final state,

then (conceptionally) a completion event for the current composite state s is

- \bullet If there is a transition of a ${\bf parent\ state}$ (i.e., inverse of child) of s enabled which is sensitive for the completion event,
- · then take that transition,
- ullet otherwise kill u
- \leadsto adjust (2.) and (3.) in the semantics accordingly

18 10

Final States

- If
- $\bullet\,$ a step of object u moves u into a final state $(s,\mathit{fin}),$ and
- all sibling regions are in a final state,

then (conceptionally) a completion event for the current composite state \boldsymbol{s} is raised

- • If there is a transition of a **parent state** (i.e., inverse of child) of s enabled which is sensitive for the completion event,
- then take that transition,
- ullet otherwise kill u
- \leadsto adjust (2.) and (3.) in the semantics accordingly
- One consequence: u never survives reaching a state (s,fin) with $s \in \mathit{child}(\mathit{top})$.

21/62

- Now: in Core State Machines, there is no parent state.
- Later: in Hierarchical ones, there may be one.

References

61/62

62/62