Software Design, Modelling and Analysis in UML
Lecture 14: Hierarchical State Machines II

2012-01-17

```
Prof. Dr. Andreas Podelski; Dr. Bernd Westphal
```

Albert-Ludwigs-Universität Freiburg, Germany

Composite States

- In a sense, composite states are about
abbreviation, structuring, and avoiding redundancy

Idea: in Tron, for the Player's Statemachine

Last Lecture
Putting It All Together: ODs define initiol sktates

- Hierarchical State Machines: kind, region
- Initial pseudostata, final state

This Lecture:
This Lecture: What does this hierarchical State Machine mean? What may happen if
inject this eventr What is: AND-State, OR-State, psedocstate, entry/exit/do, final state

- Content:
- Composite states
- Composite states
- Legal state conifuration
- Lea, deph,

La, depth,...

- History and others
$\underbrace{\left\{\left\{(t p, s t),(s, s t),\left(s_{1}, s t\right),\left(s_{1}^{\prime}, s t\right),\left(s_{2}, s t\right),\left(s_{2}^{\prime}, s t\right),\left(s_{3}, s t\right),\left(s_{3}^{\prime}, s t\right)\right.\right.}$
$\underbrace{\left.\{t o p \mapsto\{\{\hat{s}\}\}\}, s \mapsto\left\{\left\{s_{1}, s_{1}^{\prime}\right\},\left\{s_{2}, s_{2}^{\prime}\right\},\left\{s_{3}, s_{3}^{\prime}\right\}\right\}, s_{1} \mapsto \emptyset, s_{1}^{\prime} \mapsto \emptyset, \ldots\right\}}$

 source

$$
(S, \text { kind, region, } \underbrace{\left\{t_{2}\right\}}_{\sim}\} \underbrace{\left\{t_{1} \mapsto\left(\left\{s_{2}, s_{3}\right\},\left\{s_{5}, s_{6}\right\}\right)\right\}}_{\psi}, \underbrace{\left.\left\{t_{\mapsto} \mapsto(t r, g d, a c t)\right\}\right)}_{\text {annot }}
$$

- Naming convention: $\psi(t)=($ source (t), target (t)).

The substate- (or child-) relation induces a partial order on states:

- top $\leq s$, for all $s \in S$,
$-s \leq s^{\prime}$, for all $s^{\prime} \in \operatorname{child}(s)$,
$-s^{\prime} \leq \underline{\text { and }} s^{\prime \prime} \leq \underline{s}$ implies $s^{\prime} \leq s^{\prime \prime}$ or $s^{\prime \prime} \leq s^{\prime}$

Composite States: Blessing or Curse?

Least Common Ancestor and Ting

they are unordered, i.e. $s_{1} \not s_{2}$ and $s_{2} \pm s_{1}$, and
they live in in different regions of an AND-state, i.e. \qquad $\int_{0}^{\text {recusine }}$ $\exists s_{s, r g i o n}(s)=\left\{S_{1}, \ldots, S_{n}\right\}, 1 \leq i \neq j \leq n: s_{1} \in$ child $\left(s_{i}\right) \wedge s_{2} \in$ child $\left.\neq S_{j}\right)$,

${ }_{12} 126$

References

Least Common Ancestor and Ting

Legal Transitions
A hiearchical state-machine ($($, kind, region,, , ,annot) is called wer formed if and only if for all transitions $t \in \rightarrow$,
i.e. \downarrow source (t) and \downarrow target (t),

(iis) p the top state is neither
source nor destination
source no destination, i.e.
otop $\&$ surrect ()\cup sourre ().

- Recall: final states are

[^0]
[^0]: References
 Crane and Dingel, 2007] Crane, M. L. . and Dingel. J. (2007). UML vs. Classial vs. rhapsody
 statecharts: not all models are created equal. Software and Systems Modelings.

 [Fecher and Schönborn, 2007] Fecher, H. and Schönborn, J. (2007). UML 2.0 state

 Harel and Gery, 1997] Harel. D. and Gery, E.
 statecharts. 1 IEEE Computer, 30 (7):31-42.
 Hare and Kusler 20041 Harel D , and Kulter H (2004) The

 [OMG. 2007] OMG (2007). Unified modeling language: Superstucture, version 2.1.2
 Technical Report tormal 07 -11-02.

