Contents \& Goals

Last Lecture:
Reflective vs. constructive description of behaviout
Live Sequence Charts: syntax, intution
This Lecture:
Educational Objectives: Capabilities for following tasks/questions. What does this LSC mean?
Are this UML model's state
Are this UML model's state machines consistent with the interaction
Please provide a UML model which is consistent with this LSC.
What is: activation, hot/cold condition. precechart, etc.?

- Content:

Content:

- Symbolic Büchi Automata (TBA) and its (accepted) language. - ISC formal semantics.

Podelsk, Dr. Berna Wer Albert-Ludwigs-Universitat Freiburg, Germany

Recall: Example

if Lightsctrl is not 'operational when reeciving that event.
the rest of this scennion oosesnt tapply meeiving theret event s nother LSC for that case.

- Tightsok' and 'barrierov' may occur in any order.
- Ater having consumed both, Crossing Ctrl may reply with 'done 'to the environment.

Recall: LSC Body - Abstract Syntax
Let $\theta=\{$ hot, cold $\}$. An LSC body is a tuple
($I,(\mathscr{L}, \underline{\succeq}), \sim, \mathscr{S}, \mathrm{Msg}$, Cond, Locinv)
where
I is a finite set of instance lines, Ceach asscriaced with a dess $\mathrm{C} \epsilon \mathrm{C}$
 . $\sim \subseteq \mathscr{L} \times \mathscr{\mathscr { L }}$ is an equivalence relation on locations, the simultaneity reation

 Not: instantaneous messages - could be linked to metethod/peration calls
 - Loclnv $\subseteq \mathscr{L} \times\{0,0\} \times$ Exppr $\times \Theta \times \mathscr{L} \times\{0$,$\} is sat of local invariants,$

Recall: Well-Formedness

Bondedness/. Hoating conditions: (colld be elaxed a

- For each location $l \in \mathscr{L}$, if l is the location of
- a condition, i.e.
$\exists(L$, expr,$\theta) \in$ Cond $: l \in L$,
- a local invariant, i.e.

$\exists\left(l_{1}, i_{1}\right.$, expr $\left., \theta, l_{2}, i_{2}\right) \in \operatorname{Loclnv}: l \in\left\{l_{1}, l_{2}\right\}$, or
then there is a location l ' equivalent to l which is the location of
- a message, i.e.
$\exists\left(l_{1}, b, l_{2}\right) \in \operatorname{Msg}: l \in\left\{l_{1}, l_{2}\right\}$
Notes if messages in a chart are cyclic, then there doesn't exist a partial order
(so such charts don't even have an abstract syntax) Note: if messages in a chart are cyclic, then there does
(so such charts don't even have an abstract syytax).

TBA-based Semantics of LSCs

Plan:

- Given an LSC L with body
$(I,(\mathscr{L}, \underline{Y}), \sim, \mathscr{S}, \mathrm{Mss}$, Cond, Loclnv
Construct a TBA $\mathcal{B}_{L}-$ taking the cuts of L as states
Define $\mathcal{L}(L)$ in terms of $\mathcal{L}\left(\mathcal{B}_{L}\right)$,
in particular taking activation condition and activation mode into account.

Formal LSC Semantics: It's in the Cuts

- Let $(I,(\mathscr{L}, \Upsilon), \sim, \mathscr{Y}, \mathrm{Mss}$, Cond, Loclnv) be an LSC body
- A non-empty set

$$
\theta \neq C \subseteq \mathscr{L}
$$

is called a cut of the LSC body if and only if

- it is downward closed, i.e. $\forall l, l^{\prime}: l^{\prime} \in C \wedge l \leqq l^{\prime} \Rightarrow l \in C$
- it is closed under simultaneity, i.e. $\forall l, l^{\prime}: l^{\prime} \in C \wedge l \sim l^{\prime} \Rightarrow l \in C$, and
it comprises at least one location per instance line, i.e. $\forall i \in I \exists l \in C: i_{i}=i$

$$
\emptyset \neq C \subseteq \mathscr{L}
$$

is called a cut of the LSC body if and only
$\cdot-$ it is downward closed, ie. $\forall l, l^{\prime}: l^{\prime} \in C \wedge l \leqq l^{\prime} \Longrightarrow l \in C$, - it is closed under simultaneity, ie. $\forall l, l^{\prime}: l^{\prime} \in C \wedge l \sim l^{\prime} \Rightarrow l \in C$, and

- it comprises at least one location per instance line, i.e. $\forall i \in I \exists l \in C: i_{i}=$

A cut C is called hot, denoted by $\theta(C)=$ hot, if and only if at least one of its maximal elements is hot, i.e. if
$\exists l \in C: \theta(l)=$ hot $\wedge \nexists l^{\prime} \in C: l \prec l$ Otherwise, C is called cold, denoted by $\theta(C)=$ cold.

Examples: Cut or Not Cut? Hot/Cold?

A Successor Relation on Cuts

- In other words: locations in F are direct \simeq-successors of locations in C, i.e. $\forall l^{\prime} \in F \exists l \in C: l \prec l^{\prime} \wedge \nexists l^{\prime \prime} \in C: l^{\prime} \prec l^{\prime \prime} \prec l$

Idea: Accepting Words by Advancing the Cut
Let $w=\left(\sigma_{i}, \text { consi, Snd } d_{i}\right)_{i \in \mathbb{N}_{0}}$ be a word over $\mathscr{\mathscr { C }}$ and $\mathscr{\mathscr { O }}$.
Intuitively (and for now disregarding cold conditions),
an LISC body $I(, \mathcal{L}, \leq), \sim, \mathcal{S}$, Msg, Cond, Loclnv is supposed to accept w

Excursus: Symbolic Büchi Automata (over Signature)

Successor Cut Examples

Symbolic Büchi Automata

```
Definition. A Symbolic Büchi Automaton (TBA) is atuple
                \mathcal{B}=(Exrpr, X,Q,q,q,im,->,Q 
Where Erp\mp@subsup{r}{B}{}\mathrm{ is a set of expressions over logical variabes from X}
    - Q is a finite set of states, qmm the initial state,
    -->\subseteqQ\timesEspr\mp@subsup{r}{E}{}\timesQ is the transition relation.
        Transitions q,e,eppr,q) fomq to o', ree labelled with a constraint
        expr E Exp\mp@subsup{r}{5}{}\mathrm{ over the valubles.}
        -}\mp@subsup{Q}{F}{}\subseteqQ\mathrm{ is the set of fair (or accepting) states.
```


Word

$$
\begin{aligned}
& X \text {. and let } \Sigma \text { be the set of interperation functions of } E x p r r_{B} \text {.i.e. }
\end{aligned}
$$

$\Sigma=\operatorname{Expr}_{B} \times(X \rightarrow \mathscr{D}(X)) \rightarrow\{0,1\}$.
$\begin{aligned} & \left.\text { For } \sigma \in \Sigma \text {, we write } \sigma \models_{\beta} \text { expr if and only if } \sigma \text { (expr, } \beta\right)=1 \text {. } \\ & \text { A word over } \text { Expp }_{B} \text { is an infinite sequence of interpetations of } \\ & \text { Expr }_{B}\end{aligned}$
$\left(\sigma_{i}\right)_{i \in \mathrm{~N}_{0}} \in \Sigma^{\omega}$.

W: $\sigma_{0} F_{\beta} a(x, y), \beta=\{x \vdash 1, y+27\}$
$\sigma_{1} F \beta C, \sigma_{1} F e(x)$ (wolling $c(x)$

Run of TBA over Word

```
Definition. Let \mathcal{B}=(Exp\mp@subsup{r}{B}{},X,Q,q,qui,->,QF) be a TBA and
word over Expr
An infinite sequence
called run of \mathcal{B}\mathrm{ over w under valuation }\beta:X->\mathscr{\mathscr{O}}(X)\mathrm{ if and}
Only if
    . for each i\in\mp@subsup{\mathbb{N}}{0}{}\mathrm{ there is a transition (qiv,},\mp@subsup{\psi}{i}{\prime},\mp@subsup{q}{i+1}{})\in->\mathrm{ such}
                                    \mp@subsup{\sigma}{i}{}\not\mp@subsup{\models}{\beta}{}\mp@subsup{\psi}{i}{-}
```


The Language of a TBA

$$
\begin{aligned}
& \left(q_{i}\right)_{i \in \mathbb{N}_{0}} \\
& \text { over } w \text { such that fair (or accepting) states are visited infinitely } \\
& \begin{array}{l}
\text { over } w \text { such th } \\
\text { often, that is, }
\end{array} \\
& \text { We call the set } \mathcal{L}_{\beta}(\mathcal{B}) \text { of words over } \mathscr{\mathscr { V }} \text { that are accepted by } \mathcal{B} \\
& \text { under } \beta \text { the language of } B
\end{aligned}
$$

Back to Main Track: Live Sequence Charts Semantics

$-\operatorname{Expr}_{B}=\operatorname{Expr}_{\xi}(V, \mathcal{E}(\mathcal{Y}))$
$0 Q$ is the set of cuts of $(\mathscr{\varphi})$

- Q is the se of cuts of (\mathscr{L}, Ξ), q miwi is the instance heads cut.
- $F=\{C \in Q \mid \theta(C)=$ cold $\}$ is the set of cold cuts.
$-\operatorname{lopss}(q, \psi, q)$.

Recall Idea: Accepting Words by Advancing the Cut
Let $w=\left(\sigma_{i}\right.$, cons s_{i}, Snd $\left.i_{i}\right) \in \mathrm{N}_{0}$, be a word over \mathscr{Q} and \mathscr{Q}
an LSC body $(I,(\mathscr{L}, \leq), \sim, \mathscr{\mathscr { S }}$, Msg, Cond, Loclinv) is supposed to accept w
under valuation β) if and only if there exists a sequence
$C_{0} \rightsquigarrow_{F_{1}} C_{1} \leadsto r_{2} C_{2} \cdots \sim_{F_{n}} C_{n}$
and indices $i_{1}<\cdots<i_{n}$ such that
C_{0} consists of the in
for all $1 \leq j<n$,
${ }^{\text {for }}$ of al al $i_{j} \leq k<i_{j+1},\left(\sigma_{k}\right.$, cons, Sn
. $\left(a_{i, c}\right.$, cons s_{i}, S Snd $\left.i_{j}\right)$) satisifies (under $\left.\beta\right)$

- C_{n} is cold,
- for all $i_{n}<k,\left(\beta_{k}, \mu_{j}, t_{j}\right)$
satisfies (under β) the hold condition of C_{n}

Language of LSC Body
The language of the body
$(I,(\mathscr{L}, \underline{\mathcal{Z}}), \sim, \mathscr{S}$, Mss, Cond, Loclnv
of LSC L is the language of the TBA
$\mathcal{B}_{L}=\left(E x p p_{B}, X, Q, q_{i n i} \rightarrow, Q_{F}\right)$

- Q is the set of cuts of $(\mathscr{L}, \mathcal{\Psi}), q_{\text {ini }}$ is the instance heads cut,
$Q^{T}=\{C \in Q \mid \theta(C)=$ cold $\}$ is the set of cold cuts of (\mathscr{L}, Υ),
- \rightarrow as defined in the following, consisting of
- loops (q, ψ, q),
- progress transitions $\left(q, \psi, q^{\prime}\right)$, and
- legal exits (q, ψ, \mathscr{L}).

Signal and Integer Expressions

Let $\mathscr{\mathscr { A }}=(\mathscr{T}, \mathscr{\mathscr { L } , \mathrm { V } , \text { atr }) \text { be a signature and } X \text { a set of logical wriables }}$
The signal and integer expressions $\operatorname{Expr}_{\mathscr{f}}(V, \mathcal{E}(\mathscr{S}))$ over $\mathscr{\mathscr { S }}$ are defined by
the grammar:

$$
\begin{aligned}
& \text { where expr } \in \operatorname{Expr} r_{y,}, E \in \mathscr{E}, x, y \in X . \underbrace{\text { comones }(x, \epsilon)}_{\operatorname{sent}(x, E, y)}
\end{aligned}
$$

Satisfaction of Signal and Integer Expressions

 letter of a word over
logical variables in X.

$$
\begin{aligned}
& \text { ogical varabies in } X \text {. } \\
& \cdot(\sigma, \text { cons, Snd }) \models_{\beta} \text { true }
\end{aligned}
$$

$\begin{aligned} & \bullet \cdot(\sigma, \text { cons, Snd }) \models_{\beta} \text { true } \\ & \cdot(\sigma, \text { cons, }, \text { nnd }) \vDash_{\beta} \neg \psi \text { if and only if not }(\sigma, \text { cons, Snd }) \models_{\beta} \psi\end{aligned}$

- $(\sigma$, cons, Snd $)=F_{\beta} \psi_{1} \vee \underset{(\sigma, \text { cons, Snd })}{\left(\psi_{2} \text { if and only if }\right.}$
 $\hat{(\sigma, \text { cons, Snd })\rfloor=\beta E_{x, y}^{\prime}, \text { if and only if }(\beta(\beta),(E, \vec{d}), \beta(y)) \in \text { Snd }}$ $\frac{(\vec{x}),(E,(), \beta(y) \in \operatorname{Snd}}{4}$ $\cdot \underbrace{}_{e g \quad(\sigma, \text { cons, Snd })=\beta}=\beta=E_{x}^{?}$ if and only if $\frac{(\beta(x),(E, \vec{d})) \in \text { cons }}{}$

Satisfaction of Signal and Integer Expressions
 etter of a word voer $\mathscr{\mathscr { C }}$ and \mathscr{D} and let $\beta: X \rightarrow \mathscr{\mathscr { C }}(\mathcal{\mathscr { C }})$ be a valuation of the
ogical variables in X.

- $(\sigma$, cons, Snd $) F_{\beta}$ true
- $(\sigma$, cons, Snd $\left.) \vdash_{\beta}\right\urcorner \psi$ if and only if not $(\sigma$, cons, Snd $) \models_{\beta} \psi$
$-(\sigma$, cons, Snd $) \models_{\beta} \psi_{1} \vee \psi_{2}$ if and only if
- $(\sigma$, cons Snd $) \models_{\beta}$ expr if and only if $I[$ erpr $I(\sigma, \beta)=1$
$\cdot(\sigma$, cons, Snd $) \vDash_{\beta} E_{x, y}^{t}$ if and only if $(\beta(x),(E, \vec{d}), \beta(y)) \in$ Snd
$\cdot(\sigma$, cons, Snd $) \vdash_{\beta} E_{x}^{p}$ if and only if $(\beta(x),(E, \vec{d})) \in$ cons Observation: if the semantics has "forgotten" the sender at consumption
time, then we have to disregard it here (straightforwardly fixed if desired). ther view: we could choose to disregard the sender.
- Constraints relevant when moving from q to cut $q^{\prime}:$
$\psi\left(q, q^{\prime}\right)=\left\{\psi \mid \exists l \in q^{\prime} \backslash q, l^{\prime} \in \mathscr{L}, \theta \in \Theta\right\}$
$\left(l, \bullet\right.$ expr,,$\left.l^{\prime}\right) \in \operatorname{Loclnv} \vee\left(l^{\prime}\right.$, expr $\left., \theta, l, \bullet \in \operatorname{Loclnv}\right\}$
$\psi\left|\exists l \in q, l^{\prime} \notin q^{\prime}, \theta \in \Theta\right|$
信
$\left.|\psi| \exists L \subseteq \mathscr{L}, \theta \in \Theta \mid(L, \psi, \theta) \in \operatorname{Cond} \wedge L \cap\left(q^{\prime} \backslash q\right) \neq \emptyset\right\}$

Example: TBA over Signal and Integer Expressions

Even More Helper Functions

Cold constraints relevant when moving from q to cut q^{\prime} :
$\psi_{\text {cold }}\left(q, q^{\prime}\right)=\left\{\psi \mid \exists l \in q^{\prime} \backslash q, l^{\prime} \in \mathscr{L}\right\}$
$\left(l, \bullet\right.$ expr, cold,$\left.l^{\prime}\right) \in$ Lochnv $\vee\left(l^{\prime}\right.$, expr cold $\left., l, \bullet\right) \in$ Loclnv $\}$
$\cup\left\{\psi\left|\exists l \in q, l^{\prime} \notin q^{\prime}\right|\right.$
$\left(l\right.$, expr, cold, $\left.l^{\prime}\right) \in$ Loclnv $\vee\left(l^{\prime}\right.$, expr, cold,$\left.l\right) \in$ Loclnv $\}$
$\cup\left\{\psi|\exists L \subseteq \mathscr{L}|(L, \psi\right.$, cold $\left.) \in \operatorname{Cond} \wedge L \cap\left(q^{\prime} \backslash q\right) \neq \emptyset\right\}$

Interactions as Reflective Description

- In UML, reflective (temporal) descriptions are subsumed by interactions.
- A UML model $\mathcal{M}=(\mathscr{C} \mathscr{Q}, \mathscr{\mathscr { A }}, \mathscr{\mathscr { D }}, \mathscr{\mathscr { C }})$ has a set of interactions $\mathscr{\mathscr { C }}$.
- A UML model $\mathcal{M}=(\mathscr{C} \mathscr{\mathscr { D }}, \mathscr{M} \mathbb{M}, \mathscr{O}, \mathscr{\mathscr { C }})$ has a set of interactions $\mathscr{\mathscr { C }}$.
- An interaction $\mathcal{I} \in \mathscr{\mathscr { C }}$ can be (OMG claim: equivalenty) diagrammed as

An interaction $\mathcal{I} \in \mathscr{Y}$ can be (OMG claim: equivalenty) diagrammed

- sequence diagran,
timing idiagram or
conmunication diagram (formerly known as collaboration diagram). \therefore communication diagram (formerly known as collaboration diagram).

- In UML, reflective (temporal) descriptions are subsumed by interactions
- A UML model $\mathcal{M}=(\mathscr{C} \mathscr{\mathscr { O }}, \mathscr{\mathscr { M }}, \mathscr{O}, \mathscr{O}, \mathscr{\mathscr { O }})$ has a set of interactions $\mathscr{\mathscr { I }}$.
- A UML model $\mathcal{M}=(\mathscr{C} \mathscr{\mathscr { O }}, \mathscr{M}, \mathscr{O}, \mathscr{O}, \mathscr{\mathscr { C }})$ has a set of interactions $\mathscr{\mathscr { C }}$.
- An interactio $\mathcal{I} \in \mathscr{\mathscr { C }}$ can be (OMG claim: equivalenty) diagrammed as
- An interaction $I \in \mathscr{Q}$ can be (OMG claim: equivalently) diagrammed as
- sequence diagram, \quad timing diagram, or
and

Interactions as Reflective Description

- In UML, reflective (temporal) descriptions are subsumed by interaction
- A UML model $\mathcal{M}=(\mathscr{C} \mathscr{\mathscr { C }}, \mathscr{\mathscr { M }}, \mathscr{\mathscr { O }}, \mathscr{\mathscr { C }})$ has a set of interactions $\mathscr{\mathscr { C }}$.
- An interaction $\mathcal{I} \in \mathscr{I}$ can be (OMG claim: equivalently) diagrammed as
- An interaction $I \in \mathscr{\mathscr { C }}$ can be (OMG claim: equival
- sequence diagram,
timing diagram, or

Why Sequence Diagrams?
Most Prominent: Sequence Diagrams - with long history: - Message Sequence Charts, standardized by the ITU in different -
versions, often accused to lack a formal semantics.
Cust
 Most severe drawbacks of these formalisms. - unclear interpretation: example scenario or invariant unclear activation: what triggers the requirement? unclear progress requirement:
must all messages be observed conditions merely comments no means to express
fortididen scenarios

Thus: Live Sequence Charts

- SDs of UML $2 . x$ address some issues, eet the standard extibits andard exhibits 2007 , Störle, 200 For the lecture, we consider Live Sequence Charts (LSSs) [Damm and Harel ,2011, Klose, 20033. Harel and MMrelly, 2003], who
have a common fragment with UML 2.x SDs [Harel and Maoz, 2007] Modelling guideline: stick to that fragment

References

Damm and Harel. 2001] Damm, W. and Harel. D. (2001). LSCs: Breathing life in
Message Sequence Chats. Formal Methocs in System Design, 19(1):45-80 Harel and Maoz, 2007] Harel, D. and Maoz, S. S. (2007). Assert and negate revisited: Mos

Harel and Marelly, 20033 Hare. D. .and Marelly, R. (2003). Come, Let's Play:
Scenario-Based Programming Using LScs and the Play) Engine. Springe-Ver [Klose, 2003] Klose J. . (2003). LSCs: A Graphical Formalism for the Specification of
Communication Behavior. PhD thesis, Carl von Ossietray Uniesisitat Oldenburg OMG, 20077] OMG (2007a). Unified moded ling language: Infrastructure, verion 212
 [OMG, 2007b) OMG (2007b). Unified
Technical Report formal 0 O-11-02.

 TUM-00323. Technische Universitat Munche

Side Note: Protocol Statemachines
Same direction: call orders on operations

- "for each C instance, method $f($) shall only be called after $g()$ but before $h($ "

Can be formalised with protocol state machines.
psM.
?

