
SoftwareDesign, Modelli ng andAnalysis in UML

Lecture 17: LiveSequenceCharts II

2012-01-31

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
1
7

–
2
0
1
2
-0

1
-3

1
–

m
a
in

–

Contents & Goals

Last Lecture:

• Reflective vs. constructive description of behaviour

• Live Sequence Charts: syntax, intuition

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this LSC mean?

• Are this UML model’s state machines consistent with the interactions?

• Please provide a UML model which is consistent with this LSC.

• What is: activation, hot/cold condition, pre-chart, etc.?

• Content:

• Symbolic Büchi Automata (TBA) and its (accepted) language.

• LSC formal semantics.

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
p
re

li
m

–

2/47

Recall : LiveSequenceCharts Syntax

–
1
7

–
2
0
1
2
-0

1
-3

1
–

m
a
in

–

3/47

Recall : Example

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Whenever the CrossingCtrl has consumed a ‘secreq’ event

• then it shall finally send ‘lights on’ and ‘barrier down’ to LightsCtrl and BarrierCtrl,

• if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there’s another LSC for that case.

• if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights ok’ within 1–3 time units,

• the BarrierCtrl shall reply with ‘barrier ok’ within 1–5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

• ‘lights ok’ and ‘barrier ok’ may occur in any order.

• After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

yn
–

4/47

Recall : LSC Body – Abstract Syntax

Let Θ = {hot, cold}. An LSC body is a tuple

(I, (L ,�),∼,S ,Msg,Cond, LocInv)

where

• I is a finite set of instance lines,

• (L ,�) is a finite, non-empty, partially ordered set of locations,
each l ∈ L is associated with a temperature θ(l) ∈ Θ and an instance line il ∈ I,

• ∼⊆ L ×L is an equivalence relation on locations, the simultaneity relation,

• S = (T,C, V, atr , E) is a signature,

• Msg ⊆ L × E ×L is a set of asynchronous messages

with (l, b, l′) ∈ Msg only if l ∼ l′,

Not: instantaneous messages — could be linked to method/operation calls.

• Cond ⊆ (2L \ ∅) × ExprS × Θ is a set of conditions

with (L, expr , θ) ∈ Cond only if l ∼ l′ for all l, l′ ∈ L,

• LocInv ⊆ L × {◦, •} × ExprS × Θ ×L × {◦, •} is a set of local invariants,

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

yn
–

5/47

Example
(I, (L ,�),∼,S , Msg, Cond, LocInv)

Msg ⊆ L × E ×L

Cond ⊆ (2L \ ∅) × ExprS × Θ
LocInv ⊆L × {◦, •} × ExprS × Θ ×L × {◦, •}

: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

yn
–

6/47

Recall : Well -Formedness

Bondedness/no floating conditions: (could be relaxed a little if we wanted to)

• For each location l ∈ L , if l is the location of

• a condition, i.e.

∃ (L, expr , θ) ∈ Cond : l ∈ L,

• a local invariant, i.e.

∃ (l1, i1, expr , θ, l2, i2) ∈ LocInv : l ∈ {l1, l2}, or

then there is a location l′ equivalent to l which is the location of

• a message, i.e.

∃ (l1, b, l2) ∈ Msg : l ∈ {l1, l2}, or

• an instance head, i.e. l′ is minimal wrt. �.

Note: if messages in a chart are cyclic, then there doesn’t exist a partial order
(so such charts don’t even have an abstract syntax).

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

yn
–

7/47

Course Map

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr), SM

M = (ΣDS , AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1) . . .X wπ = ((σi, consi, Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔

✔

✔

✘

✘✔

✔

✔

✔

✔

–
1
7

–
2
0
1
2
-0

1
-3

1
–

m
a
in

–

8/47

LiveSequenceCharts Semantics

–
1
7

–
2
0
1
2
-0

1
-3

1
–

m
a
in

–

9/47

TBA-based Semanticsof LSCs

Plan:

• Given an LSC L with body

(I, (L ,�),∼,S ,Msg,Cond, LocInv)

• Construct a TBA BL — taking the cuts of L as states.

• Define L(L) in terms of L(BL),
in particular taking activation condition and activation mode into account.

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
cu

ts
–

10/47

Formal LSC Semantics: I t’s in theCuts

• Let (I, (L ,�),∼,S ,Msg,Cond, LocInv) be an LSC body.

• A non-empty set

∅ 6= C ⊆ L
is called a cut of the LSC body if and only if

• it is downward closed, i.e. ∀ l, l′ : l′ ∈ C ∧ l � l′ =⇒ l ∈ C,

• it is closed under simultaneity, i.e. ∀ l, l′ : l′ ∈ C ∧ l ∼ l′ =⇒ l ∈ C, and

• it comprises at least one location per instance line, i.e. ∀ i ∈ I ∃ l ∈ C : il = i.

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
cu

ts
–

11/47

Formal LSC Semantics: I t’s in theCuts

• Let (I, (L ,�),∼,S ,Msg,Cond, LocInv) be an LSC body.

• A non-empty set

∅ 6= C ⊆ L

is called a cut of the LSC body if and only if

• it is downward closed, i.e. ∀ l, l′ : l′ ∈ C ∧ l � l′ =⇒ l ∈ C,

• it is closed under simultaneity, i.e. ∀ l, l′ : l′ ∈ C ∧ l ∼ l′ =⇒ l ∈ C, and

• it comprises at least one location per instance line, i.e. ∀ i ∈ I ∃ l ∈ C : il = i.

• A cut C is called hot, denoted by θ(C) = hot, if and only if at least one
of its maximal elements is hot, i.e. if

∃ l ∈ C : θ(l) = hot ∧ ∄ l′ ∈ C : l ≺ l′

Otherwise, C is called cold, denoted by θ(C) = cold.

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
cu

ts
–

11/47

Examples: Cut or Not Cut? Hot/Cold?

(i) non-empty set ∅ 6= C ⊆ L ,

(ii) downward closed, i.e.
∀ l, l′ : l′ ∈ C ∧ l � l′ =⇒ l ∈ C

(iii) closed under simultaneity, i.e.
∀ l, l′ : l′ ∈ C ∧ l ∼ l′ =⇒ l ∈ C

(iv) at least one location per instance line, i.e.
∀ i ∈ I ∃ l ∈ C : il = i,

: C1 : C2

x > 3

: C3

A

B C

D

E

v = 0

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

l3,2

• C0 = ∅

• C1 = {l1,0, l2,0, l3,0}

• C2 = {l1,1, l2,1, l3,0}

• C3 = {l1,0, l1,1}

• C4 = {l1,0, l1,1, l2,0, l3,0}

• C5 = {l1,0, l1,1, l2,0, l2,1, l3,0}

• C6 = L \ {l1,3, l2,3}

• C7 = L
–

1
7

–
2
0
1
2
-0

1
-3

1
–

S
cu

ts
–

12/47

A Successor Relation onCuts

The partial order of (L ,�) and the simultaneity relation “∼” induce a direct

successor relation on cuts of L as follows:

• Let C,C′ ⊆ L bet cuts. C′ is called direct successor of C
via fired-set F , denoted by C F C′, if and only if

• F 6= ∅,

• C′ \ C = F ,

• for each message reception in F , the corresponding sending is already
in C,

• locations in F , that lie on the same instance line, are pairwise
unordered, i.e.

∀ l, l′ ∈ F : l 6= l′ ∧ il = il′ =⇒ l 6� l′ ∧ l′ 6� l

Note: F is immediately closed under simultaneity.

• In other words: locations in F are direct �-successors of locations in C, i.e.

∀ l′ ∈ F ∃ l ∈ C : l ≺ l′ ∧ ∄ l′′ ∈ C : l′ ≺ l′′ ≺ l

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
cu

ts
–

13/47

Successor Cut Examples

(i) F 6= ∅,

(ii) C′ \ C = F ,

(iii) message send before receive,

(iv) locations on same instance line unordered, i.e.
∀ l, l′ ∈ F : l 6= l′ ∧ il = il′ =⇒ l 6� l′ ∧ l′ 6� l

: C1 : C2

x > 3

: C3

A

B C

D

E

v = 0

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

l3,2

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
cu

ts
–

14/47

Idea: Accepting Wordsby Advancing theCut

Let w = (σi, consi, Snd i)i∈N0
be a word over S and D .

Intuitively (and for now disregarding cold conditions),
an LSC body (I, (L ,�),∼,S ,Msg,Cond, LocInv) is supposed to accept w
(under valuation β) if and only if there exists a sequence

C0 F1
C1 F2

C2 · · · Fn
Cn

and indices i1 < · · · < in such that

• C0 consists of the instance heads,

• for all 1 ≤ j < n,

• for all ij ≤ k < ij+1, (σk, consk, Sndk)
satisfies (under β) the hold condition of Cj−1,

• (σij
, cons ij

, Snd ij
) satisfies (under β)

the transition condition of Fj ,

• Cn is cold,

• for all in < k, (βk, µij
, tij

)

satisfies (under β) the hold condition of Cn.

: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
cu

ts
–

15/47

Excursus: Symbolic Büchi Automata (over Signature)

–
1
7

–
2
0
1
2
-0

1
-3

1
–

m
a
in

–

17/47

Symbolic Büchi Automata

Definition. A Symbolic Büchi Automaton (TBA) is a tuple

B = (ExprB, X,Q, qini ,→, QF)

where
• ExprB is a set of expressions over logical variables from X,

• Q is a finite set of states, qini the initial state,

• → ⊆ Q× ExprB ×Q is the transition relation.

Transitions (q, expr , q′) from q to q′ are labelled with a constraint
expr ∈ ExprB over the signals and the variables.

• QF ⊆ Q is the set of fair (or accepting) states.

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
tb

a
–

18/47

TBA Example (ExprB, X,Q, qini ,→, QF)

q1

q2

q3

q4

q5

¬a(x, y)

a(x, y)

¬b(y)

b(y) ∧ c

¬d(y, x)

d(y, x)

¬e(x)

e(x)

b(y) ∧ ¬c

true

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
tb

a
–

19/47

Word

Definition. Let ExprB be a set of expressions over logical variables
X . and let Σ be the set of interpretation functions of ExprB, i.e.

Σ = ExprB × (X → D(X)) → {0, 1}.

For σ ∈ Σ, we write σ |=β expr if and only if σ(expr , β) = 1.

A word over ExprB is an infinite sequence of interpretations of
ExprB

(σi)i∈N0
∈ Σω.

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
tb

a
–

20/47

Run of TBAover Word

Definition. Let B = (ExprB, X,Q, qini ,→, QF) be a TBA and

w = (σi)i∈N0
∈ Σω

a word over ExprB.

An infinite sequence

̺ = q0, q1, q2, . . . ∈ Qω

is called run of B over w under valuation β : X → D(X) if and
only if

• q0 = qini ,

• for each i ∈ N0 there is a transition (qi, ψi, qi+1) ∈→ such
that

σi |=β ψi.

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
tb

a
–

21/47

Run or Not RunExamples q1

q2

q3

q4

q5

¬a(x, y)

a(x, y)

¬b(y)

b(y) ∧ c

¬d(y, x)

d(y, x)

¬e(x)

e(x)

b(y) ∧ ¬c

true

̺ = (qi)i∈N0
, q0 = qini ,

∀ i ∈ N0 ∃ (qi, ψi, qi+1) ∈ → : (σi, cons i, Snd i) |=β ψi

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
tb

a
–

22/47

TheLanguageof a TBA

Definition.

We say B = (ExprB, X,Q, qini ,→, QF) accepts w (under valua-
tion β : X → D(X)) if and only if B has a run

(qi)i∈N0

over w such that fair (or accepting) states are visited infinitely

often, that is,

∀ i ∈ N0 ∃ j > i : qj ∈ QF .

We call the set Lβ(B) of words over S that are accepted by B
under β the language of B.

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
tb

a
–

23/47

Languageof theExample TBA q1

q2

q3

q4

q5

¬a(x, y)

a(x, y)

¬b(y)

b(y) ∧ c

¬d(y, x)

d(y, x)

¬e(x)

e(x)

b(y) ∧ ¬c

true

Lβ(B) consists of the words

(σi, Snd i, consi)i∈N0

where there exist 0 ≤ n < m < k < ℓ such that

• for 0 ≤ i < n, σi 6|=β a(x, y)

• σn |=β a(x, y)

• for n < i < m, σi 6|=β b(y)

• σm |=β b(y) ∧ c and

• for m < i < k, σi 6|=β d(x, y)

• σk |=β d(x, y)

• for k < i < ℓ, σi 6|=β e(x)

• σℓ |=β e(x), or

• σm |=β b(y) ∧ ¬c.

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
tb

a
–

24/47

Back to Main Track: LiveSequenceCharts Semantics

–
1
7

–
2
0
1
2
-0

1
-3

1
–

m
a
in

–

25/47

Recall Idea: AcceptingWords by Advancing theCut

Let w = (σi, consi, Snd i)i∈N0
be a word over S and D .

Intuitively (and for now disregarding cold conditions),
an LSC body (I, (L ,�),∼,S ,Msg,Cond, LocInv) is supposed to accept w
(under valuation β) if and only if there exists a sequence

C0 F1
C1 F2

C2 · · · Fn
Cn

and indices i1 < · · · < in such that

• C0 consists of the instance heads,

• for all 1 ≤ j < n,

• for all ij ≤ k < ij+1, (σk, consk, Sndk)
satisfies (under β) the hold condition of Cj−1,

• (σij
, cons ij

, Snd ij
) satisfies (under β)

the transition condition of Fj ,

• Cn is cold,

• for all in < k, (βk, µij
, tij

)

satisfies (under β) the hold condition of Cn.

: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

em
–

26/47

Languageof LSC Body

The language of the body

(I, (L ,�),∼,S ,Msg,Cond, LocInv)

of LSC L is the language of the TBA

BL = (ExprB, X,Q, qini ,→, QF)

with

• ExprB = ExprS (V, E (S))

• Q is the set of cuts of (L ,�), qini is the instance heads cut,

• F = {C ∈ Q | θ(C) = cold} is the set of cold cuts of (L ,�),

• → as defined in the following, consisting of

• loops (q, ψ, q),

• progress transitions (q, ψ, q′), and

• legal exits (q, ψ,L).

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

em
–

27/47

Languageof LSC Body: Intuition

BL = (ExprB, X,Q, qini ,→, QF) with

• ExprB = ExprS (V, E (S))

• Q is the set of cuts of (L ,�), qini is the instance heads cut,

• F = {C ∈ Q | θ(C) = cold} is the set of cold cuts,

• → consists of

• loops (q, ψ, q),

• progress transitions (q, ψ, q′), and

• legal exits (q, ψ,L).

q

. . .

“what allows us to

stay at this cut”

“. . .F1”
“characterisation

of firedset Fn”
“what allows us to

legally exit”

true

: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

em
–

28/47

Signal andInteger Expressions

Let S = (T,C, V, atr) be a signature and X a set of logical variables.

The signal and integer expressions ExprS (V, E (S)) over S are defined by
the grammar:

ψ ::= true | expr | E!
x,y | E?

x | ¬ψ | ψ1 ∨ ψ2,

where expr ∈ ExprS , E ∈ E , x, y ∈ X .

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

em
–

29/47

Satisfaction of Signal andInteger Expressions

Let (σ, cons, Snd) ∈
(
ΣDS × 2D(C)×Evs(E ,D) × 2D(C)×Evs(E ,D)×D(C)

)
be a

letter of a word over S and D and let β : X → D(C) be a valuation of the
logical variables in X .

• (σ, cons, Snd) |=β true

• (σ, cons, Snd) |=β ¬ψ if and only if not (σ, cons, Snd) |=β ψ

• (σ, cons, Snd) |=β ψ1 ∨ ψ2 if and only if
(σ, cons, Snd) |=β ψ1 or (σ, cons, Snd) |=β ψ2

• (σ, cons, Snd) |=β expr if and only if IJexprK(σ, β) = 1

• (σ, cons, Snd) |=β E
!
x,y if and only if (β(x), (E, ~d), β(y)) ∈ Snd

• (σ, cons, Snd) |=β E
?
x if and only if (β(x), (E, ~d)) ∈ cons

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

em
–

30/47

Satisfaction of Signal andInteger Expressions

Let (σ, cons, Snd) ∈
(
ΣDS × 2D(C)×Evs(E ,D) × 2D(C)×Evs(E ,D)×D(C)

)
be a

letter of a word over S and D and let β : X → D(C) be a valuation of the
logical variables in X .

• (σ, cons, Snd) |=β true

• (σ, cons, Snd) |=β ¬ψ if and only if not (σ, cons, Snd) |=β ψ

• (σ, cons, Snd) |=β ψ1 ∨ ψ2 if and only if
(σ, cons, Snd) |=β ψ1 or (σ, cons, Snd) |=β ψ2

• (σ, cons, Snd) |=β expr if and only if IJexprK(σ, β) = 1

• (σ, cons, Snd) |=β E
!
x,y if and only if (β(x), (E, ~d), β(y)) ∈ Snd

• (σ, cons, Snd) |=β E
?
x if and only if (β(x), (E, ~d)) ∈ cons

Observation: if the semantics has “forgotten” the sender at consumption
time, then we have to disregard it here (straightforwardly fixed if desired).

Other view: we could choose to disregard the sender.

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

em
–

30/47

Example: TBA over Signal andInteger Expressions

q1

q2

q3

q4

q5

¬E!
x,y

E!
x,y

¬E?
y

E?
y ∧ expr

¬F !
y,x

F !
y,x

¬F ?
x

F ?
x

true

E?
y ∧ ¬expr

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

em
–

31/47

SomeHelper Functions

• Messages of a location:

B(l) := {b ∈ B | ∃ l′ : (l, b, l′) ∈ Msg ∨ (l′, b, l) ∈ Msg},

B({l1, . . . , ln}) := B(l1) ∪ · · · ∪B(ln).

• Constraints relevant at cut q:

ψ(q) = {ψ | ∃ l ∈ q, l′ /∈ q | (l, ψ, θ, l′) ∈ LocInv ∨ (l′, ψ, θ, l) ∈ LocInv},

: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

em
–

32/47

SomeMoreHelper Functions

• Constraints relevant when moving from q to cut q′:

ψ(q, q′) = {ψ | ∃ l ∈ q′ \ q, l′ ∈ L , θ ∈ Θ |

(l, •, expr , θ, l′) ∈ LocInv ∨ (l′, expr , θ, l, •) ∈ LocInv}

∪{ψ | ∃ l ∈ q, l′ /∈ q′, θ ∈ Θ |

(l, expr , θ, l′) ∈ LocInv ∨ (l′, expr , θ, l) ∈ LocInv}

∪{ψ | ∃L ⊆ L , θ ∈ Θ | (L,ψ, θ) ∈ Cond ∧ L ∩ (q′ \ q) 6= ∅}

: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

em
–

33/47

Even MoreHelper Functions

• Cold constraints relevant when moving from q to cut q′:

ψcold(q, q
′) = {ψ | ∃ l ∈ q′ \ q, l′ ∈ L |

(l, •, expr , cold, l′) ∈ LocInv ∨ (l′, expr , cold, l, •) ∈ LocInv}

∪ {ψ | ∃ l ∈ q, l′ /∈ q′ |

(l, expr , cold, l′) ∈ LocInv ∨ (l′, expr , cold, l) ∈ LocInv}

∪ {ψ | ∃L ⊆ L | (L,ψ, cold) ∈ Cond ∧ L ∩ (q′ \ q) 6= ∅}

: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

em
–

34/47

Recall : Intuition

BL = (ExprB, X,Q, qini ,→, QF) with

• ExprB = ExprS (V, E (S))

• Q is the set of cuts of (L ,�), qini is the instance heads cut,

• F = {C ∈ Q | θ(C) = cold} is the set of cold cuts,

• → consists of

• loops (q, ψ, q),

• progress transitions (q, ψ, q′), and

• legal exits (q, ψ,L).

q

. . .

“what allows us to

stay at this cut”

“. . .F1”
“characterisation

of firedset Fn”
“what allows us to

legally exit”

true

: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

em
–

35/47

Loops : C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

l3,2

• How long may we legally stay at a cut q?

• Intuition: those (σi, consi, Snd i) are allowed
to fire the self-loop (q, ψ, q) where

• consi ∪ Snd i comprises only irrelevant messages:
• weak mode:

no message from a direct successor cut is in,
• strict mode:

no message occurring in the LSC is in,

• σi satisfies the local invariants active at q

And nothing else.

• Formally: Let F := F1 ∪ · · · ∪ Fn is be the union of the firedsets of q.

• ψ := ¬(
∨

B(F))
︸ ︷︷ ︸

=true if F=∅

∧
∧
ψ(q).

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

em
–

36/47

Progress : C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

l3,2

• When do we move from q to q′?

• Intuition: those (σi, consi, Snd i) fire the
progress transition (q, ψ, q′) for which there
exists a firedset F such that q F q′ and

• consi ∪ Snd i comprises exactly the messages that
distinguish F from other firedsets of q (weak mode),
and in addition no message occurring in the LSC is
in cons i ∪ Snd i (strict mode),

• σi satisfies the local invariants and conditions relevant at q′.

• Formally: Let F, F1, . . . , Fn be the firedset of q and q F q′ (unique).

• ψ :=
∧
B(F) ∧ ¬

(∨
(B(F1) ∪ · · · ∪B(Fn)) \B(F)

)
∧

∧
ψ(q, q′),

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

em
–

37/47

Legal Exits : C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

l3,2

• When do we take a legal exit from q?

• Intuition: those (σi, consi, Snd i) fire the
legal exit transition (q, ψ,L) for which there
exists a firedset F and some q′

such that q F q′ and

• consi ∪ Snd i comprises exactly the messages that
distinguish F from other firedsets of q (weak mode),
and in addition no message occurring in the LSC is

in cons i ∪ Snd i (strict mode).

• Formally: Let F1, . . . , Fn be the firedset of q with q Fi
q′i.

• ψ :=
∨n

i=1

∧
B(Fi) ∧ ¬

(∨
(B(F1) ∪ · · · ∪B(Fn)) \B(Fi)

)
∧

∨
ψcold(q, q

′
i),

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

em
–

38/47

Example : C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

l3,2

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

em
–

39/47

Finally: TheLSC Semantics

A full LSC L consist of

• a body (I, (L ,�),∼,S ,Msg,Cond, LocInv),

• an activation condition (here: event) ac ∈ B,

• an activation mode, either initial or invariant,

• a chart mode, either existential (cold) or universal (hot).

A set W of timed words over B and V satisfies L, denoted W |= L, iff L

• universal (= hot), initial, and

∀w ∈W ∀β : X → dom(w0) • w activates L =⇒ w ∈ L(BL).

• universal (= hot), invariant, and

∀w ∈W ∀ k ∈ N0 ∀β : X → dom(wk) • w/k activates L =⇒ w/k ∈ L(BL).

• existential (= cold), initial, and

∃w ∈W ∃β : X → dom(w0) • w activates L ∧ w ∈ L(BL).

• existential (= cold), invariant, and

∃w ∈W ∃ k ∈ N0 ∃β : X → dom(wk) • w/k activates L ∧ w/k ∈ L(BL).

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
ls
cs

em
–

40/47

Back to UML: Interactions

–
1
7

–
2
0
1
2
-0

1
-3

1
–

m
a
in

–

41/47

Interactions asReflectiveDescription

• In UML, reflective (temporal) descriptions are subsumed by interactions.

• A UML model M = (CD ,SM ,OD ,I) has a set of interactions I .

• An interaction I ∈ I can be (OMG claim: equivalently) diagrammed as

• sequence diagram, timing diagram, or

• communication diagram (formerly known as collaboration diagram).

Figure 14.26 - Sequence Diagram with time and timing concepts

sd UserAccepted

:User :ACSystem

Code d=duration

CardOut {0..13}

OK
Unlock

{d..3*d}

t=now

{t..t+3}

DurationConstraint

TimeObservation

TimeConstraint

DurationObservation

[OMG, 2007b, 513] Figure 14.27 - Communication diagram

sd M

:r s[k]:B

s[u]:B

1a:m1

2:m21b:m3

1b.1:m3 1b.1.1:m3,
1b.1.1.1:m2

Lifeline

Message
with
Sequence
number

Messages

[OMG, 2007b, 515]

Figure 14.30 - Compact Lifeline with States

sd UserAcc_User

Idle WaitCard WaitAccess Idle

{d..3*d}

:User

State or conditionLifeline DurationConstraint

[OMG, 2007b, 522]

Figure 14.31 - Timing Diagram with more than one Lifeline and with Messages

sd UserAccepted

Idle

WaitCard

WaitAccess

{t..t+3}

{d..3*d}

:U
se

r

0 1 2 t

HasCard

NoCard

:A
C

S
ys

te
m

Code

CardOut
{0..13}

OK

Unlock

d
t=now

State or conditionLifelines

Duration Observation

Duration Constraints

Time Observation

Time Constraint

Message

[OMG, 2007b, 522]

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
in

te
ra

ct
–

42/47

Interactions asReflectiveDescription

• In UML, reflective (temporal) descriptions are subsumed by interactions.

• A UML model M = (CD ,SM ,OD ,I) has a set of interactions I .

• An interaction I ∈ I can be (OMG claim: equivalently) diagrammed as

• sequence diagram, timing diagram, or

• communication diagram (formerly known as collaboration diagram).

Figure 14.26 - Sequence Diagram with time and timing concepts

sd UserAccepted

:User :ACSystem

Code d=duration

CardOut {0..13}

OK
Unlock

{d..3*d}

t=now

{t..t+3}

DurationConstraint

TimeObservation

TimeConstraint

DurationObservation

[OMG, 2007b, 513] Figure 14.27 - Communication diagram

sd M

:r s[k]:B

s[u]:B

1a:m1

2:m21b:m3

1b.1:m3 1b.1.1:m3,
1b.1.1.1:m2

Lifeline

Message
with
Sequence
number

Messages

[OMG, 2007b, 515]

Figure 14.30 - Compact Lifeline with States

sd UserAcc_User

Idle WaitCard WaitAccess Idle

{d..3*d}

:User

State or conditionLifeline DurationConstraint

[OMG, 2007b, 522]

Figure 14.31 - Timing Diagram with more than one Lifeline and with Messages

sd UserAccepted

Idle

WaitCard

WaitAccess

{t..t+3}

{d..3*d}

:U
se

r

0 1 2 t

HasCard

NoCard

:A
C

S
ys

te
m

Code

CardOut
{0..13}

OK

Unlock

d
t=now

State or conditionLifelines

Duration Observation

Duration Constraints

Time Observation

Time Constraint

Message

[OMG, 2007b, 522]
Figure 14.28 - Interaction Overview Diagram representing a High Level Interaction diagram

sd OverviewDiagram lifelines :User, :ACSystem

ref
EstablishAccess("Illegal PIN")

sd

:User :ACSystem

CardOut

sd

:User :ACSystem

Msg("Please Enter")

ref
OpenDoor

[pin ok]

{0..25}

{1..14}

InteractionUse

(inline) Interaction

decision

interaction constraint

Duration Constraint

[OMG, 2007b, 518]

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
in

te
ra

ct
–

42/47

Interactions asReflectiveDescription

• In UML, reflective (temporal) descriptions are subsumed by interactions.

• A UML model M = (CD ,SM ,OD ,I) has a set of interactions I .

• An interaction I ∈ I can be (OMG claim: equivalently) diagrammed as

• sequence diagram, timing diagram, or

• communication diagram (formerly known as collaboration diagram).

Figure 14.26 - Sequence Diagram with time and timing concepts

sd UserAccepted

:User :ACSystem

Code d=duration

CardOut {0..13}

OK
Unlock

{d..3*d}

t=now

{t..t+3}

DurationConstraint

TimeObservation

TimeConstraint

DurationObservation

[OMG, 2007b, 513] Figure 14.27 - Communication diagram

sd M

:r s[k]:B

s[u]:B

1a:m1

2:m21b:m3

1b.1:m3 1b.1.1:m3,
1b.1.1.1:m2

Lifeline

Message
with
Sequence
number

Messages

[OMG, 2007b, 515]

Figure 14.30 - Compact Lifeline with States

sd UserAcc_User

Idle WaitCard WaitAccess Idle

{d..3*d}

:User

State or conditionLifeline DurationConstraint

[OMG, 2007b, 522]

Figure 14.31 - Timing Diagram with more than one Lifeline and with Messages

sd UserAccepted

Idle

WaitCard

WaitAccess

{t..t+3}

{d..3*d}

:U
se

r

0 1 2 t

HasCard

NoCard

:A
C

S
ys

te
m

Code

CardOut
{0..13}

OK

Unlock

d
t=now

State or conditionLifelines

Duration Observation

Duration Constraints

Time Observation

Time Constraint

Message

[OMG, 2007b, 522]
Figure 14.28 - Interaction Overview Diagram representing a High Level Interaction diagram

sd OverviewDiagram lifelines :User, :ACSystem

ref
EstablishAccess("Illegal PIN")

sd

:User :ACSystem

CardOut

sd

:User :ACSystem

Msg("Please Enter")

ref
OpenDoor

[pin ok]

{0..25}

{1..14}

InteractionUse

(inline) Interaction

decision

interaction constraint

Duration Constraint

[OMG, 2007b, 518]

Figure 9.11 - The internal structure of the Observer collaboration shown inside the collaboration icon (a connection is
shown between the Subject and the Observer role).

Observer

Observer : SlidingBarIconSubject : CallQueue

[OMG, 2007b, 170]

Figure 9.12 - In the Observer collaboration two roles, a Subject and an Observer, collaborate to produce the desired
behavior. Any instance playing the Subject role must possess the properties specified by CallQueue, and similarly for
the Observer role.

Observer

SlidingBarIcon
Observer

CallQueue Subject

queue: List of Call
source: Object
waitAlarm: Alarm

reading: Real
color: Color
range: Interval

Observer.reading = length (Subject.queue)

capacity: Integer

Observer.range = (0 .. Subject.capacity)

[OMG, 2007b, 170]

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
in

te
ra

ct
–

42/47

Why SequenceDiagrams?

Most Prominent: Sequence Diagrams — with long history:

• Message Sequence Charts, standardized by the ITU in different
versions, often accused to lack a formal semantics.

• Sequence Diagrams of UML 1.x

Most severe drawbacks of these formalisms:

• unclear interpretation:
example scenario or invariant?

• unclear activation:
what triggers the requirement?

• unclear progress requirement:
must all messages be observed?

• conditions merely comments

• no means to express

forbidden scenarios

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
in

te
ra

ct
–

43/47

Thus: LiveSequenceCharts

• SDs of UML 2.x address some issues, yet the standard exhibits
unclarities and even contradictions [Harel and Maoz, 2007, Störrle, 2003]

• For the lecture, we consider Live Sequence Charts (LSCs)
[Damm and Harel, 2001, Klose, 2003, Harel and Marelly, 2003], who
have a common fragment with UML 2.x SDs [Harel and Maoz, 2007]

• Modelling guideline: stick to that fragment.

–
1
7

–
2
0
1
2
-0

1
-3

1
–

S
in

te
ra

ct
–

44/47

SideNote: Protocol Statemachines

Same direction: call orders on operations

• “for each C instance, method f() shall only be called after g() but before h()”

Can be formalised with protocol state machines.

–
1
7

–
2
0
1
2
-0

1
-3

1
–

m
a
in

–

45/47

References

–
1
7

–
2
0
1
2
-0

1
-3

1
–

m
a
in

–

46/47

References

[Damm and Harel, 2001] Damm, W. and Harel, D. (2001). LSCs: Breathing life into
Message Sequence Charts. Formal Methods in System Design, 19(1):45–80.

[Harel and Maoz, 2007] Harel, D. and Maoz, S. (2007). Assert and negate revisited: Modal
semantics for UML sequence diagrams. Software and System Modeling (SoSyM). To
appear. (Early version in SCESM’06, 2006, pp. 13-20).

[Harel and Marelly, 2003] Harel, D. and Marelly, R. (2003). Come, Let’s Play:
Scenario-Based Programming Using LSCs and the Play-Engine. Springer-Verlag.

[Klose, 2003] Klose, J. (2003). LSCs: A Graphical Formalism for the Specification of
Communication Behavior. PhD thesis, Carl von Ossietzky Universität Oldenburg.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2.
Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2.
Technical Report formal/07-11-02.

[Störrle, 2003] Störrle, H. (2003). Assert, negate and refinement in UML-2 interactions. In
Jürjens, J., Rumpe, B., France, R., and Fernandez, E. B., editors, CSDUML 2003, number
TUM-I0323. Technische Universität München.

–
1
7

–
2
0
1
2
-0

1
-3

1
–

m
a
in

–

47/47

