Contents & Goals

Last Lecture:

« Live Sequence Charts Semantics
Sdtware Design, Modelli ng andAnalysisin UML

This Lecture: Inheritance: Desired Semantics
« Educational Objectives: Capabilities for following tasks/questions.

g . » What's the Liskov Substitution Principle?

Ledure 19: Inheritancell, Meta-Modelling - What s nte/arly binding? .

 What is the subset, what the uplink semantics of inheritance?

» What's the effect of inheritance on LSCs, State Machines, System States?
20120208 * What's the idea of Meta-Modelling?
« Content:
« Inheritance in UML: concrete syntax
B, B, Al Rt t, (B B Vsl , o Liskov Substitution Principle — desired semantics

+ Two approaches to obtain desired semantics
Albert-Ludwigs-Universitat Freiburg, Germany

251 R 451
Desired Semartics of Spedalisation: Suliyping Desired Ssmantics of Spedali sation: Suliyping
There is a classical description of what one expects from sub-types, There is a classical description of what one expects from sub-types,
which in the OO domain is closely related to inheritance: which in the OO domain is closely related to inheritance:
The principle of type substitutability [Liskov, 1988, Liskov and Wing, 1994]. The principle of type substitutability [Liskov, 1988, Liskov and Wing, 1994].

(Liskov Substitution Principle (LSP).) (Liskov Substitution Principle (LSP).)
“If for each object o1 of type S there is an object 0, of type 7" such that “If for each object 01 of type S there is an object oy of type T" such that
for all programs P defined in terms of T', for all programs P defined in terms of 7',
the behavior of P is unchanged when o, is substituted for 0y the behavior of P is unchanged when o, is substituted for o
then S is a subtype of T." then S is a subtype of T."
In other words: [Fischer and Wehrheim, 2000] o (e "
fwb-‘l'j(l "(T = VOA €§ 3"7 ETyﬁr ‘[F.'.“(o.) -'[FTJ(Q) “An instance of the sub-type shall be usable whenever an instance S * &
of the supertype was expected,

without a client being able to tell the difference.”

Q/ /1! oo s
=

Specl Skt ¢
(o) ol £ Bl o

“..shall beusable..” for UML

1357

Desired Semantics of Spedali sation: Suliyping

There is a classical description of what one expects from sub-types,
which in the OO domain is closely related to inheritance:

The principle of type substitutability [Liskov, 1988, Liskov and Wing, 1994].
(Liskov Substitution Principle (LSP).)

“If for each object 0; of type S there is an object 0, of type 7" such that
for all programs P defined in terms of T,
the behavior of P is unchanged when o is substituted for oy
then is a subtype of 7.

In other words: [Fischer and Wehrheim, 2000]
“An instance of the sub-type shall be usable whenever an instance
. of the supertype was expected,
3 without a client being able to tell the difference.”

So, what's “usable”? Who's a “client”? And what's a “difference”?

557
Easy: Satic Typing c
— I ® o -
s) - It Cint) - Tt {signat) B
I e S S
Dy Dy
Given: “sy 1 Bool ‘ (signal)) F
I T Float) - Tnt
eg. (Bl ¢y amlad D, iw:
Wanted: _— 7T] >0
« 2> 0 also well-typed for Dy ez
o assignment itsC1 := itsD1 being well-typed (iaf ol way s/
o itsD1.x =0, itsD1.f(0), itsD1 | F
being well-typed (and doing the right thing).
Approach:
= Simply define it as being well-typed,
adjust system state definition to do the right thing.
eq veop ks owll b i viTa, e T,
g and "D,
D 14/51

What Does [Fischer andWehrheim, 2000 Mean for UML?

“An instance of the sub-type shall be usable whenever an instance of the supertype
was expected, without a client being able to tell the difference.”

= Wanted: sub-typing for UML.

« With @)) i

we don't even have usability.

« It would be nice, if the well-formedness rules and semantics of

Dy

V\
D

would ensure D, is a sub-type of C:
« that D; objects can be used interchangeably by everyone who is using C's,

« is not able to tell the difference (i.e. see unexpected behaviour).
1275

Static Typing Cont’d

(signal)) B

Dy
(signal)) F
£(G): D -
Notions (from category theory): accepts
« invariance,) <, ,:f(
« covariance, Specabsel

« contravariance.
We could call, e.g. a method, sub-type preserving, if and only if it

 accepts more general types as input (contravariant),
« provides a more specialised type as output (covariant).

This is a notion used by many programming languages — and easily type-checked.

Excursus: Late Binding o Behavioural Features

16/57

Back to the Main Track “...tell the difference.” for UML

Late Binding
What transformer applies in what situation? (Early (compile time) binding.)

e o Lale

J ot overridden in D

| overridden in D

s B value
s A/ L[ﬁ o somec/
- dbian o conep b someD
o I S
(ot ‘N‘"'a someC-> £() 0 =) u:d
'S‘(’:‘ Iﬁ:d someD -> £() a:fo D:={0 0D
vedlly V') 2G> E) 4] [V2:D
What one could want is something different: (Late binding.)
Ao o djed e rg PR (]) (e
F doaupieS gonen -5 £() L0 D fl) %:D
someC -> £() A0 Y go 78]
With Only Early Binding...

« ...we're done (if we realise it correctly in the framework)

« Then

« if we're calling method f of an object u,
« which is an instance of D with C<'D

* via a C-link,

O @l be adled

« then we (by definition) only see and change the C-part.

» We cannot tell whether u is a C' or an D instance.

So we i

also have behavioural /dynamic subtyping.

Late Binding in the Sandard andProgramning Lang

« In the standard, Section 11.3.10, “CallOperationAction”:

“Semantic Variation Points

The mechanism for determining the method to be invoked as a
result of a call operation is unspecified.” [OMG, 2007b, 247]

o In C++,

= methods are by default “(early) compile time binding”,
o can be declared to be “late binding" by keyword “virtual”,

« the declaration applies to all inheriting classes.

o In Java,

« methods are “late binding”;

o there are patterns to imitate the effect of “early binding"

Exercise: What could have driven the designers of C++ to take that approach?

Note: late binding typically applies only to methods, not to attributes.

(But: getter/setter methods have been invented recently.)

Difficult: Dynamic Suliyping

« C:f and D::f are type compatible,

but D is not necessarily a sub-type of C') It

o Examples: (C-++)

int C::f(int) {

b

return 0; vs.

int D::f(int) {
return 1;

b

18757

SubTyping Principles Cont’d

 In the standard, Section 7.3.36, “Operation”:
“Semantic Variation Points
[-..] When operations are redefined in a specialization, rules regarding
invariance, covariance, or contravariance of types and preconditions
determine whether the specialized classifier is substitutable for its more
general parent. Such rules constitute semantic variation points with
respect to redefinition of operations.” [OMG, 2007a, 106]

 So, better: call a method sub-type preserving, if and only if it

(i) accepts more input values (contravariant),
(i) on the old values, has fewer behaviour (covariant).

Note: This (ii) is no longer a matter of simple type-checking!
» And not necessarily the end of the story:
« One could, e.g. want to consider execution time.
« Or, like [Fischer and Wehrheim, 2000], relax to “fewer observable
behaviour”, thus admitting the sub-type to do more work on inputs.

Note: "testing” differences depends on the granularity of the semantics.

« Related: "has a weaker pre-condition,” (contravariant),

“has a stronger post-condition.” (covariant). »

Meta-Modelling: | dea andExample

25/57

Ensuring SubTyping for State Machines ‘ ‘ %ﬂ
¢ |—

« In the CASE tool we consider, multiple classes Jer
in an inheritance hierarchy can have state machines. ‘ b &

= But the state machine of a sub-class cannot be drawn from scratch.

« Instead, the state machine of a sub-class can only be obtained by %ﬁj
applying actions from a restricted set to a copy of the original one. il
Roughly (cf. User Guide, p. 760, for details), /

+ add things into (hierarchical) states, ’

* add more states,

« attach a transition to a different target (limited).

They ensure, that the sub-class is a behavioural sub-type of the super
class. (But method implementations can still destroy that property.)

o Technically, the idea is that (by late binding) only the state machine of the most
specialised classes are running.
By knowledge of the framework, the (code for) state machines of super-classes is still

accessible — but using it is hardly a good idea .

Meta-Modelli ng: Why and What

« Meta-Modelling is one major prerequisite for understanding
« the standard documents [OMG, 2007a, OMG, 2007b], and
o the MDA ideas of the OMG.

» The idea is simple:
o ifa delli is about modelling things,
» and if UML models are and comprise things,

« then why not model those in a modelling language?

« In other words:
Why not have a model M such that
o the set of legal instances of My
is
« the set of well-formed (1) UML models.

2657

Towards System Sates < ¢

’ —
Wanted: a formal representation of “if C' < D then D ‘is a' C", that is, [x:kt

(i) D has the same attributes and behavioural features as C, and

(ii) D objects (identities) can replace C' objects.

We'll discuss two approaches to semantics:

» Domain-inclusion Semantics (more theoretical)

#0): $§—>Dlhed)

g2 ol frg§ = Dl |

A

« Uplink Semantics . (more technical)
oplie €,

€D E < o E‘g{)

soweD.x Y?W’L - o %D

S D Mlink L X ra
2457

Meta-Modelli ng: Example

« For example, let's consider a class.

« A class has (on a superficial level)
© a name,
« any number of attributes,

« any number of behavioural features.

Each of the latter two has
« aname and

+ a visibility. K
Behavioural features in addition have
+ a boolean attribute isQuery,
« any number of parameters,

« a return type

» Can we model this (in UML, for a start)?

UML Meta-Model: Extract

Comment ————4 Element

NamedElement
visibilty

e
Type TypedElement

type T

Classifier ‘

Class

RedeFE\emenl) recefalem

Feature Namespace

Slmcheztun BahavFeawre

Operation H Parameter
0.1

Operations [omg, 2007h 30]

e,y
RGN

oy,)
= R)

Figure 7.10 - Features diagram of the Kernel package

2857
G
o enahoa
[cmemeny
Csspecmnt
31m

Clas®s [omG, 2007432

Cassifer

Propery

(s e]

Jron— bty o] ososaien
o 7
g S R
i —
proiee3 e g
| S0 | o
e
o,
e e (ubsets ouner
E=3 RS
e
R [o—
. e g ouionen
ot
o [—
o]t
ot
R —— <<ammeraior>
e e et P
Gt —
g mcsnecrCoe. bt oatue, subsets {readOnly, oderedt |
ety e Py eniType
EEEEL SR
= operaton
Figure 7.12-Classes diaaram of the Kernel package 2
Clasdfiers [ome, 2007h 29
T I
[.
[- — I |
T e e, bt m)
. it Bt
ook, atgos monbes
R, o]
[—
ey o, G S Rl
S :
T ol
Figure 7.9- Classies diagram of the Kernel package
3251

Operations [ome, 2007531

ket ameace Vo owrecPaetc)

oper e
vy o

‘meo bty I

Pty

owsr misger n[®es
Pt 1

g

iy cotent
5

[T ——

< reseinedspersion

ﬂ

ubsets contet) S——
Lt ettt (obsets qureduie)
fo et e

Gabsets contaxt) {subsets ournadiUE)
f@rtoceniot sbodrorstin, |

{redfies rasedErcaptir)

T Constrant

s

SEodyteanon
]

e,
01

Figure 7.11 - Operations diagram of the Kernel package

Namespaces [oma, 2007h 26

Element

readony. sussos mem

S
NamedElament —
e
e
e s]| B
I o] |

[Jrimeoreavenier . [“Namespace

3057

,mw i)

P Ry
Cinanesace Remoer sumsss wneoemeni)

OreceaRlaionsip
[

ubsots soec, subses ouner.
impanganesoce

o1

(s

PockagoaeEiment

ubses

GamedElemen)

DicsdRomon

i
oteAEEce [, ks e

T I =

spaciageimpn sty viyind | B

Figure 7.4 - Namespaces diagram of the Kernel package 335

Root Diagram [ome, 2007 25]

Gsubsots ownedElon:

Gsubsots owner).

{readoriy, urion).

‘ reacioniy, uriony.

{reacony, union,

iy

eadoniy, urion,
Bt rhistedtizment)

Figure 7.3 - Root diagram of the Kernel package

UML Sugerstructure Packages [omg, 20073 15

Satohachines

\

Figure 7.5 The top-level package structure of the UML 2.11 Superstructure

3457

3751

Interesting: Dedaratior/Definition [oma, 2007 424

Baharor
pestitieob 7
e o
(S0 detroncertent
o Asulbsets oanedvenber}
T
et ook o ooy
o [+ redefine dBehavior
o
S —
bt o, B
gree

G
S

Figure 13.6 - Common Behavior

Meta-Modelling: Principle

35,57

3857

UML Architedure [z,

= Meta-modelling has already
been used for UML 1.x.

For UML 2.0, the request
for proposals (RFP) asked

AT

for a separation of concerns: '
P

Infrastructure and S

Superstructure. corae i)

= One reason:
sharing with MOF (see
later) and, e.g., CWM.

Diagam
Ingrehange

Sipersn -
(abstact syrias)

Clss, O
Acton, Fimsip
Package, St

Clss St
Tersiion,
Fan,

Chssaon, saegox
> Tanstoniae,

> tode, Ede.

Figure0-1 Overview of rclitedure

Modelli ng vs. Meta-Modelling

3657

Class Property Type
Meta- name : Str name : Str name : Str
Model i |
(M2) ¥ T H F
| L | | I
T 1 T H T
! | I | |
- 1 \ | | |
C ' \ | H |
Z Class Property
H“‘nam name — v »‘L
Model
(M1) T
I
Instance | instance-of
(M0) |

395

Modelli ng vs. Meta-Modelli ng

0208~ Sreaing -

Well -Formednessas Constraints in the Meta-Model

« The set of well-formed UML models can be defined as the set of object

P T . e .
Meta- na":p::y e y‘:, } diagrams satisfying all constraints of the meta-model.
T
Model ¢ I ‘ For example,
(M2) I
| L I
} : ,’ “[2] Generalization hierarchies must be directed and acyclical. A classifier
! | ! 7 = ({2}, cannot be both a transitively general and transitively specific classifier
C) —L—
.7 Property | Type {C}A{v}, of the same classifier.
. name = v name = 7, {C—u}),
“("h‘;‘ij' . 9 5% not self . allParents() -> includes(self)” [OMG, 2007b, 53]
’
Inst « So, if we have a meta model My of UML, then the set)
"(Shjg)‘e of UML models is the set of instances of My. /e « The other way round:
/ X . . .
« A UML model M can be represented as an object 1 . Given a UML model M, unfold it into an object diagram Oy wrt. My.
diagram (or system state) wrt. the meta-model My. | = {ur If Oy is a valid object diagram of My, (i.e. satisfies all invariants from Inv(My)),
' 0}} then M is a well-formed UML model.
« Other view: An object diagram wrt. meta-model My . o - "
can (alternatively) be rendered as the UML model M. g That is, if we have an object diagram validity checker for of the meta-modelling
| language, then we have a well-formedness checker for UML models.
3957 B 405

Table of Contents

Reading the Sandad

71 Overvew B
72 Abstract Symtax 2
73 Class Descrptons @

o)

1 scope frsead el
35 Somescaanrs (ramkanl
2. Conformance T
21 Language unts G e
23 Meaning and Types 731 b ey
9an ™ 7312 Dty Dapendri
20 et
R [t
4. Terms and Definitions x?w:ﬂ:w “wwmx.mm
TR e
5. symbols 7318 e kel
7320 Corsen e P
6. Additional Informaion

1 Changes o Adopee|
62 enecural Algng

64 The UML wetamoe|

e
7332 Mo ooy
7333 Namacenan e or, bependncs

66

Feen oo
et
357 Pk e
T35 s el
TR

Part | - Structure

7. Classes

e

sptnin 212

7348 P o e
73 PuamtuOvecod e

754 ey U s
7318 Rttt o Dependo

gthe Jandad | B
71 v T3 e v
Table of Contents 72 Absactsymax Er T ——
71 ’
1 scope e 210
2. Conformance 368mne] o components 13
23 Language Unts 81 Overven 1
22 Complance Levls gt e sy .
23 esning anc Types. TanowmT] 53 class escrpoon 1
24 Conplance Level o Jrepemird :gzlngw‘nn(l‘mm“!“wgvﬂwnemf B 1
3. Normative References| 7333 e P o T 4
4. Terms and Definitions e e B 15
5. Symbols Taielieionil o Composie Structures 161
6. Additonal Information TG o1 Ownew 160
1 Changes to Adopted| 7328 o 92 Avsiact synax 161
62 Architecura sgnm AT 93 Class Descrpions 166
o 735 tcomd 221 Com St
T35 et et :
532 e T et et ?
138 o Pl T :
534 eremes v AR o e e e A
4 The UL Metan 335 o] 938 EncapauecCiasser (FomPors)
s o] S 238 mnon o ecation)
sttt At st e
65 Honto Reaa i Sp et e ——
231 Sectcaonon| 338 Packageanti 3315 SrtaaCisater v eSS
esamirer fS e e oot
6
94 Dagrams 191
Part | - Structure .. 10. Deployments 193
7. Classes o s st 212
L)
215 e — 7 415

Reading the Sandad

Table of Contents
1 Scope 1
2. Contormance 1
21 Langunge s 2
22 Complance Loves 2
23 Weaning and Types of Complance o
24 Complance Leve Corens .
3. Normative References 10
4. Terms and Defintions . 0
5. symbols 10
5. Addiional inormaion 0
61 Changs 0 Adse OMG Speciicatons. 0

e
63 O the Rn-Tie Semantcs o Ul o
35 ey i
64 The UM etamode 1
¢ 65 Howio Read s Speciiaton s
i Ry —— 1
< |Parti-Structure .21
|7 classes 23

Reading the Sandad Cont’d

738 Classite (rom Kesnel,Dependncies, Powertypes)

renesero e s

RSt ot G o

J——
ot e Ger Chls o s s T s drs

e [IRE——

4157

425

Reading the Sandard Cont’d

- e parescon)

- ctradcistr Casstgn

N ety
e——

738l pmrye Comtsrss

emien] e o s st overye

T) o e st gt i

=t of 1 S e casrof et
st 51 o e i o)
e | (4 v sy . bt et

s | o

w

rar. i e g e
Cur ey S

U Sarare st 212

2012.02.08 — Sreading -

Reading

;“m‘ R B ;":: © Gl it o ks Cosshh e eve

P e P I

e BT

B - e
s

4251

4251

thoe Qandard Cont’d
o

“

e e
et G, SnssEsner

s e

e

@

crange,

o Sttt o

s ecng yeioion

st rcaay

S —

oawnacncsctn

e
et

A0 1 Genrt s s ree 1 e P oot

) e

e

H =

== 13 Teqon,

1 e 71 e
e
onan] 6 hn e
R R
0 | o
o o] et
o] o e

[—

4251
o Pmeries
e e iz v o ok
739 Commen: o el
J—
p—
o ————
iy vy
o o e—
== —
aro o
wedon |
s J
|
421

8 et
oy e

-

o

r—
A ———
i an o s SO e FeaaIn D s, <15l
. e o oot
(o e sesncatonCey o0 g8
Proanatan opons
S temovs b ey
P —
U gon et o s s e s s ks e
e cursci)
Loy ot o i e

Meta Objed Facility (MOF)

4257

4351

Open Questions...

» Now you've been “tricked” again. Twice.

« We didn't tell what the delli for met: ing is.
« We didn't tell what the i:

instance-of relation of this language is.

» ldea: have a minimal object-oriented core comprising the notions of
class, association, inheritance, etc. with “self-explaining” semantics.

This is Meta Object Facility (MOF),
which (more or less) coincides with UML Infrastructure [OMG, 2007a].

So: things on meta level
« MO are object diagrams/system states
« ML are words of the language UML
« M2 are words of the language MOF

« M3 are words of the language ...

a4y51

MOF Semantics

» One approach:

» Treat it with our signature-based theory

« This is (in effect) the right direction, but may require new (or extended)
signatures for each level.
(For instance, MOF doesn't have a notion of Signal, our signature has.)
« Other approach:
« Define a generic, graph based “is-instance-of” relation.

» Object diagrams (that are graphs) then are the system states —
not only graphical representations of system states.

« If this works out, good: We can easily experiment with different language
designs, e.g. different flavours of UML that immediately have a semantics.

45/51

MOF Semantics

« One approach:

o Treat it with our signature-based theory

 This is (in effect) the right direction, but may require new (or extended)
signatures for each level.
(For instance, MOF doesn’t have a notion of Signal, our signature has.)

4551

MOF Semartics

« One approach:
» Treat it with our signature-based theory
« This is (in effect) the right direction, but may require new (or extended)

signatures for each level.
(For instance, MOF doesn’t have a notion of Signal, our signature has.)

« Other approach:
» Define a generic, graph based “is-instance-of” relation.

Object diagrams (that are graphs) then are the system states —
not only graphical representations of system states.

o If this works out, good: We can easily experiment with different language
designs, e.g. different flavours of UML that immediately have a semantics.

Most interesting: also do generic definition of behaviour within a closed
modelling setting, but this is clearly still research, e.g. [?]

4557

MOF Semantics

« One approach:

« Treat it with our signature-based theory

« This is (in effect) the right direction, but may require new (or extended)
signatures for each level.
(For instance, MOF doesn't have a notion of Signal, our signature has.)
« Other approach:

« Define a generic, graph based “is-instance-of” relation.

» Object diagrams (that are graphs) then are the system states —
not only graphical representations of system states.

Meta-Modelli ng: (Anticipated) Benefits

4557

465

Benefits: Overview

« We'll (superficially) look at three aspects:
« Benefits for Modelling Tools.
« Benefits for Language Design

 Benefits for Code Generation and MDA.

Benefits for Modelling Tod's Cont’d

= And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.
— XML Metadata Interchange (XMI)

» Note: A priori, there is no graphical information in XMI (it is only
abstract syntax like our signatures) — OMG Diagram Interchange.

4751

49/57

Benefits for Modelli ng Tools

« The meta-model My of UML immediately provides a data-structure
representation for the abstract syntax (~ for our signatures).

If we have code generation for UML models, e.g. into Java,
then we can immediately represent UML models in memory for Java.

(Because each MOF model is in particular a UML model.)

There exist tools and libraries called MOF-repositories, which can
generically represent instances of MOF instances (in particular UML
models).

And which can often generate specific code to manipulate instances of
MOF instances in terms of the MOF instance.

4851
Benefits for Modelli ng Todls Cont’d
« And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.
— XML Metadata Interchange (XMI)
« Note: A priori, there is no graphical information in XMI (it is only
abstract syntax like our signatures) — OMG Diagram Interchange.
« Note: There are slight ambiguities in the XM standard.
And different tools by different vendors often seem to lie at opposite ends on
the scale of interpretation. Which is surely a coincidence.
In some cases, it's possible to fix things with, e.g., XSLT scripts, but full
vendor independence is today not given.
Plus XMI compatibility doesn’t necessarily refer to Diagram Interchange.
R 4957

Benefits for Modelling Todls Cont’d

« And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.

— XML Metadata Interchange (XMI)

Benefits for Modelling Tod's Cont’d

And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.
— XML Metadata Interchange (XMI)

Note: A priori, there is no graphical information in XMI (it is only
abstract syntax like our signatures) — OMG Diagram Interchange.

Note: There are slight ambiguities in the XMI standard.
And different tools by different vendors often seem to lie at opposite ends on
the scale of interpretation. Which is surely a coincidence

In some cases, it's possible to fix things with, e.g., XSLT scripts, but full
vendor independence is today not given.

Plus XMI compatibility doesn’t necessarily refer to Diagram Interchange.

To re-iterate: this is generic for all MOF-based modelling languages
such as UML, CWM, etc.
And also for Domain Specific Languages which don’t even exit yet.

4957

495

Benefits for Languag Design

Recall: we said that code-generators are possible “readers” of stereotypes.

For example, (heavily simplifying) we could
« introduce the stereotypes Button, Toolbar, ...

« for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes
are clearly present.

instruct the code-generator to automatically add inheritance from
Gtk::Button, Gtk::Toolbar, etc. corresponding to the stereotype.

One mechanism to define DSLs (based on UML, and “within” UML): Profiles.

Benefits for Languag Design Cont’d

.

For each DSL defined by a Profile, we immediately have
« in memory representations,

« modelling tools,

« file representations.

Note: here, the semantics of the stereotypes (and thus the language of
Gtk-UML) lies in the code-generator.

That's the first “reader” that understands these special stereotypes.
(And that's what's meant in the standard when they're talking about giving
stereotypes semantics).

One can also impose additional well-formedness rules, for instance that
certain components shall all implement a certain interface (and thus have
certain methods available). (Cf. [Stahl and Vélter, 2005].)

50757

57

Benefits for Languag Design

« Recall: we said that code-generators are possible “readers” of stereotypes.

« For example, (heavily simplifying) we could

introduce the stereotypes Button, Toolbar, ..

for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes
are clearly present.

instruct the code-generator to automatically add inheritance from
Gtk::Button, Gtk::Toolbar, etc. corresponding to the stereotype.

Et voila: we can model Gtk-GUIs and generate code for them.

One mechanism to define DSLs (based on UML, and “within” UML): Profiles.

50757

Benefits for Languag Design Cont’d

« One step further:

Nobody hinders us to obtain a model of UML (written in MOF),
throw out parts unnecessary for our purposes,

add (= integrate into the existing hierarchy) more adequat new
constructs, for instance, contracts or something more close to
hardware as interrupt or sensor or driver,

and maybe also stereotypes.

— a new language standing next to UML, CWM, etc.

« Drawback: the resulting language is not necessarily UML any more,
so we can’t use proven UML modelling tools.

» But we can use all tools for MOF (or MOF-like things).
For instance, Eclipse EMF/GMF/GEF.

Benefits for Languag Design

» Recall: we said that code-generators are possible “readers” of stereotypes.

« For example, (heavily simplifying) we could

introduce the stereotypes Button, Toolbar, ...

for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes
are clearly present.

.

instruct the code-generator to automatically add inheritance from
Gtk::Button, Gtk::Toolbar, etc. corresponding to the stereotype.

Et voila: we can model Gtk-GUIs and generate code for them.
= Another view:
* UML with these is a new i : Gtk-UML.
© Which lives on the same meta-level as UML (M2).
« It's a Domain Specific Modelling Language (DSL).

One mechanism to define DSLs (based on UML, and “within" UML): Profiles.

Benefits for Model (to Model) Transformation

« There are manifold applications for model-to-model transformations:
« For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.

This can now be defined as graph-rewriting rules on the level of
MOF.
The graph to be rewritten is the UML model

5057

535

Benefits for Model (to Model) Transformation

« There are manifold applications for model-to-model transformations:
« For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.

This can now be defined as graph-rewriting rules on the level of
MOF.
The graph to be rewritten is the UML model

Similarly, one could transform a Gtk-UML model into a UML model,
where the inheritance from classes like Gtk::Button is made explicit:

The transformation would add this class Gtk::Button and the
inheritance relation and remove the stereotype.

5357

Spedal Case: Code Generation

» Recall that we said that, e.g. Java code, can also be seen as a model.
So code-generation is a special case of model-to-model transformation;
only the destination looks quite different.

« Note: Code generation needn’t be as expensive as buying a modelling
tool with full fledged code generation.

« If we have the UML model (or the DSL model) given as an XML file,
code generation can be as simple as an XSLT script.
“Can be" in the sense of
“There may be situation where a graphical and abstract

representation of something is desired which has a clear and
direct mapping to some textual representation.”

In general, code generation can (in colloquial terms) become arbitrarily
difficult.

54/57

Benefits for Model (to Model) Transformation

« There are manifold applications for model-to-model transformations:
» For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.

This can now be defined as graph-rewriting rules on the level of
MOF.
The graph to be rewritten is the UML model

Similarly, one could transform a Gtk-UML model into a UML model,
where the inheritance from classes like Gtk::Button is made explicit:

The transformation would add this class Gtk::Button and the
inheritance relation and remove the stereotype.

£ Similarly, one could have a GUI-UML model transformed into a

3 Gtk-UML model, or a Qt-UML model.

The former a PIM (Platform Independent Model), the latter a PSM
(Platform Specific Model) — cf. MDA.

5357

Example: Model and XMl

((pt100)) | gather [descozy | update [(NET2270)
SensorA [T | ControllerA | T] UsbA

<unl version = 1.0 encoding = 'UTF-8’ 7>
<KMI xui.version = ’1.2’ xmlns:UML = ’org.ong.xni.namespace.UML’ Cimestamp = ’Mon Feb 02 18:23:12 CET 2009°>
<XHI.content>
<UML:Model xmi.id = '...">
<UML:Nemespace .cunedELenent>
<UML:Class xmi.id = *...’ name = 'Sensord’>
<UML:Node1ELement . stereotype>
<UML:Sterectype name = ’pt100’/>
</UML:NodelElenent .stereotype>
</UML:Class>
<UML:Class xmi.id = *...’ name = 'Controllerh’>
<UML:Hode1ELement . stereotype>
<UML:Stereotype name = ’65002'/>
</UML:Node1Elenent .stereotype>
</UML:Class>
<UML:Class xmi.id = ’...° name = 'UsbA’>
<UML:Hode1ELement . stereotype>
<UML:Sterestype name = 'NET2270’/>
</UML:Node1ELenent .stereotype>
</UML:Class>
<UML:Association xmi.i
<UML: Association xmi.i
</UML:Namespace .ounedElement>
</UML:Mode1>
</XUT.content>
RV

* name = 'in’ >...</UML:Association>
* name = ‘out’ >...</UML:Association>

5557

Spedal Case: Code Generation

» Recall that we said that, e.g. Java code, can also be seen as a model.

So code-generation is a special case of model-to-model transformation;
only the destination looks quite different.

References

545

56/5

References

[Fischer and Wehrheim, 2000] Fischer, C. and Wehrheim, H. (2000). Behavioural
subtyping relations for object-oriented formalisms. In Rus, T., editor, AMAST,
number 1816 in Lecture Notes in Computer Science. Springer-Verlag

[Liskov, 1988] Liskov, B. (1988). Data abstraction and hierarchy. SIGPLAN Not.,
23(5):17-34.

[Liskov and Wing, 1994] Liskov, B. H. and Wing, J. M. (1994). A behavioral notion
of subtyping. ACM Transactions on Programming | and Systems
(TOPLAS), 16(6):1811-1841.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

[Stahl and Vélter, 2005] Stahl, T. and Vélter, M. (2005). Modellgetriebene

< Softwareentwicklung. dpunkt.verlag, Heidelberg.

5757

