
SoftwareDesign, Modelli ng andAnalysis in UML

Lecture20: InheritanceIII

2012-02-14

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
2
0

–
2
0
1
2
-0

2
-1

4
–

m
a
in

–

Contents & Goals

Last Lecture:

• Inheritance and Sub-Typing

• Early vs. late binding of behavioural features

• Meta-Modelling

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What is the subset, what the uplink semantics of inheritance?

• What’s the effect of inheritance on LSCs, State Machines, System States?

• What are anticipated benefits of Meta-Modelling?

• What is MOF?

• Content:

• MOF

• Two approaches to obtain desired semantics: domain inclusion semantics

and uplink semantics

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
p
re

li
m

–

2/46

Recall : Meta-Modelli ngPrinciple

–
2
0

–
2
0
1
2
-0

2
-1

4
–

m
a
in

–

3/46

Recall :
Modelli ngvs. Meta-Modelli ng

Class

name : Str

Property

name : Str

Type

name : Str

C

v : Z
:Class

name = C

:Property

name = v

:Type

name = Z

S = ({Z},
{C}, {v},
{C 7→ v}),D ΣDS

:C

v = 0

instance-of

σ = {u 7→
{v 7→ 0}}

∈

Meta-
Model
(M2)

Model
(M1)

Instance
(M0)

–
1
9

–
2
0
1
2
-0

2
-0

8
–

S
p
ri
n
ci

p
le

–

39/57

–
2
0

–
2
0
1
2
-0

2
-1

4
–

m
a
in

–

4/46

Meta Object Facilit y (MOF)

–
2
0

–
2
0
1
2
-0

2
-1

4
–

m
a
in

–

5/46

Open Questions...

• Now you’ve been “tricked” again. Twice.

• We didn’t tell what the modelling language for meta-modelling is.

• We didn’t tell what the is-instance-of relation of this language is.

• Idea: have a minimal object-oriented core comprising the notions of
class, association, inheritance, etc. with “self-explaining” semantics.

• This is Meta Object Facility (MOF),
which (more or less) coincides with UML Infrastructure [OMG, 2007a].

• So: things on meta level

• M0 are object diagrams/system states

• M1 are words of the language UML

• M2 are words of the language MOF

• M3 are words of the language . . .

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
m

o
f
–

6/46

MOF Semantics

• One approach:

• Treat it with our signature-based theory

• This is (in effect) the right direction, but may require new (or extended)
signatures for each level.
(For instance, MOF doesn’t have a notion of Signal, our signature has.)

• Other approach:

• Define a generic, graph based “is-instance-of” relation.

• Object diagrams (that are graphs) then are the system states —
not only graphical representations of system states.

• If this works out, good: We can easily experiment with different language
designs, e.g. different flavours of UML that immediately have a semantics.

• Most interesting: also do generic definition of behaviour within a closed
modelling setting, but this is clearly still research, e.g.
[Buschermöhle and Oelerink, 2008]

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
m

o
f
–

7/46

Meta-Modelli ng: (Anticipated) Benefits

–
2
0

–
2
0
1
2
-0

2
-1

4
–

m
a
in

–

8/46

Benefits: Overview

• We’ll (superficially) look at three aspects:

• Benefits for Modelling Tools.

• Benefits for Language Design.

• Benefits for Code Generation and MDA.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
b
en

efi
ts

–

9/46

Benefits for Modelli ngTools

• The meta-model MU of UML immediately provides a data-structure

representation for the abstract syntax (∼ for our signatures).

If we have code generation for UML models, e.g. into Java,
then we can immediately represent UML models in memory for Java.

(Because each MOF model is in particular a UML model.)

• There exist tools and libraries called MOF-repositories, which can
generically represent instances of MOF instances (in particular UML
models).

And which can often generate specific code to manipulate instances of
MOF instances in terms of the MOF instance.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
b
en

efi
ts

–

10/46

Benefits for Modelli ngToolsCont’d

• And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.

→ XML Metadata Interchange (XMI)

• Note: A priori, there is no graphical information in XMI (it is only
abstract syntax like our signatures) → OMG Diagram Interchange.

• Note: There are slight ambiguities in the XMI standard.

And different tools by different vendors often seem to lie at opposite ends on
the scale of interpretation. Which is surely a coincidence.

In some cases, it’s possible to fix things with, e.g., XSLT scripts, but full
vendor independence is today not given.

Plus XMI compatibility doesn’t necessarily refer to Diagram Interchange.

• To re-iterate: this is generic for all MOF-based modelling languages
such as UML, CWM, etc.
And also for Domain Specific Languages which don’t even exit yet.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
b
en

efi
ts

–

11/46

Benefits: Overview

• We’ll (superficially) look at three aspects:

• Benefits for Modelling Tools. ✔

• Benefits for Language Design.

• Benefits for Code Generation and MDA.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
b
en

efi
ts

–

12/46

Benefits for LanguageDesign

• Recall: we said that code-generators are possible “readers” of stereotypes.

• For example, (heavily simplifying) we could

• introduce the stereotypes Button, Toolbar, ...

• for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes
are clearly present.

• instruct the code-generator to automatically add inheritance from
Gtk::Button, Gtk::Toolbar, etc. corresponding to the stereotype.

Et voilà: we can model Gtk-GUIs and generate code for them.

• Another view:

• UML with these stereotypes is a new modelling language: Gtk-UML.

• Which lives on the same meta-level as UML (M2).

• It’s a Domain Specific Modelling Language (DSL).

One mechanism to define DSLs (based on UML, and “within” UML): Profiles.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
b
en

efi
ts

–

13/46

Benefits for LanguageDesignCont’d

• For each DSL defined by a Profile, we immediately have

• in memory representations,

• modelling tools,

• file representations.

• Note: here, the semantics of the stereotypes (and thus the language of
Gtk-UML) lies in the code-generator.

That’s the first “reader” that understands these special stereotypes.
(And that’s what’s meant in the standard when they’re talking about giving
stereotypes semantics).

• One can also impose additional well-formedness rules, for instance that
certain components shall all implement a certain interface (and thus have
certain methods available). (Cf. [Stahl and Völter, 2005].)

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
b
en

efi
ts

–

14/46

Benefits for LanguageDesignCont’d

• One step further:

• Nobody hinders us to obtain a model of UML (written in MOF),

• throw out parts unnecessary for our purposes,

• add (= integrate into the existing hierarchy) more adequat new
constructs, for instance, contracts or something more close to
hardware as interrupt or sensor or driver,

• and maybe also stereotypes.

→ a new language standing next to UML, CWM, etc.

• Drawback: the resulting language is not necessarily UML any more,
so we can’t use proven UML modelling tools.

• But we can use all tools for MOF (or MOF-like things).

For instance, Eclipse EMF/GMF/GEF.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
b
en

efi
ts

–

15/46

Benefits: Overview

• We’ll (superficially) look at three aspects:

• Benefits for Modelling Tools. ✔

• Benefits for Language Design. ✔

• Benefits for Code Generation and MDA.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
b
en

efi
ts

–

16/46

Benefits for Model (to Model) Transformation

• There are manifold applications for model-to-model transformations:

• For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.

This can now be defined as graph-rewriting rules on the level of
MOF.
The graph to be rewritten is the UML model

• Similarly, one could transform a Gtk-UML model into a UML model,
where the inheritance from classes like Gtk::Button is made explicit:

The transformation would add this class Gtk::Button and the
inheritance relation and remove the stereotype.

• Similarly, one could have a GUI-UML model transformed into a
Gtk-UML model, or a Qt-UML model.

The former a PIM (Platform Independent Model), the latter a PSM
(Platform Specific Model) — cf. MDA.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
b
en

efi
ts

–

17/46

Special Case: CodeGeneration

• Recall that we said that, e.g. Java code, can also be seen as a model.

So code-generation is a special case of model-to-model transformation;
only the destination looks quite different.

• Note: Code generation needn’t be as expensive as buying a modelling
tool with full fledged code generation.

• If we have the UML model (or the DSL model) given as an XML file,
code generation can be as simple as an XSLT script.

“Can be” in the sense of

“There may be situation where a graphical and abstract

representation of something is desired which has a clear and

direct mapping to some textual representation.”

In general, code generation can (in colloquial terms) become arbitrarily

difficult.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
b
en

efi
ts

–

18/46

Example: Model andXMI

〈〈pt100〉〉

SensorA
〈〈65C02〉〉

ControllerA
〈〈NET2270〉〉

UsbA
gather

1

update

1

<?xml version = ’1.0’ encoding = ’UTF-8’ ?>

<XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML’ timestamp = ’Mon Feb 02 18:23:12 CET 2009’>

<XMI.content>

<UML:Model xmi.id = ’...’>

<UML:Namespace.ownedElement>

<UML:Class xmi.id = ’...’ name = ’SensorA’>

<UML:ModelElement.stereotype>

<UML:Stereotype name = ’pt100’/>

</UML:ModelElement.stereotype>

</UML:Class>

<UML:Class xmi.id = ’...’ name = ’ControllerA’>

<UML:ModelElement.stereotype>

<UML:Stereotype name = ’65C02’/>

</UML:ModelElement.stereotype>

</UML:Class>

<UML:Class xmi.id = ’...’ name = ’UsbA’>

<UML:ModelElement.stereotype>

<UML:Stereotype name = ’NET2270’/>

</UML:ModelElement.stereotype>

</UML:Class>

<UML:Association xmi.id = ’...’ name = ’in’ >...</UML:Association>

<UML:Association xmi.id = ’...’ name = ’out’ >...</UML:Association>

</UML:Namespace.ownedElement>

</UML:Model>

</XMI.content>

</XMI>

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
b
en

efi
ts

–

19/46

Domain Inclusion Semantics

–
2
0

–
2
0
1
2
-0

2
-1

4
–

m
a
in

–

20/46

Domain Inclusion Structure

Let S = (T,C, V, atr , F,mth , ⊳) be a signature.

Now a structure D
• [as before] maps types, classes, associations to domains,

• [for completeness] methods to transformers,

• [as before] indentities of instances of classes not (transitively) related by
generalisation are disjoint,

• [changed] the indentities of a super-class comprise all identities of
sub-classes, i.e.

∀C ∈ C : D(C))
⋃

C⊳D

D(D).

Note: the old setting coincides with the special case ⊳ = ∅.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
d
o
m

in
cl

–

21/46

Domain Inclusion System States

Now: a system state of S wrt. D is a type-consistent mapping

σ : D(C) 7→ (V 7→ (D(T) ∪D(C0,1) ∪D(C∗)))

that is, for all u ∈ dom(σ) ∩D(C),

• [as before] σ(u)(v) ∈ D(τ) if v : τ , τ ∈ T or τ ∈ {C∗, C0,1}.

• [changed] dom(σ(u)) =
⋃

C0�C atr(C0),

Example:
C

x : Int

D

x : Int

y : Int

n

0, 1

Note: the old setting still coincides with the special case ⊳ = ∅.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
d
o
m

in
cl

–

22/46

Preliminaries: Expression Normalisation

Recall:

A

v : Int

C

v : Int

D

n

0, 1• we want to allow, e.g., “context D inv : v < 0”.

• we assume fully qualified names, e.g. C::v.

Intuitively, v shall denote the
“most special more general” C::v according to ⊳.

To keep this out of typing rules, we assume that the following normalisation

has been applied to all OCL expressions and all actions.

• Given expression v (or f) in context of class D, as determined by, e.g.

• by the (type of the) navigation expression prefix, or

• by the class, the state-machine where the action occcurs belongs to,

• similar for method bodies,

• normalise v to (= replace by) C::v,

• where C is the greatest class wrt. “�” such that

• C � D and C::v ∈ atr(C).

If no (unique) such class exists, the model is considered not well-formed; the
expression is ambiguous. Then: explicitly provide the qualified name.–

2
0

–
2
0
1
2
-0

2
-1

4
–

S
d
o
m

in
cl

–

23/46

OCL Syntax andTyping

• Recall (part of the) OCL syntax and typing: v, r ∈ V ; C, D ∈ C
expr ::= v(expr1) : τC → τ(v), if v : τ ∈ T

| r(expr1) : τC → τD, if r : D0,1

| r(expr1) : τC → Set(τD), if r : D∗

The definition of the semantics remains (textually) the same.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
d
o
m

in
cl

–

24/46

More Interesting: Well -Typed-ness
C

v : Int

D

• We want

context D inv : v < 0

to be well-typed.

Currently it isn’t because

v(expr1) : τC → τ(v)

but A ⊢ self : τD.

(Because τD and τC are still different types, although dom(τD) ⊂ dom(τC).)

• So, add a (first) new typing rule

A ⊢ expr : τD

A ⊢ expr : τC

, if C � D. (Inh)

Which is correct in the sense that, if ‘expr ’ is of type τD, then we can use it
everywhere, where a τC is allowed.

The system state is prepared for that.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
d
o
m

in
cl

–

25/46

Well -Typed-nesswith Visibilit y Cont’d

A, D ⊢ expr : τC

A, D ⊢ C::v(expr) : τ
, ξ = + (Pub)

A, D ⊢ expr : τC

A, D ⊢ C::v(expr) : τ
, ξ = #, C � D (Prot)

A, D ⊢ expr : τC

A, D ⊢ C::v(expr) : τ
, ξ = −, C = D (Priv)

〈C::v : τ, ξ, v0, P 〉 ∈ atr(C).

Example:

context/
inv

(n.)v1 < 0 (n.)v2 < 0 (n.)v3 < 0

C

D

B

C

− v1 : Int

v2 : Int

+ v3 : Int

D

B

0, 1 n

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
d
o
m

in
cl

–

26/46

Satisfying OCL Constraints (Domain Inclusion)

• Let M = (CD ,OD ,SM ,I) be a UML model, and D a structure.

• We (continue to) say M |= expr for context C inv : expr0
︸ ︷︷ ︸

=expr

∈ Inv(M) iff

∀π = (σi, εi)i∈N ∈ JMK ∀ i ∈ N ∀u ∈ dom(σi) ∩D(C) :

IJexpr0K(σi, {self 7→ u}) = 1.

• M is (still) consistent if and only if it satisfies all constraints in Inv(M).

• Example:
C

x : Int

D

n

0, 1

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
d
o
m

in
cl

–

27/46

Transformers (Domain Inclusion)

• Transformers also remain the same, e.g. [VL 12, p. 18]

update(expr1, v, expr2) : (σ, ε) 7→ (σ′, ε)

with

σ′ = σ[u 7→ σ(u)[v 7→ IJexpr2K(σ)]]

where u = IJexpr1K(σ).

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
d
o
m

in
cl

–

28/46

Semantics of MethodCalls

• Non late-binding: clear, by normalisation.

• Late-binding:
Construct a method call transformer, which is applied to all method calls.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
d
o
m

in
cl

–

29/46

Inheritanceand StateMachines: Triggers

• Wanted: triggers shall also be sensitive for inherited events,
sub-class shall execute super-class’ state-machine (unless overridden).

(σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′) if

• ∃u ∈ dom(σ) ∩D(C) ∃uE ∈ D(E) : uE ∈ ready(ε, u)

• u is stable and in state machine state s, i.e. σ(u)(stable) = 1 and σ(u)(st) = s,

• a transition is enabled, i.e.

∃ (s, F, expr , act , s
′) ∈→ (SMC) : F = E ∧ IJexprK(σ̃) = 1

where σ̃ = σ[u.params
E
7→ ue].

and

• (σ′, ε′) results from applying tact to (σ, ε) and removing uE from the ether, i.e.

(σ′′
, ε

′) = tact (σ̃, ε ⊖ uE),

σ
′ = (σ′′[u.st 7→ s

′
, u.stable 7→ b, u.params

E
7→ ∅])|D(C)\{uE}

where b depends:

• If u becomes stable in s′, then b = 1. It does become stable if and only if there
is no transition without trigger enabled for u in (σ′, ε′).

• Otherwise b = 0.

• Consumption of uE and the side effects of the action are observed, i.e.

cons = {(u, (E, σ(uE)))}, Snd = Obstact (σ̃, ε ⊖ uE).

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
d
o
m

in
cl

–

30/46

Domain Inclusion andInteractions

C D

E

F

C

C’

E

F

• Similar to satisfaction of OCL expressions above:

• An instance line stands for all instances of C (exact or inheriting).

• Satisfaction of event observation has to take inheritance
into account, too, so we have to fix, e.g.

σ, cons , Snd |=β E!
x,y

if and only if

β(x) sends an F -event to βy where E � F .

• Note: C-instance line also binds to C′-objects.–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
d
o
m

in
cl

–

31/46

Uplink Semantics

–
2
0

–
2
0
1
2
-0

2
-1

4
–

m
a
in

–

32/46

Uplink Semantics

• Idea:

• Continue with the existing definition of structure, i.e. disjoint
domains for identities.

• Have an implicit association from the child to each parent part
(similar to the implicit attribute for stability).

C

x : Int

D

• Apply (a different) pre-processing to make appropriate use of that
association, e.g. rewrite (C++)

x = 0;

in D to

uplinkC -> x = 0;–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
u
p
li
n
k

–

33/46

Pre-Processing for theUplink Semantics

• For each pair C ⊳ D, extend D by a (fresh) association

uplinkC : C with µ = [1, 1], ξ = +

(Exercise: public necessary?)

• Given expression v (or f) in the context of class D,

• let C be the smallest class wrt. “�” such that
• C � D, and
• C::v ∈ atr(D)

• then there exists (by definition) C ⊳ C1 ⊳ . . . ⊳ Cn ⊳ D,

• normalise v to (= replace by)

uplinkCn
-> · · · -> uplinkC1

.C::v

• Again: if no (unique) smallest class exists,
the model is considered not well-formed; the expression is ambiguous.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
u
p
li
n
k

–

34/46

Uplink Structure, System State, Typing

• Definition of structure remains unchanged.

• Definition of system state remains unchanged.

• Typing and transformers remain unchanged —
the preprocessing has put everything in shape.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
u
p
li
n
k

–

35/46

Satisfying OCL Constraints (Uplink)

• Let M = (CD ,OD ,SM ,I) be a UML model, and D a structure.

• We (continue to) say

M |= expr

for

context C inv : expr0
︸ ︷︷ ︸

=expr

∈ Inv(M)

if and only if

∀π = (σi)i∈N ∈ JMK
∀ i ∈ N

∀u ∈ dom(σi) ∩D(C) :

IJexpr0K(σi, {self 7→ u}) = 1.

• M is (still) consistent if and only if it satisfies all constraints in Inv(M).

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
u
p
li
n
k

–

36/46

Transformers (Uplink)

• What has to change is the create transformer:

create(C, expr , v)

• Assume, C’s inheritance relations are as follows.

C1,1 ⊳ . . . ⊳ C1,n1
⊳ C,

. . .

Cm,1 ⊳ . . . ⊳ Cm,nm
⊳ C.

• Then, we have to

• create one fresh object for each part, e.g.

u1,1, . . . , u1,n1
, . . . , um,1, . . . , um,nm

,

• set up the uplinks recursively, e.g.

σ(u1,2)(uplinkC1,1
) = u1,1.

• And, if we had constructors, be careful with their order.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
u
p
li
n
k

–

37/46

LateBinding (Uplink)

• Employ something similar to the “mostspec” trick (in a minute!). But the result
is typically far from concise.

(Related to OCL’s isKindOf() function, and RTTI in C++.)

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
u
p
li
n
k

–

38/46

Domain Inclusionvs. Uplink Semantics

–
2
0

–
2
0
1
2
-0

2
-1

4
–

m
a
in

–

39/46

Cast-Transformers

• C c;

• D d;

• Identity upcast (C++):

• C∗ cp = &d; // assign address of ‘d’ to pointer ‘cp’

• Identity downcast (C++):

• D∗ dp = (D∗)cp; // assign address of ‘d’ to pointer ‘dp’

• Value upcast (C++):

• ∗c = ∗d; // copy attribute values of ‘d’ into ‘c’, or,

// more precise, the values of the C-part of ‘d’

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
d
iff

–

40/46

Casts in Domain Inclusion andUplink Semantics

Domain Inclusion Uplink

C∗ cp

= &d;
easy: immediately compatible
(in underlying system state) be-
cause &d yields an identity fromD(D) ⊂ D(C).

difficult: we need the identity
of the D whose C-slice is de-
noted by cp.
(See next slide.)

D∗ dp =
(D∗)cp;

easy: the value of cp is in D(D)∩D(C) because the pointed-to ob-
ject is a D.

Otherwise, error condition.

easy: By pre-processing,
C∗ cp = d -> uplink

C
;

∗c = ∗d; bit difficult: set (for all C � D)
(C)(· , ·) : τD × Σ → Σ|atr(C)

(u, σ) 7→ σ(u)|atr(C)

Note: σ′ = σ[uC 7→ σ(uD)] is
not type-compatible!

easy: By pre-processing,
∗c = ∗(d -> uplink

C
);

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
d
iff

–

41/46

Identity Downcast with Uplink Semantics

• Recall (C++): D d; C∗ cp = &d; D∗ dp = (D∗)cp;

• Problem: we need the identity of the D whose C-slice is denoted by cp.

• One technical solution:

• Give up disjointness of domains for one additional type comprising all
identities, i.e. have

all ∈ T , D(all) =
⋃

C∈C D(C)

• In each �-minimal class have associations “mostspec” pointing to most

specialised slices, plus information of which type that slice is.

• Then downcast means, depending on the mostspec type (only finitely
many possibilities), going down and then up as necessary, e.g.

switch(mostspec type){
case C :
dp = cp -> mostspec -> uplink

Dn
-> . . . -> uplink

D1
-> uplink

D
;

. . .
}

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
d
iff

–

42/46

Domain Inclusionvs. Uplink Semantics: Differences

• Note: The uplink semantics views inheritance as an abbreviation:

• We only need to touch transformers (create) — and if we had constructors, we

didn’t even needed that (we could encode the recursive construction of the upper

slices by a transformation of the existing constructors.)

• So:

• Inheritance doesn’t add expressive power.

• And it also doesn’t improve conciseness soo dramatically.

As long as we’re “early binding”, that is...

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
d
iff

–

43/46

Domain Inclusionvs. Uplink Semantics: Motives

• Exercise:

What’s the point of

• having the tedious adjustments of the theory

if it can be approached technically?

• having the tedious technical pre-processing

if it can be approached cleanly in the theory?

–
2
0

–
2
0
1
2
-0

2
-1

4
–

S
d
iff

–

44/46

References

–
2
0

–
2
0
1
2
-0

2
-1

4
–

m
a
in

–

45/46

References

[Buschermöhle and Oelerink, 2008] Buschermöhle, R. and Oelerink, J. (2008). Rich
meta object facility. In Proc. 1st IEEE Int’l workshop UML and Formal Methods.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

[Stahl and Völter, 2005] Stahl, T. and Völter, M. (2005). Modellgetriebene
Softwareentwicklung. dpunkt.verlag, Heidelberg.

–
2
0

–
2
0
1
2
-0

2
-1

4
–

m
a
in

–

46/46

