— 15 — 2012-01-18 — main —

Software Design, Modelling and Analysis in UML

Lecture 15: Hierarchical Sate Machines |11
2012-01-18

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 15 — 2012-01-18 — Sprelim —

Last Lecture:

o Hierarchical State Machines: partial order, “Ica”, orthogonality, ...

This Lecture:
o Educational Objectives: Capabilities for following tasks/questions.
o What does this hierarchical State Machine mean? What may happen if |
inject this event?
o What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ...

o Content:
o Legal Transitions
o Exit/Entry, internal transitions
o History and others

e Rhapsody Demo

2/36

— 15 — 2012-01-18 — main

Composite Sates
(formalisation follows [Damm et al., 2003])

3/36

Legal Transitions

— 14 — 2012-01-17 — Shierstm —

A hiearchical state-machine (S, kind, region, —, 1, annot) is called well-
formed if and only if for all transitions t €—,

[(i\ source and destination are consistent, i.e. | source(t) and | target(t),] recliecuct

(il » source (and destination) states are pairwise edl,

i.e.
‘ ﬂ"”lo‘;a\«a(

forall s,s" € source(t) (€ target(t)), s L s,

(u'i-‘) the top state is neither
source nor destination, i.e.

top & source(t) U source(t). /

Recall: final states are
not sources of transitions. (;'3 do yof

Example:

CLAm:
‘ Gi)=>0)

14/46

The Depth of Sates

— 15 — 2012-01-18 — Shierstm —

depth(top) = 0,
depth(s’) = depth(s) + 1, for all s’ € child(s)

+p(d

Example:

* 14, %] cns.
° ff;, "{k; lu"{ cgus.

]
.;&lff}mf cas

— 15 — 2012-01-18 — Shierstm —

5/36
Enabledness in Hierarchical State-Machines
The scope (“set of possibly affected states”) of a transition ¢ is the least
common region of Ml e/
source(t) U target(t). wet. b &

Two transitions t1,to are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

The priority of transition ¢ is the depth of its innermost source state, i.e.

prio(t) := max{depth(s) | s € source(t)}

A set of transitions T C— is enabled in an object u if and only if
T is consistent,
T is maximal wrt. priority,
all transitions in T' share the same trigger,
all guards are satisfied by o(u), and
for all t € T, the source states are active, i.e.

source(t) C o(u)(st) (CS).
6/36

Transitions in Hierarchical Sate-Machines

— 15 — 2012-01-18 — Shierstm

— 15 — 2012-01-18 — main

Let T be a set of transitions enabled in w.

Then (o,¢) {eons,Snd), (o, if
v

o’ (u)(st) consists of the target states of J, (aud H»7 rcecsve parenk)

i.e. for simple states the simple states themselves, for composite§
states the initial states,

o', €, cons, and Snd are the effect of firing each transition t € T
one by one, in any order, i.e. foreacht € T,

the exit transformer of all affected states, highest depth first,
the transformer of ¢,
the entry transformer of all affected states, lowest depth first.

~ adjust (2.), (3.), (5.) accordingly.

736

Entry/Do/Exit Actions, Internal Transitions

8/36

Entry/Do/Exit Actions

— 15 — 2012-01-18 — Sentryexit —

51

In general, with each state entry/ act{™”

s € S there is associated dol/“ttljo ' trigd)/act | entry/acte™
an entry, a do, and an exit exit/ acti™ do/actde
action (default: skip) Er/act, exit/ actgt
a possibly empty set of o
trigger/action pairs called \M/
internal transitions,

(default: empty). E1,...,E, € édl‘entry', ‘do’, ‘exit’ are reserved names!

Recall: each action's supposed to have a transformer. Here: t ey, t, e, ...
acty acty

Taking the transition above then amounts to applying

acisyr © Lact O tacrsir) ~ €t (g (€57¢6)

instead of only

~+ adjust (2.), (3.) accordingly.

Internal Transitions

— 15 — 2012-01-18 — Sentryexit —

E—,/
£>

tact

s)

S1

entry

entry/ act]
do/actd°
exit/ act$
Ei/actp,

E,/actg,

tr[gd]/act

9/36

entry/acts™™

do/actd®

exit/ act§¥"

For internal transitions, taking the one for F1, for instance, still

amounts to taking only lacts, -

Intuition: The state is neither left nor entered, so: no exit, no entry.

~ adjust (2.) accordingly.

Note: internal transitions also start a run-to-completion step.

Note: the standard seems not to clarify whether internal transitions have
priority over regular transitions with the same trigger at the same state.

Some code generators assume that internal transitions have priority!

1036

Alternative View: Entry/Exit/Internal as Abbreviations

— 15 — 2012-01-18 — Sentryexit —

tro[gdo]/ acto entry/act]
exit/ act

Ei/actg,

50

e ... as abbrevation for ...

"’o(q‘l'!]/
wﬂo,am“m’

€./

entry

try[gd,]/ acty

tralgdsy]/acts

52
entry

entry/acts

exit/ act§™

Alternative View: Entry/Exit/Internal as Abbreviations

— 15 — 2012-01-18 — Sentryexit —

trolgdol/acto | entry/act§

exit/ act$®
Ei/actg,

e ... as abbrevation for ...

entry

try[gd,]/ acty

tralgds]/acts

52
entry

entry/acts,

exit/ act§¥t

11/36

o That is: Entry/Internal/Exit don't add expressive power to Core State Machines.

If internal actions should have priority, s1 can be embedded into an OR-state

(see later).

o Abbreviation may avoid confusion in context of hierarchical states (see later).

1136

Do Actions

— 15 — 2012-01-18 — Sentryexit —

— 15 — 2012-01-18 — main —

S1

entry

entry/act]
do/actée

tr[gd]/act

exit/ act§"

E1 / actEl

E,/actg,

Intuition: after entering a state, start its do-action.

If the do-action terminates,

then the state is considered completed,

otherwise,

entry/acty"™

do/ act$°

exit/ act§¥"

if the state is left before termination, the do-action is stopped.

Recall the overall UML State Machine philosophy:

“An object is either idle or doing a run-to-completion step.”

Now, what is it exactly while the do action is executing...?

12/36

The Concept of History, and Other Pseudo-Sates

13/36

History and Deep History: By Example

— 15 — 2012-01-18 — Shist —

susp @ What happens on...
/; Ry/ A/ R.?

€0, S5
Ry?
SOI SZ
éB,C, S, Rs?
(o/ Silszl Sgl-Sl-(Sp/ 53
A,B?S, Rq?
So. 31, Sy, 53, SWP S3
A,B,C,D, ESR.?
Sa $a, $2, 83, Sy, &, $sp, S
ES \P
A,B,C,D,R;? e
/89,5, 53, Sy, g, S9p, S5 dasp
“,
4-.4/%
14/36

— 15 — 2012-01-18 — Shist —

Junction and Choice Nl 5.>” C@o

?\)O oom

N
9
Junction (“static conditional branch”): N
-
QQ)/
good: abbreviation 9/%,2

unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

at best, start with trigger, branch into conditions, then apply actions

Choice: (“dynamic conditional branch”) ﬁ<>/
AN
evil: may get stuck
enters the transition without knowing whether there's an enabled path
at best, use “else” and convince yourself that it cannot get stuck
maybe even better: avoid

Note: not so sure about naming and symbols, e.g.,

I’d guessed it was just the other way round...
15/36

Entry and Exit Point, Submachine Sate, Terminate

— 15 — 2012-01-18 — Shist —

— 15 — 2012-01-18 — main

Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

Can even be taken from a different state-machine for re-use.

Entry/exit points O ®
Provide connection points for finer integration into the current level,

than just via initial state. é ;)
_> =

Semantically a bit tricky:
First the exit action of the exiting state,
then the actions of the transition,
then the entry actions of the entered state,

then action of the transition from
the entry point to an internal state,

and then that internal state’s entry action.

Terminate Pseudo-State (2—X

When a terminate pseudo-state is reached,

the object taking the transition is immediately killed. 16/36

Contemporary UML Modelling Tools

29/36

— 15 — 2012-01-18 — main —

References

35/36

References

— 15 — 2012-01-18 — main —

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody
statecharts: not all models are created equal. Software and Systems Modeling,
6(4):415-435.

[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A formal
semantics for a UML kernel language 1.2. I1ST/33522/WP 1.1/D1.1.2-Part1, Version 1.2.

[Fecher and Schénborn, 2007] Fecher, H. and Schénborn, J. (2007). UML 2.0 state
machines: Complete formal semantics via core state machines. In Brim, L., Haverkort,

B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume 4346 of LNCS,
pages 244-260. Springer.

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with
statecharts. IEEE Computer, 30(7):31-42.

[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics of
statecharts. In Ehrig, H., Damm, W., GroBe-Rhode, M., Reif, W., Schnieder, E., and
Westkamper, E., editors, Integration of Software Specification Techniques for Applications
in Engineering, number 3147 in LNCS, pages 325—-354. Springer-Verlag.

[OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version 2.1.2.
Technical Report formal /07-11-02.

36/36

