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Contents & Goals

Last Lecture:

• Live Sequence Charts Semantics

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s the Liskov Substitution Principle?

• What is late/early binding?

• What is the subset, what the uplink semantics of inheritance?

• What’s the effect of inheritance on LSCs, State Machines, System States?

• What’s the idea of Meta-Modelling?

• Content:

• Inheritance in UML: concrete syntax

• Liskov Substitution Principle — desired semantics

• Two approaches to obtain desired semantics
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Course Map

UML
M

o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr ), SM

M = (ΣDS , AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi, Snd i))i∈N

G = (N, E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔

✔

✔

✔

✔✔

✔

✔

✔

✔
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Inheritance: Syntax
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Inheritance: Generalisation Relation

C

D1 D2

• Alternative renderings:

C

D1 D2

C

D1 D2

C

D1 D2

• Read:

• C generalises D1 and D2; C is a generalisation of D1 and D2,

• D1 and D2 specialise C; D1 is a (specialisation of) C,

• D1 is a C; D2 is a C.

• Well-formedness rule: No cycles in the generalisation relation.
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Abstract Syntax

Recall: a signature (with signals) is a tuple S = (T,C, V, atr ).

Now (finally): extend toS = (T,C, V, atr , F,mth , ⊳)

where F/mth are methods, analogously to attributes and

⊳ ⊆ (C × C ) ∪ (E × E )

is a generalisation relation such that C ⊳
+ C for no C ∈ C (“acyclic”).

C ⊳ D reads as

• C is a generalisation of D,

• D is a specialisation of C,

• D inherits from C,

• D is a sub-class of C,

• C is a super-class of D,

• . . .
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MappingConcrete to Abstract Syntax by Example

C0

x : Int

C1

D

x : Int

C2

Note: we can have multiple inheritance.–
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Reflexive, TransitiveClosure of Generalisation

Definition. Given classes C0, C1, D ∈ C , we say D inherits from
C0 via C1 if and only if there are C1

0 , . . . Cn
0 , C1

1 , . . . Cm
1 ∈ C such

that

C0 ⊳ C1
0 ⊳ . . . Cn

0 ⊳ C1 ⊳ C1
1 ⊳ . . . Cm

1 ⊳ D.

We use ‘�’ to denote the reflexive, transitive closure of ‘⊳’.

In the following, we assume

• that all attribute (method) names are of the form

C::v, C ∈ C ∪ E (C::f, C ∈ C ),

• that we have C::v ∈ atr(C) resp. C::f ∈ mth(C) if and only if v (f)
appears in an attribute (method) compartment of C in a class diagram.

We still want to accept “context C inv : v < 0”, which v is meant? Later!
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