
SoftwareDesign, Modelli ng andAnalysis in UML

Lecture 18: InheritanceI

2012-02-01

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
1
8

–
2
0
1
2
-0

2
-0

1
–

m
a
in

–

Contents & Goals

Last Lecture:

• Live Sequence Charts Semantics

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s the Liskov Substitution Principle?

• What is late/early binding?

• What is the subset, what the uplink semantics of inheritance?

• What’s the effect of inheritance on LSCs, State Machines, System States?

• What’s the idea of Meta-Modelling?

• Content:

• Inheritance in UML: concrete syntax

• Liskov Substitution Principle — desired semantics

• Two approaches to obtain desired semantics

–
1
8

–
2
0
1
2
-0

2
-0

1
–

S
p
re

li
m

–

2/87



Course Map

UML
M

o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr ), SM

M = (ΣDS , AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi, Snd i))i∈N

G = (N, E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔

✔

✔

✔

✔✔

✔

✔

✔

✔

–
1
8

–
2
0
1
2
-0

2
-0

1
–

m
a
in

–

3/87

Inheritance: Syntax

–
1
8

–
2
0
1
2
-0

2
-0

1
–

m
a
in

–

4/87



Inheritance: Generalisation Relation

C

D1 D2

• Alternative renderings:

C

D1 D2

C

D1 D2

C

D1 D2

• Read:

• C generalises D1 and D2; C is a generalisation of D1 and D2,

• D1 and D2 specialise C; D1 is a (specialisation of) C,

• D1 is a C; D2 is a C.

• Well-formedness rule: No cycles in the generalisation relation.

–
1
8

–
2
0
1
2
-0

2
-0

1
–

S
sy

n
ta

x
–

5/87

Abstract Syntax

Recall: a signature (with signals) is a tuple S = (T,C, V, atr ).

Now (finally): extend toS = (T,C, V, atr , F,mth , ⊳)

where F/mth are methods, analogously to attributes and

⊳ ⊆ (C × C ) ∪ (E × E )

is a generalisation relation such that C ⊳
+ C for no C ∈ C (“acyclic”).

C ⊳ D reads as

• C is a generalisation of D,

• D is a specialisation of C,

• D inherits from C,

• D is a sub-class of C,

• C is a super-class of D,

• . . .

–
1
8

–
2
0
1
2
-0

2
-0

1
–

S
sy

n
ta

x
–

6/87



MappingConcrete to Abstract Syntax by Example

C0

x : Int

C1

D

x : Int

C2

Note: we can have multiple inheritance.–
1
8

–
2
0
1
2
-0

2
-0

1
–

S
sy

n
ta

x
–

7/87

Reflexive, TransitiveClosure of Generalisation

Definition. Given classes C0, C1, D ∈ C , we say D inherits from
C0 via C1 if and only if there are C1

0 , . . . Cn
0 , C1

1 , . . . Cm
1 ∈ C such

that

C0 ⊳ C1
0 ⊳ . . . Cn

0 ⊳ C1 ⊳ C1
1 ⊳ . . . Cm

1 ⊳ D.

We use ‘�’ to denote the reflexive, transitive closure of ‘⊳’.

In the following, we assume

• that all attribute (method) names are of the form

C::v, C ∈ C ∪ E (C::f, C ∈ C ),

• that we have C::v ∈ atr(C) resp. C::f ∈ mth(C) if and only if v (f)
appears in an attribute (method) compartment of C in a class diagram.

We still want to accept “context C inv : v < 0”, which v is meant? Later!

–
1
8

–
2
0
1
2
-0

2
-0

1
–

S
sy

n
ta

x
–

8/87



References

–
1
8

–
2
0
1
2
-0

2
-0

1
–

m
a
in

–

86/87

References

[Fischer and Wehrheim, 2000] Fischer, C. and Wehrheim, H. (2000). Behavioural
subtyping relations for object-oriented formalisms. In Rus, T., editor, AMAST,
number 1816 in Lecture Notes in Computer Science. Springer-Verlag.

[Liskov, 1988] Liskov, B. (1988). Data abstraction and hierarchy. SIGPLAN Not.,
23(5):17–34.

[Liskov and Wing, 1994] Liskov, B. H. and Wing, J. M. (1994). A behavioral notion
of subtyping. ACM Transactions on Programming Languages and Systems
(TOPLAS), 16(6):1811–1841.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

[Stahl and Völter, 2005] Stahl, T. and Völter, M. (2005). Modellgetriebene
Softwareentwicklung. dpunkt.verlag, Heidelberg.

–
1
8

–
2
0
1
2
-0

2
-0

1
–

m
a
in

–

87/87


