
SoftwareDesign, Modelli ng andAnalysis in UML

Lecture10: CoreStateMachines II

2011-12-20

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
1
0

–
2
0
1
1
-1

2
-2

0
–

m
a
in

–

Contents & Goals

Last Lecture:

• Core State Machines

• UML State Machine syntax

• State machines belong to classes.

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• What is: Signal, Event, Ether, Transformer, Step, RTC.

• Content:

• Ether, System Configuration, Transformer

• Run-to-completion Step

• Putting It All Together
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Recall : UML StateMachines
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Roadmap: Chronologically

(i) What do we (have to) cover?
UML State Machine Diagrams Syntax.

(ii) Def.: Signature with signals.

(iii) Def.: Core state machine.

(iv) Map UML State Machine Diagrams
to core state machines.

Semantics:
The Basic Causality Model

(v) Def.: Ether (aka. event pool)

(vi) Def.: System configuration.

(vii) Def.: Event.

(viii) Def.: Transformer.

(ix) Def.: Transition system, computation.

(x) Transition relation induced by core state ma-
chine.

(xi) Def.: step, run-to-completion step.

(xii) Later: Hierarchical state machines.

UML
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N

S

W

CD, SM

S = (T,C, V, atr ), SM

(ΣDS , AS ,→SM ) = M

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→ (σ1, ε1)

(cons1,Snd1)
−−−−−−−−→ . . .

G = (N, E, f) Mathematics

OD UML

✔ !

✔ !

!✔

✔

✔

✔

✔
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Core StateMachine

Definition.
A core state machine over signature S = (T,C, V, atr , E) is a
tuple

M = (S, s0,→)

where
• S is a non-empty, finite set of (basic) states,

• s0 ∈ S is an initial state,

• and

→ ⊆ S × (E ∪ { })
︸ ︷︷ ︸

trigger

×ExprS
︸ ︷︷ ︸

guard

×ActS
︸ ︷︷ ︸

action

×S

is a labelled transition relation.

We assume a set ExprS of boolean expressions over S (for in-
stance OCL, may be something else) and a set ActS of actions.
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From UML to Core StateMachines: By Example

UML state machine diagram SM:

s1 s2
annot

annot ::=
[

〈event〉[ ‘.’ 〈event〉]∗ [ ‘[’ 〈guard〉 ‘]’ ] [ ‘/’ 〈action〉]
]

with

• event ∈ E ,

• guard ∈ ExprS (default: true, assumed to be in ExprS )

• action ∈ ActS (default: skip, assumed to be in ActS )

maps to

M(SM) =
(
{s1, s2}
︸ ︷︷ ︸

S

, s1
︸︷︷︸

s0

, (s1, event , guard , action, s2)
︸ ︷︷ ︸

→

)
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TheBasic Causality Model
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6.2.3 TheBasic Causality Model [OMG, 2007b, 12]

“ ‘Causality model’ is a specification of how things happen at run time [...].

The causality model is quite straightforward:

• Objects respond to messages that are generated by objects executing
communication actions.

• When these messages arrive, the receiving objects eventually respond
by executing the behavior that is matched to that message.

• The dispatching method by which a particular behavior is associated
with a given message depends on the higher-level formalism used and
is not defined in the UML specification
(i.e., it is a semantic variation point).

The causality model also subsumes behaviors invoking each other and pass-
ing information to each other through arguments to parameters of the in-
voked behavior, [...].

This purely ‘procedural’ or ‘process’ model can be used by itself or in con-
junction with the object-oriented model of the previous example.”
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15.3.12 StateMachine [OMG, 2007b, 563]

• Event occurrences are detected,
dispatched, and then processed by the
state machine, one at a time.

• The semantics of event occurrence
processing is based on the run-to-
completion assumption, interpreted as
run-to-completion processing.

• Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched if the processing
of the previous [...] is fully completed.

• The processing of a single event
occurrence by a state machine is known
as a run-to-completion step.

• Before commencing on a run-to-

completion step, a state machine is

in a stable state configuration with all

entry/exit/internal-activities (but not

necessarily do-activities) completed.

• The same conditions apply after the
run-to-completion step is completed.

• Thus, an event occurrence will never be
processed [...] in some intermediate and
inconsistent situation.

• [IOW,] The run-to-completion step is
the passage between two state
configurations of the state machine.

• The run-to-completion assumption sim-

plifies the transition function of the StM,

since concurrency conflicts are avoided

during the processing of event, allowing

the StM to safely complete its run-to-

completion step.

c1 : C

x = ..

st = ..

c2 : C

x = ..

n

n

c1 : C

x = ..

st = ..

c2 : C

x = ..

n

n

c1 : C

x = ..

st = ..

c2 : C

x = ..

n

n

“E for c1” “. . . ” “. . . ”
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15.3.12 StateMachine [OMG, 2007b, 563]

• The order of dequeuing is not defined,

leaving open the possibility of modeling

different priority-based schemes.

• Run-to-completion may be implemented

in various ways. [...]
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And?
s1 s2

s3

E[n 6= ∅]/x := x + 1; n ! F

/n := ∅F/x := 0

• ...:

• We have to formally define what event occurrence is.

• We have to define where events are stored – what the event pool is.

• We have to explain how transitions are chosen – “matching”.

• We have to explain what the effect of actions is – on state and event pool.

• We have to decide on the granularity — micro-steps, steps,
run-to-completion steps (aka. super-steps)?

• We have to formally define a notion of stability and RTC-step completion.

• And then: hierarchical state machines.

s

s1 s2 s3

s′1 s′2 s′3

E/ E/ E/

E/
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System Configuration, Ether, Transformer
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Roadmap: Chronologically

(i) What do we (have to) cover?
UML State Machine Diagrams Syntax.

(ii) Def.: Signature with signals.

(iii) Def.: Core state machine.

(iv) Map UML State Machine Diagrams
to core state machines.

Semantics:
The Basic Causality Model

(v) Def.: Ether (aka. event pool)

(vi) Def.: System configuration.

(vii) Def.: Event.

(viii) Def.: Transformer.

(ix) Def.: Transition system, computation.

(x) Transition relation induced by core state ma-
chine.

(xi) Def.: step, run-to-completion step.

(xii) Later: Hierarchical state machines.
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S = (T,C, V, atr ), SM

(ΣDS , AS ,→SM ) = M

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→ (σ1, ε1)

(cons1,Snd1)
−−−−−−−−→ . . .

G = (N, E, f) Mathematics

OD UML

✔ !

✔ !

!✔

✔

✔

✔

✔
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Ether aka. Event Pool

Definition. Let S = (T,C, V, atr , E) be a signature with signals
and D a structure.

We call a structure (Eth, ready ,⊕,⊖, [ · ]) an ether over S and D
if and only if it provides

• a ready operation which yields a set of events that are ready for a

given object, i.e.

ready : Eth ×D(C ) → 2D(E )

• a operation to insert an event destined for a given object, i.e.

⊕ : Eth ×D(C ) ×D(E ) → Eth

• a operation to remove an event, i.e.

⊖ : Eth ×D(E ) → Eth

• an operation to clear the ether for a given object, i.e.

[ · ] : Eth ×D(C ) → Eth.
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Ether: Examples

• A (single, global, shared, reliable) FIFO queue is an ether:

• Eth:

• ready :

• ⊕:

• ⊖:

• [ · ]:

• One FIFO queue per active object is an ether.

• Lossy queue.

• One-place buffer.

• Priority queue.

• Multi-queues (one per sender).

• Trivial example: sink, “black hole”.

• . . .
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15.3.12 StateMachine [OMG, 2007b, 563]

• The order of dequeuing is not defined,

leaving open the possibility of modeling

different priority-based schemes.

• Run-to-completion may be implemented

in various ways. [...]
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Ether and[OMG, 2007b]

The standard distinguishes (among others)

• SignalEvent [OMG, 2007b, 450] and Reception [OMG, 2007b, 447].

On SignalEvents, it says

A signal event represents the receipt of an asynchronous signal instance. A
signal event may, for example, cause a state machine to trigger a transi-
tion. [OMG, 2007b, 449]
[...]

Semantic Variation Points
The means by which requests are transported to their target depend on the
type of requesting action, the target, the properties of the communication
medium, and numerous other factors.

In some cases, this is instantaneous and completely reliable while in others
it may involve transmission delays of variable duration, loss of requests,
reordering, or duplication.

(See also the discussion on page 421.) [OMG, 2007b, 450]

Our ether is a general representation of the possible choices.

Often seen minimal requirement: order of sending by one object is preserved.
But: we’ll later briefly discuss “discarding” of events.–
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System Configuration

Definition. Let S0 = (T0,C0, V0, atr0, E0) be a signature with signals,D0 a structure of S0, (Eth, ready ,⊕,⊖, [ · ]) an ether over S0 and D0.
Furthermore assume there is one core state machine MC per class C ∈ C .

A system configuration over S0, D0, and Eth is a pair

(σ, ε) ∈ ΣDS × Eth

where
• S = (T0 ∪̇ {SMC

| C ∈ C }, C0,

V0 ∪̇ {〈stable : Bool ,−, true, ∅〉}

∪̇ {〈stC : SMC
, +, s0, ∅〉 | C ∈ C }

∪̇ {〈paramsE : E0,1, +, ∅, ∅〉 | E ∈ E0},

{C 7→ atr0(C)

∪ {stable, stC} ∪ {paramsE | E ∈ E0} | C ∈ C }, E0)

• D = D0 ∪̇ {SMC
7→ S(MC) | C ∈ C }, and

• σ(u)(r) ∩D(E0) = ∅ for each u ∈ dom(σ) and r ∈ V0.
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System Configuration Step-by-Step

• We start with some signature with signals S0 = (T0,C0, V0, atr0, E0).

• A system configuration is a pair (σ, ε) which
comprises a system state σ wrt. S (not wrt. S0).

• Such a system state σ wrt. S provides, for each object u ∈ dom(σ),

• values for the explicit attributes in V0,

• values for a number of implicit attributes, namely

• a stability flag, i.e. σ(u)(stable) is a boolean value,

• a current (state machine) state, i.e. σ(u)(st) denotes one of the
states of core state machine MC ,

• a temporary association to access event parameters for each class,
i.e. σ(u)(paramsE) is defined for each E ∈ E .

• For convenience require: there is no link to an event except for paramsE .
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Stabilit y

Definition.
Let (σ, ε) be a system configuration over some S0, D0, Eth.

We call an object u ∈ dom(σ) ∩D(C0) stable in σ if and only if

σ(u)(stable) = true.
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Events Are Instances of Signals

Definition. Let D0 be a structure of the signature with signalsS0 = (T0,C0, V0, atr0, E0) and let E ∈ E0 be a signal.

Let atr(E) = {v1, . . . , vn}. We call

e = (E, {v1 7→ d1, . . . , vn 7→ dn}),

or shorter (if mapping is clear from context)

(E, (d1, . . . , dn)) or (E, ~d),

an event (or an instance) of signal E (if type-consistent).

We use Evs(E0,D0) to denote the set of all events of all signals inS0 wrt. D0.

As we always try to maximize confusion...:

• By our existing naming convention, u ∈ D(E) is also called instance of the
(signal) class E in system configuration (σ, ε) if u ∈ dom(σ).

• The corresponding event is then (E,σ(u)).
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Signals? Events...? Ether...?!

The idea is the following:

• Signals are types (classes).

• Instances of signals (in the standard sense) are kept in the system
state component of system configurations.

• Identities of signal instances are kept in the ether.

• Each signal instance is in particular an event — somehow “a recording
that this signal occurred”

• The main difference between signal instance and event:

Events don’t have an identity.

• Why is this useful? In particular for reflective descriptions of behaviour,
we are typically not interested in the identity of a signal instance, but only
whether it is an “E” or “F”, and which parameters it carries.
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Whereare we? s1 s2

s3

E[n 6= ∅]/x := x + 1;n !F

/n := ∅F/x := 0

• Wanted: a labelled transition relation

(σ, ε)
(cons,Snd)
−−−−−−−→ (σ′, ε′)

on system configuration, labelled with the consumed and sent events,
(σ′, ε′) being the result (or effect) of one object taking a transition of
its state machine.

• Have: system configuration (σ, ε) comprising current state machine state
and stability flag for each object, and the ether.

• Plan:

(i) Introduce transformer as the semantics of action annotions.
Intuitively, (σ′, ε′) is the effect of applying the transformer
of the taken transition.

(ii) Explain how to choose transitions depending on ε and when to stop taking
transitions — the run-to-completion “algorithm”.
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Transformer

Definition.
Let ΣDS the set of system configurations over some S0, D0, Eth.

We call a partial function

t : ΣDS 7→ ΣDS
a (system configuration) transformer.

• In the following, we assume that each application of a transformer t to
some system configuration (σ, ε) is associated with a set of observations

Obst(σ, ε) ∈ 2D(C )×Evs(E ∪̇ {∗,+},D)×D(C ).

• An observation

(usrc, (E, ~d), udst) ∈ Obst(σ, ε)

represents the information that, as a “side effect” of t, an event (E, ~d) has
been sent from usrc to udst .–
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Why Transformers?

• Recall the (simplified) syntax of transition annotations:

annot ::=
[

〈event〉 [ ‘[’ 〈guard〉 ‘]’ ] [ ‘/’ 〈action〉]
]

• Clear: 〈event〉 is from E of the corresponding signature.

• But: What are 〈guard〉 and 〈action〉?

• UML can be viewed as being parameterized in expression language
(providing 〈guard〉) and action language (providing 〈action〉).

• Examples:

• Expression Language:

· OCL
· Java, C++, . . . expressions
· . . .

• Action Language:

· UML Action Semantics, “Executable UML”
· Java, C++, . . . statements (plus some event send action)
· . . .
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Transformers asAbstract Actions!

In the following, we assume that we’re given

• an expression language Expr for guards, and

• an action language Act for actions,

and that we’re given

• a semantics for boolean expressions in form of a partial function

IJ · K( · ) : Expr → (ΣDS 7→ B)

which evaluates expressions in a given system configuration,

Assuming I to be partial is a way to treat “undefined” during runtime. If I is not

defined (for instance because of dangling-reference navigation or division-by-zero), we

want to go to a designated “error” system configuration.

• a transformer for each action.
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Expression/Action LanguageExamples

We can make the assumptions from the previous slide because instances exist:

• for OCL, we have the OCL semantics from Lecture 03. Simply remove the
pre-images which map to “⊥”.

• for Java, the operational semantics of the SWT lecture uniquely defines trans-

formers for sequences of Java statements.

We distinguish the following kinds of transformers:

• skip: do nothing — recall: this is the default action

• send: modifies ε — interesting, because state machines are built around
sending/consuming events

• create/destroy: modify domain of σ — not specific to state machines, but
let’s discuss them here as we’re at it

• update: modify own or other objects’ local state — boring
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