Sdtware Design, Modelli ng andAnalysisin UML

Lecdure 12: Core Sate Machines Il

201%12-21

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Roadmap: Chrondogically

i) What do we (have to) cover?
UML State Machine Diagrams Syntax.

(ii) Def.: Signature with signals.
(iii) Def.: Core state machine.
(iv) Map UML State Machine Diagrams

to core state machines. J

Semantics:

The Basic Causality Model
(v) Defs:
(vi) Def.: System configuration.
(vii) Def.: Event.

(viii) Def.: Transformer.

Ether (aka. event pool)

(ix) Def.: Transition system, computation

(

%

) Transition relation induced by core state ma-
chine.

(xi) Def.: step, run-to-completion step.

(xii) Later: Hierarchical state machines.

Transformer e
L L L WI,AA“

Contents & Goals

Last Lecture:
» The basic causality model

« Ether, System Configuration, Event, Transformer

This Lecture:
« Educational Objectives: Capabilities for following tasks/questions.
= What does this State Machine mean? What happens if | inject this event?
« Can you please model the following behaviour
« What is: Signal, Event, Ether, Transformer, Step, RTC.

« Content:
« Examples for transformer
+ Run-to-completion Step
- o Putting It All Together

e dojact “excurting” s acbien,

Definition.
Let E?} the sef of system configurations over some .%,, %, and
Eth and ether. |We cafl a relation

t C 9(%) x (2% x Eth) x (3% x Eth)

a (system configuration) transformer.

« In the following, we assume that each application of a transformer ¢ to
some system configuration (o,) for object u, is associated with a set of
observations

Obsi[ug) (e, 2) € 22(6)x Evs(& U {4}, 2)x2(6)

« An observation (i, (E,d), was) € Obsi[uz)(o,¢)
represents the information that, as a “side effect” of u, executing ¢, an
event (1) (E, @ has been sent from object u,. to object ugs;.

B Special cases: creation/destruction.

System Configuration, Ether, Transformer

Why Transformers?

» Recall the (simplified) syntax of transition annotations:
annot = [(event) [[(guard) '] [/ (action)]]
» Clear: (event) is from & of the corresponding signature.

« But: What are (guard) and (action)?
» UML can be viewed as being parameterized in expression language
(providing (guard)) and action language (providing (action)).
« Examples:
 Expression Language:

- OCL
- Java, C++, ... expressions

o Action Language:

- UML Action Semantics, “Executable UML"
- Java, C++, ...statements (plus some event send action)

10754

Transformers as Abstract Actions!

In the following, we assume that we're given

« an expression language Ezpr for guards, and ’Q,A‘_/ L :4."7
« an action language Act for actions, T may ust dfood
/ o B expc ¢ S

and that we're given
« a semantics for boolean expressions in form of a partial function
. D 7
IL]Cs) s Eapr — (55 x ({@B} — 2(7))) + B)
Jer
which evaluates expressions in a given system configuration,

Assuming I to be partial is a way to treat “undefined” during runtime. If I is not

defined (for instance because of dangli navigation or division-by-zero), we
want to go to a designated “error” system configuration.

« a transformer for each action: For each act € Act, we assume to have

taer C 2(€) x (%% x Eth) x (%% x Eth).

115

Transformer Examples: Presentation

abstract syntax concrete syntax
op

intuitive semantics

well-typedness

semantics
(0,€), (0", ")) € toplus] iff ...
or
toplts](0,€) =Y(0", &' Tpwhere ...
observables

Obsep[us](a,€) = {...}, not a relation, depends on choice

(error) conditions

Not defined if ...

135

Expresson/Action Languag Examples

b e f,l(sm\«a s AiScess

We can make the assumptions from the previous slide because instances exist:

Ad} = § s} vew
o for OCL, we ::avhe the OCIT‘JS-?‘mantics from Lecture 03. Simply remove the vivphte(ep, v, epq) | e, e, € OLEy |
pre-images which map to U3 sed (o, €, “”V’:\! et e, € AL Eg, Géé'(‘/‘)f
« for Java, the operational semantics of the SWT lecture uniquely defines trans- (P
formers for sequences of Java statements. U csente (0, oy, v) | e € 0LEpr. (€8, vel/ |
v deshog (opr) | e € OLEpef

We distinguish the following kinds of transformers:

« skip: do nothing — recall: this is the default action

« send: modifies ¢ — interesting, because state machines are built around
sending/consuming events

o create/destroy: modify domain of o — not specific to state machines, but
let's discuss them here as we're at it

« update: modify own or other objects’ local state — boring

12754
Transformer: Skip Transformer: Update
abstract syntax concrete syntax abstract syntax concrete syntax
skip ip update(expry, v, expry) SR g,r,J
ARG CETESS intuitive semantics
intuitive semanty X Update attribute v in the object denoted by expr, to the value
do nothing denoted by expr,.
well-typedness well-typedness
/. expry :7c and v T € atr(C); expry : T;

capry. eapr, obey visibility and navigability

semantics semantics daesié Y
tluz](0.€) (0.) s plial(0:€) 40c5‘?}/ 7

observables where o’ = ol > o (w)v s Iexpr,] (o, B)]] with

2)(0,€) =0 T eapr;](0)

bservables
o ¢

&) error) conditions
ul , Not defined if I[expry] (7 B) of I[eaprs](c, 3) not defined oy,
Habrte %" ok
& wplaled s o Kb

=2

(error) cond

Obsupasta(capr, o\eaprs) U] = 0

1475 155

Update Transformer Example

SMc:

- Jri=z+1

update(ezpr,, v, eapry)

tupasta(eapr, v eapry) [Ua)(0,€) = (ofu = o () = Ieapr,] (@, B)]], €).
w= Ifeapr,](0, 8)

o [uC R u C
w=1 tolloXs.e) = e N :i
y=0 (oTummelier Ia @)l ¥~

/ s
only
e X w»g«
T LK x17D (5, it s 0 3)=5
Transformer: Create
abstract syntax concrete syntax

create(C, expr, v) OV = ne ¢)
intuitive semantics
Create an object of class C' and assign it to attribute v of the object
denoted by expression expr.
well-typedness
expr: 7p, v € atr(D), atr(C) = {{vy : 7y, expr?) | 1 < i < n}

semantics
observables

(error) conditions

I[eapr] (o, B) not defined.

« We use an “and assign”-action for simplicity — it doesn't add or remove
expressive power, but moving creation to the expression language raises all
kinds of other problems such as order of evaluation (and thus creation)

« Also for simplicity: no parameters to construction (~ parameters of construc-

tor). Adding them is straightforward (but somewhat tedious).

1650

1954

Transformer: Send) i
abstract syntax concrete syntax| Xi &
send(E(expry, expr,,), eapr 1,,) e T E(

Object u, : C sends event E to object expr ,.;, i.e. create a fresh
signal instance, fill in its attributes, and place it in the ether.
well-typedness /\E(Y)
expryy 0. C.D € 64 E € 8atr(E) = {vy i v, o0 7)i
epriim 1<i<n
all expressions obey visibility and navigability in C
semantics
taend(E(eapry ... capr,), eapr) [Ue] (0, €) D (0", €')
where o’ =0 U {u {v; > d; | L <i<n}} € =e® (uge,u)i
if wgu = Ieapr o] (0, B) € dom(o); d; = I[expr;](a, B) for
<ism
u € P(E) a fresh identity, i.e. u ¢ dom(
and where (o, ¢') = (0,€) if uge & dom(a); § = (@ — u, Jj art choice —
(7€) = (2.0 f o dom(o): = (B9 v f

we could . €

observables o e aror
dn), uas)} Candiha. a8 g

Obsgenattz] = {(ua, (B, d,

(error) conditions
I[ezpr](c,) not defined for any
expr € {expr g, expry, ..., expr,}

1754
Create Transformer Example
e | Seinimnew G
create(C, expr,v)
Eeraara(C,expr,v) (0:€) = -
=4
20/54

Send Transformer Example

SMe: o] B F(w+ 1)
2end(E(expry, s €507} €07 100)
baand(eapr s Eeapry yonseamry) eapros) [U2] (02 €
o

ok (FCthr),) L3
/\—/'\.»)

How To Choose New | dentiti es?

» Re-use: choose any identity that is not alive now, i.e. not in dom(
= Doesn't depend on history.
« May “undangle” dangling references — may happen on some platforms.

« Fresh: choose any identity that has not been alive ever, i.e. not in
dom(c) and any predecessor in current run.
« Depends on history.

« Dangling references remain dangling — could mask “dirty’
platform.

effects of

2154

Transformer: Create egov =new(C)

abstract syntax
create(C, expr,v)
intuitive semantics
Create an object of class C' and assign it to attribute v of the object
denoted by expression expr.
well-typedness
expr : 7p, v € atr(D), atr(C) = {(vy : 7y, exprd) | 1 < i < n}
semantics
(0,6, (@) et iwihial veluas g5 phes
Ly Qe

iff 0’ = glug — o) v — u]] U fu — {v; — di | 1 < i <n}},

6lbl_ & =Tul(e); ug Z(C) fresh, i.e. u & dom(o);
St | w0 = I[eapr](c. B); di = 1[expr?] (o,) if eapr? # ** and arbitrary
fcu value from Z(r;) otherwise; 3 = {this — u,}.

observables
Obscreateltiz] = {(ua, (+,0),u)}

(error) conditions

I[ezpr](o) not defined.

22754

What to Do With the Remaining Objeds?

Assume object ug is destroyed. ..
= object u; may still refer to it via association r:
+ allow dangling references?
 or remove uy from o (uy)(r)?
« object ug may have been the last one linking to object us:
o leave uy alone?
 or remove u; also?

+ Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!

This is in line with “expect the worst”, because there are target platforms which
don't provide garbage collection — and models shall (in general) be correct
without assumptions on target platform.

But: the more “dirty” effects we see in the model, the more expensive it often
is to analyse. Valid proposal for simple analysis: monotone frame semantics,

no destruction at all.
2554

Transformer: Destroy

abstract syntax concrete syntax
destroy(expr)
intuitive semantics
Destroy the object denoted by expression expr.
well-typedness
expr:17c, C €€

semantics

observables
Obssassreylita] = {(tz. (+,0). w)}
(error) conditions

I[ezpr](o,) not defined.

Transformer: Destroy

abstract syntax concrete syntax
destroy(expr)
intuitive semantics
Destroy the object denoted by expression expr.
well-typedness
epr:7c, C €€
semantics
tus)(0,8) = (o',)
where 0’ = 0|{dom(o)(ug With u = ITezpr](o, §).
observables
Obsaestroy[uz] = {(uas (+,0), u)}
(error) conditions

Ieapr](c, B) not defined.

235

2654

Destroy Transformer Example

SMe: /.. delete ;...

destroy(erpr)

tasstroy(crpr) 2] (7,€) = ..

2450

Sequential Composition d Transformers

« Sequential composition t; oty of transformers ¢, and ¢ is canonically
defined as

(ta o t1)[uz)(0,€) = tous](t1[us](0,€))

with observation
Ob3 1301 [ua] (0, €) = Obsty [ua)(0,) U Obsiyuz](t1 (0, €)).

» Clear: not defined if one the two intermediate “micro steps” is not defined.

=l ‘//--Ay.vz 2,7/- u?F

2754

Transformers And Denotationd Semantics

Observation: our transformers are in principle the denotational semantics
of the actions/action sequences. The trivial case, to be precise.

Note: with the previous examples, we can capture

it 20 o sai-a
Ey——"—

$ &9 s x.q

« empty statements, skips,

« assignments,

« conditionals (by normalisation and auxiljary variables), /s

« create/destroy, <o)

but not possibly diverging loops. &

Our (Simple) Approach: if the action lapguage is, e.g. Java, then (syntacti-
cally) forbid loops and calls of recursie functions.

Other Approach: use full blown denotatibnal semantics.
No show-stopper, because loops in the actign annotation can be converted into
transition cycles in the state machine,

17/3

Active \s. Passve Clases/Objeds

« Note: From now on, assume that all classes are active for simplicity.

We'll later briefly discuss the Rhapsody framework which proposes a way
how to integrate non-active objects.

+ Note: The following RTC “algorithm” follows [Harel and Gery, 1997] (i.e.
the one realised by the Rhapsody code generation) where the standard is
ambiguous or leaves choices.

2072

Run-to-completion Sep

From Core State Machinesto LTS

Definition. Let % = (%%, Vo, atro[F}) be a signature with signals (all classes
active), % a structure of ., and (Eth, ready,®, S, [-]) an ether over .% and Z;.
Assume there is one core state machine M per class C' € €.

We say, the state machines induce the following labelled transition relation on states
55 U {#} with actions A = 27(6)xFus(£.2) 92(@)xEv(8.2) 5 ():
S,

" (cons,Snd) ., .
o (0,6) <22, (o)
if and only if
(i) an event with destination is discarded,

an event is dispatched to u, i.e. stable object processes an event, or

processing by u
i.e. object u is not stable and continues to process an event,

(iv) the environment interacts with object u,

(cons)
g,

#
if and only if
(v) s = # and cons = 0, or an error condition occurs during consumption of cons.

18/a3

Transition Relation, Computation

Definition. Let A be a set of actions and S a (not necessarily
finite) set of of states.
We call

— CSxAxS

a (labelled) transition relation.
Let Sy C S be a set of initial states. A sequence
Gty ek A e T

with s; € S, a; € A is called computation of the labelled transi-
tion system (S, —, Sp) if and only if

o initiation: so € Sp

o« consecution: (s;,a;, Si+1) €— for i € No.

Note: for simplicity, we only consider infinite runs.

(i) Discarding An Event

(@.9) (cons,Snd) (o)

if
v
© an E-event (instance of signal) is ready in for g object of a class @, i.e.
Bu € dom(0) N 2(C) Fup € 2(8) : up € ready(s,u)
o wis stable and in state machine state s, i.e. o/(u)(stable) = 1 and o(u)(st) = s,
 but there is no corresponding transition enabled (all transitions incident with
current state of u either have other triggers or the guard is not satisfied)
(s, F, expr, act,s') €= (SMc) : F # BV I[ezpr](o) = 0
and
« the system configuration doesn't change, i.e. 0’ = o

© the event up is removed from the ether, i.e.

& =ecup,
© consumption of up is observed, i.e.

cons = {(u, (B, o(ug)))}, Snd = 0.

19/

22/

Example: Discard (el enc)
- Lin!J
SMec: (signal))
G.J
C
x,z: Int

v Int (env)

+ Juc dom(o) N 2(C) + o(u)(stable) = 1, o(u)(st) = s,
Sug € 2(8) : ug € ready(e,u)
o V(s F, eapr, act, s') €~ (SMc) :
F £ BV Iemprl() =0 o cons = {(u, (E,0(ug)))}, Snd =0

eo'=0g,e=coup

233

(iii) Comnmence Run-to-Completion

(0:€) (d',€)

(cons,Snd)
Leons Pd),
u
if
« there is an upstable object’of a class %, L.
Bu € dom(e) N 2(C) : o(u)(stable) = 0
« there is a transition without G&tA enabled from the current state s = o(u)(st),
ie. Rl

3(5, - eapr act, ') €— (SMe) : T[eapr](o) = 1

and
o (0. ¢') results from applying tuct to (0,2), i.e.
(0",6") € tai(0,6), 0 =0"[u.st— &, u.stable — b]
where b depends as before.
« Only the side effects of the action are observed, i.c.

cons =0, Snd = Obsy,,(0,¢).

26752

(ii) Dispatch

(0,¢) (cons,Snd) (',€) if
u
o Bu € dom(a) N 2(C) Jup € Z(8) : up € ready(e, u)

© u is stable and in state machine state s, i.e. o(u)(stable) = 1 and o(u)(st) = s,

© a transition is enabled, i.e.

(

where &

and

o (0',€) results from applying to (0,€) and removing ugp from the ether, i.e.

(0",€') = tat(6,c O up),

o' = (0" [u.st — g, u.stable — b, u.params g — 0])| o (@) fug)

where b depends:
o If u becomes stable in s’, then b = 1. It does become stable if and only if
there is no transition without trigger enabled for u in (o,').
« Otherwise b = 0.

« Consumption of u and the side effects of the action are observed, i.e.

cons = {(u, (E,o(ug)))}, Snd = Obst,,, (3, © ug).

2413
Example: Comnence «m;«;)
[z > 0]/z —LintJ
{(signat))
[e)
z
z,z: Int
y:Int ((env))
c .'(5‘/
: : é/
« 3u € dom(a) N Z(C) : o(u)(stable) = 0 (0") = tar(0.),
o 3(s., expr, act, s') €= (SMg) : I[eapr](o) = 1 o' = o”'[u.st — s', u.stable — b]
o o(u)(stable) = 1, o(u)(st) = s, « cons =0, Snd = Obsy,,(0,¢)
2743

Example: Dispatch rmeben)
_— [z > 0/a —LnlJ
SMe: Gle>0)/ai=y Goignaly
G.J
C
x,z: Int

v Int (env))

stable = 1

« Ju € dom(0) N 2(C) « o(u)(stable) = 1, o{u)(st) = s,
Jup € X&) : up € ready(e,u) L

o (0",£) = tact(3, £Q ug)

« 3(s, F, eapr, act, ') €~ (SMc) :
F— B eapr](3) — 1 o o' = (0"[u.st > &', w.stable — b, u.params g — 0))|(e)\ fur)
+ & = ofuparamsp —] o cons = {(u, (B, 0(ug)))}, Snd = Obsy, (7, © ug)
25,

(iv) Environment Interaction

Assume that a set &,,, C & is designated as environment events and a set
of attributes ve,, C V is designated as input attributes.

Then
cons,Snd,
(0,¢) Leona,Snd), (0',¢")
eny
if
« an environment event E € &.,, is spontaneously sent to an alive object
u€ 7o), ie.

o' =0 0{up— {vimdi|[1<i<n), & =chdup

where ug ¢ dom(c) and atr(E) = {vi,...,v.}
Sending of the event is observed, i.e. cons = 0, Snd = { (env, E(d))}.

or
« Values of input attributes change freely in alive objects, i.e.
Yv €V Vu € dom(a) : o' (u)(v) # o(u)(v) = v E Ve
and no objects appear or disappear, i.e. dom(c’) = dom(c)

'
o =e 28/s3

{signal, env)

Example: Environment

[e > 0)/a
SMe: (oigna)

G, J

c
2 Int
v Int (env)

e o' =00 fus o {vi o di | 1<i < n} « we dom(e)

&' = £ @ up where ug ¢ dom(c) « cons =0, Snd = {(env, B(d))}.
and atr(E) = {v1,...,va}.

29743
Notions of Seps. The Step
. (cons,Snd) .,
Note: we call one evolution (o,c) ———— (0’,¢’) a step.
o u
Thus in our setting, a step directly corresponds to
one object (namely u) takes a single transition between regular states.
(We have to extend the concept of “single transition” for hierarchical state machines.)
That is: We're going for an interleaving semantics without true parallelism.
Remark: With only methods (later), the notion of step is not so clear.
For example, consider
o ¢y calls £() at ¢y, which calls g() at ¢; which in turn calls h () for c;.
o Is the completion of h() a step?
« Or the completion of £()7
« Or doesn't it play a role?
It does play a role, because constraints/invariants are typically (= by convention)
assumed to be evaluated at step boundaries, and sometimes the convention is meant
to admit (temporary) violation in between steps.
32

(v) Error Conditions

(cons,Snd)
5 T,

#

if, in (ii) or (iii),
o I[eapr] is not defined for o, or
o Laet is not defined for (a,<),
and

« consumption is observed according to (ii) or (iii), but Snd = 0.

Examples:
Elz/0)/ ot

lerae]facy

. Eleapr]/z := 2/

30743

Notions of Steps. The Run-to-Completion Sep

What is a run-to-completion step...?

« Intuition: a maximal sequence of steps, where the first step is a
dispatch step and all later steps are commence steps.

« Note: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntacically definable — one
transition may be taken multiple times during an RTC-step.

Example:

333

Example: Error Condtion rmeben)

[> 0)/a

SMc: Glz>0l/z:=y {(signal)

G.J

Hfz=yjz n ¢

2 Int
v Int (env))

-
« Ifexpr] not defined for o, or « consumption according to (ii) o (i)
+ tace is not defined for (7,) o Snd =0

Notions of Seps:. The Run-to-Completion Sep

What about this Example:

313

345

Notions of Steps: The Run-to-Completion Sep Cont’d

* 2(1) run-to-completion computation of u (from (local) configuration oo (u)),
"

Proposal: Let

conso,Sndo) (cons,_1,Snd, 1

(00,20)) (On.€n). >0,

ug Un—1

be a finite (1), non-empty, maximal, consecutive sequence such that

« object u is alive in 00,

© ug = u and (conso, Sndy) indicates dispatching to u, i.e. cons = {(u, 7+ d)},

« there are no receptions by u in between, i.e.

cons; N {u} x Bvs(8,2) =0,i > 1,
© up_1 = u and u is stable only in 0p and o, i.e.
o(u)(stable) = o, (u)(stable) = 1 and o;(u)(stable) = 0 for 0 < i < n,

Let 0 = ky < ko < --- < kny = n be the maximal sequence of indices such
that uy, = u for 1 <i < N. Then we call the sequence

(o0(u) =) ok, () o1y (1) - onx (1) (= ona(w))

Putting It All Together

Divergence

We say, object u can diverge on reception cons from (local) configuration
oo(u) if and only if there is an infinite, consecutive sequence

(conso,Sndy) (consy,Sndy)

(00, 20) (o1,€1)

such that u doesn’t become stable again.

« Note: disappearance of object not considered in the definitions.
By the current definitions, it's neither divergence nor an RTC-step.

36/43

The Missng Piece Initial Sates

Recall: a labelled transition system is (S, —,Sp). We have

« S: system configurations (o, <)
- . JSnd
« —: labelled transition relation (o, <) (eons,Snd), (o',€").

Wanted: initial states S.

Proposal:

Require a (finite) set of object diagrams OD as part of a UML model
(62, 54,09).

And set

So={(0,¢) | 0 € G~1(OD), 0D € 69, = empty}.

Other Approach: (used by Rhapsody tool) multiplicity of classes.
We can read that as an abbreviation for an object diagram.

3943

Run-to-Completion Sep: Discusson.

What people may dislike on our definition of RTC-step is that it takes a global
and non-compositional view. That is:
« In the projection onto a single object we still see the effect of interaction with
other objects.

+ Adding classes (or even objects) may change the divergence behaviour of
existing ones.

= Compositional would be: the behaviour of a set of objects is determined by the
behaviour of each object “in isolation” .
Our semantics and notion of RTC-step doesn't have this (often desired) property.

Can we give (syntactical) criteria such that any global run-to-completion step
is an interleaving of local ones?
Maybe: Strict interfaces. (Proof left as exercise...)
« (A): Refer to private features only via “self"
(Recall that other objects of the same class can modify private attributes.)
+ (B): Let objects only communicate by events, i.e

don’t let them modify each other’s local state via links at all.
373

Semantics of UML Model — SoFar

The semantics of the UML model
M= (62, 94,02)

where

« some classes in €7 are stereotyped as ‘signal’ (standard), some signals and
attributes are stereotyped as ‘external’ (non-standard),

« there is a 1-to-1 relation between classes and state machines,
© 07 is a set of object diagrams over €7,

is the transition system (S, —, Sy) constructed on the previous slide.

The computations of M are the computations of (S, —, Sp).

40/43

OCL Constraints and Behaviour

o Let M = (62,4 ,6F) be a UML model.
« We call M consistent iff, for each OCL constraint ezpr € In(€%),
o |= eapr for each “reasonable point” (o,¢) of computations of M.

(Cf. exercises and tutorial for discussion of “reasonable point”.)

Note: we could define Inv(.%#) similar to In(€' 7).

Pragmatics:
© In UML-as-blueprint mode, if .%# doesn't exist yet, then M = (€ 2,0,0%7)
i typically asking the developer to provide .%# such that
M = (€7, %4,0%) is consistent

If the developer makes a mistake, then M’ is inconsistent.

« Not common: if .%# is given, then constraints are also considered when choos-
ing transitions in the RTC-algorithm. In other words: even in presence of mis-
takes, the .%# never move to inconsistent configurations.

4153

References

42

References

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling

with statecharts. IEEE Computer, 30(7):31-42.
[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version

2.1.2. Technical Report formal /07-11-02.

433

