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Contents & Goals

Last Lecture:

• Constructive description of behaviour completed:

• Remaining pseudo-states, such as shallow/deep history.

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this LSC mean?

• Are this UML model’s state machines consistent with the interactions?

• Please provide a UML model which is consistent with this LSC.

• What is: activation, hot/cold condition, pre-chart, etc.?

• Content:

• Brief: methods/behavioural features.

• Reflective description of behaviour.

• LSC concrete and abstract syntax.

• LSC intuitive semantics.

• Symbolic Büchi Automata (TBA) and its (accepted) language.
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And What About Methods?
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And What About Methods?

• In the current setting, the (local) state of objects is only modified by
actions of transitions, which we abstract to transformers.

• In general, there are also methods.

• UML follows an approach to separate

• the interface declaration from

• the implementation.

In C++ lingo: distinguish declaration and definition of method.

• In UML, the former is
called behavioural feature
and can (roughly) be

C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E
• a call interface f(τ11

, . . . , τn1
) : τ1

• a signal name E

Note: The signal list can be seen as redundant (can be looked up in the state

machine) of the class. But: certainly useful for documentation (or sanity check).
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Behavioural Features C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

Semantics:

• The implementation of a behavioural feature can be provided by:

• An operation.

In our setting, we simply assume a transformer like Tf .

It is then, e.g. clear how to admit method calls as actions on transitions:
function composition of transformers (clear but tedious: non-termination).

In a setting with Java as action language: operation is a method body.

• The class’ state-machine (“triggered operation”).

• Calling F with n2 parameters for a stable instance of C

creates an auxiliary event F and dispatches it (bypassing the ether).
• Transition actions may fill in the return value.
• On completion of the RTC step, the call returns.

• For a non-stable instance, the caller blocks until stability is reached again.
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Behavioural Features: Visibilit y andProperties

C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

• Visibility:

• Extend typing rules to sequences of actions such that
a well-typed action sequence only calls visible methods.

• Useful properties:

• concurrency
• concurrent — is thread safe
• guarded — some mechanism ensures/should ensure mutual exclusion

• sequential — is not thread safe, users have to ensure mutual exclusion

• isQuery — doesn’t modify the state space (thus thread safe)

• For simplicity, we leave the notion of steps untouched, we construct our
semantics around state machines.

Yet we could explain pre/post in OCL (if we wanted to).

–
1
7

–
2
0
1
2
-0

1
-2

5
–

S
m

et
h
o
d
s

–

6/69



You arehere.
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Course Map

UML
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W E

CD, SM

S = (T,C, V, atr ), SM

M = (ΣDS , AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1) . . .X wπ = ((σi, consi, Snd i))i∈N

G = (N, E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔

✘

✘

✘

✘✔

✔

✔

✔

✔
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Motivation: Reflective, Dynamic Descriptions of Behaviour
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What CanBe Purposes of Behavioural Models?

Example: Pre-Image Image
(the UML model is supposed to be the blue-print for a software system).

A description of behaviour could serve the following purposes:

• Require Behaviour. “System definitely does this”

“This sequence of inserting money and requesting and getting water must be
possible.”

(Otherwise the software for the vending machine is completely broken.)

• Allow Behaviour. “System does subset of this”

“After inserting money and choosing a drink, the drink is dispensed (if in stock).”

(If the implementation insists on taking the money first, that’s a fair choice.)

• Forbid Behaviour. “System never does this”

“This sequence of getting both, a water and all money back, must not be pos-

sible.” (Otherwise the software is broken.)

Note: the latter two are trivially satisfied by doing nothing...
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Constructive vs. ReflectiveDescriptions

[Harel, 1997] proposes to distinguish constructive and reflective descriptions:

• “A language is constructive if it contributes to the dynamic semantics

of the model. That is, its constructs contain information needed in

executing the model or in translating it into executable code.”

A constructive description tells how things are computed (which can
then be desired or undesired).

• “Other languages are reflective or assertive, and can be used by the

system modeler to capture parts of the thinking that go into building the

model – behavior included –, to derive and present views of the model,

statically or during execution, or to set constraints on behavior in

preparation for verification.”

A reflective description tells what shall or shall not be computed.

Note: No sharp boundaries!
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ConstructiveUML

UML provides two visual formalisms for constructive description of behaviours:

• Activity Diagrams

• State-Machine Diagrams

We (exemplary) focus on State-Machines because

• somehow “practice proven” (in different flavours),

• prevalent in embedded systems community,

• indicated useful by [Dobing and Parsons, 2006] survey, and

• Activity Diagram’s intuition changed from transition-system-like to petri-net-like...
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Recall : What isa Requirement?

Recall:

• The semantics of the UML model M = (CD ,SM ,OD) is the transition
system (S,−→, S0) constructed according to discard/dispatch/commence-rules.

• The computations of M, denoted by JMK, are the computations of (S,−→, S0).

Now:

A reflective description tells what shall or shall not be computed.

More formally: a requirement ϑ is a property of computations, sth. which is
either satisfied or not satisfied by a computation

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→ (σ1, ε1)

(cons1,Snd1)
−−−−−−−−→ · · · ∈ JMK,

denoted π |= ϑ and π 6|= ϑ.
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OCL asReflectiveDescription of Certain Properties

• invariants:

∀π ∈ JMK ∀ i ∈ N : πi |= ϑ,

• non-reachability of configurations:

∄ π ∈ JMK ∄ i ∈ N : πi |= ϑ

⇐⇒ ∀π ∈ JMK ∀ i ∈ N : πi |= ¬ϑ

• reachability of configurations:

∃π ∈ JMK ∃ i ∈ N : πi |= ϑ

⇐⇒ ¬(∀π ∈ JMK ∀ i ∈ N : πi |= ¬ϑ)

where

• ϑ is an OCL expression or an object diagram and

• “|=” is the corresponding OCL satisfaction
or the “is represented by object diagram” relation.
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In General Not OCL: Temporal Properties

Dynamic (by example)

• reactive behaviour

• “for each C instance, each reception of E is finally answered by F”

∀π ∈ JMK : π |= ϑ

• non-reachability of system configuration sequences

• “there mustn’t be a system run where C first receives E and then sends F”

∄ π ∈ JMK : π |= ϑ

• reachability of system configuration sequences

• “there must be a system run where C first receives E and then sends F”

∃π ∈ JMK : π |= ϑ

But: what is “|=” and what is “ϑ”?
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Interactions: Problem andPlan

In general: ∀(∃) π ∈ JMK : π |=( 6|=) ϑ

Problem: what is “|=” and what is “ϑ”?

Plan:

• Define the language L(M) of a model M — basically its computations.
Each computation π ∈ JMK corresponds to a word wπ.

• Define the language L(I) of an interaction I — via Büchi automata.

• Then (conceptually) π |= ϑ if and only if wπ ∈ L(I).
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S = (T,C, V, atr ), SM

M = (ΣDS , AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1) . . .X wπ = ((σi, consi, Snd i))i∈N
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Words over Signature

Definition. Let S = (T,C, V, atr , E) be a signature and D a
structure of S . A word over S and D is an infinite sequence

(σi, consi, Snd i)i∈N0

∈
(

ΣDS × 2D(C )×Evs(E ,D) × 2D(C )×Evs(E ,D)×D(C )
)ω

.
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TheLanguageof a Model

Recall: A UML model M = (CD ,SM ,OD) and a structure D denotes a
set JMK of (initial and consecutive) computations of the form

(σ0, ε0)
a0−→ (σ1, ε1)

a1−→ (σ2, ε2)
a2−→ . . . where

ai = (consi, Snd i, ui) ∈ 2D(C )×Evs(E ,D) × 2D(C )×Evs(E ,D)×D(C )

︸ ︷︷ ︸

=:Ã

×D(C ).

For the connection between models and interactions, we disregard the config-
uration of the ether and who made the step, and define as follows:

Definition. Let M = (CD ,SM ,OD) be a UML model and D a
structure. Then

L(M) := {(σi, consi, Snd i)i∈N0
∈ (ΣDS × Ã)ω |

∃ (εi, ui)i∈N0
: (σ0, ε0)

(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1) · · · ∈ JMK}
is the language of M.
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Model Consistency wrt. Interaction

• We assume that the set of interactions I is partitioned into two
(possibly empty) sets of universal and existential interactions, i.e.I = I∀ ∪̇ I∃.

Definition. A model

M = (CD ,SM ,OD ,I )

is called consistent (more precise: the constructive description of
behaviour is consistent with the reflective one) if and only if

∀ I ∈ I∀ : L(M) ⊆ L(I)

and

∀ I ∈ I∃ : L(M) ∩ L(I) 6= ∅.
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Interactions: Plan

• In the following, we consider Sequence Diagrams as interaction I,

• more precisely: Live Sequence Charts [Damm and Harel, 2001].

• We define the language L(I) of an LSC — via Büchi automata.

• Then (conceptually) π |= ϑ if and only if wπ ∈ L(I).

Why LSC, relation LSCs/UML SDs, other kinds of interactions: later.
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LiveSequenceCharts — ConcreteSyntax
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Example

LSC: L

AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1
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Building Blocks

• Instance Lines:

Environment : C

• Messages: (asynchronous or synchronous/instantaneous)

a b

• Conditions and Local Invariants: (expr1, expr2, expr3 ∈ ExprS )

expr1 expr2
expr3
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IntuitiveSemantics: A Partial Order on Simclasses

(i) Strictly After:

a

b
a

(ii) Simultaneously: (simultaneous region)

a

expr1

b c

(iii) Explicitly Unordered: (co-region)

a

b

Intuition: A computation path violates an LSC if the occurrence of some events
doesn’t adhere to partial order obtained as the transitive closure of (i) to (iii).–
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Example: Partial Order Requirements

LSC: L

AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1
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LSC Specialty: Modes

With LSCs,

• whole charts,

• locations, and

• elements

have a mode — one of hot or cold (graphically indicated by outline).

chart location message condition/

local inv.

hot:

a

b

b p

cold:

a

b

b p

always vs. at
least once

must vs. may
progress

mustn’t vs.
may get lost

necessary vs.
legal exit

–
1
7

–
2
0
1
2
-0

1
-2

5
–

S
ls
cs

yn
–

26/69

Example: Modes

LSC: L

AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1
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LSC Specialty: Activation

One major defect of MSCs and SDs:
they don’t say when the scenario has
to/may be observed.

LSCs: Activation condition (AC ∈ ExprS ),
activation mode (AM ∈ {init , inv}),
and pre-chart.

: C : D

a

b

LSC: L

AC: expr

AM: invariant I: strict

: C : D

a

b

Intuition: (universal case)

• given a computation π, whenever expr holds in a configuration (σi, εi) of ξ

• which is initial, i.e. k = 0, or (AM = initial)

• whose k is not further restricted, (AM = invariant)

and if the pre-chart is observed from k to k + n,

then the main-chart has to follow from k + n + 1.
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Example: What IsRequired?

LSC: L

AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Whenever the CrossingCtrl has consumed a ‘secreq’ event

• then it shall finally send ‘lights on’ and ‘barrier down’ to LightsCtrl and BarrierCtrl,

• if LightsCtrl is not ‘operational’ when receiving that event, the rest of this scenario
doesn’t apply; maybe there’s another sequence diagram for that case.

• if LightsCtrl is operational when receiving that event, it shall reply with ‘lights ok’
within 1–3 time units,

• the BarrierCtrl shall reply with ‘barrier ok’ within 1–5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

• ‘lights ok’ and ‘barrier ok’ may occur in any order.

• After having consumed both, CrossingCtrl replies with ‘done’ to the environment.
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LiveSequenceCharts —Abstract Syntax
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LSC Body: Abstract Syntax

Let Θ = {hot, cold}. An LSC body is a tuple

(I, (L ,�),∼,S , Msg, Cond, LocInv)

where

• I is a finite set of instance lines,

• (L ,�) is a finite, non-empty, partially ordered set of locations,
each l ∈ L is associated with a temperature θ(l) ∈ Θ and an instance line il ∈ I,

• ∼⊆ L ×L is an equivalence relation on locations, the simultaneity relation,

• S = (T,C, V, atr , E) is a signature,

• Msg ⊆ L × E ×L is a set of asynchronous messages
with (l, b, l′) ∈ Msg only if l ∼ l′,

Not: instantaneous messages — could be linked to method/operation calls.

• Cond ⊆ (2L \ ∅) × ExprS × Θ is a set of conditions
with (L, expr , θ) ∈ Cond only if l ∼ l′ for all l, l′ ∈ L,

• LocInv ⊆ L × {◦, •} × ExprS × Θ ×L × {◦, •} is a set of local invariants,
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Well -Formedness

Bondedness/no floating conditions: (could be relaxed a little if we wanted to)

• For each location l ∈ L , if l is the location of

• a condition, i.e.

∃ (L, expr , θ) ∈ Cond : l ∈ L,

• a local invariant, i.e.

∃ (l1, i1, expr , θ, l2, i2) ∈ LocInv : l ∈ {l1, l2}, or

then there is a location l′ equivalent to l which is the location of

• a message, i.e.

∃ (l1, b, l2) ∈ Msg : l ∈ {l1, l2}, or

• an instance head, i.e. l′ is minimal wrt. �.

Note: if messages in a chart are cyclic, then there doesn’t exist a partial order
(so such charts don’t even have an abstract syntax).
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