
Benchmark: Stratified Controllers of Tank

Networks

Stanley Bak∗ Sergiy Bogomolov† Marius Greitschus‡

Taylor T. Johnson§

v0.1, 2015-01-15 ¶

Abstract

We present a new model of a tank network used to transfer liquid.
Tanks are connected by channels. The throughput velocity of every par-
ticular channel is governed by the controller. We consider a special class of
stratified controllers which are organized in several phases. Every phase
can be further partitioned into multiple options. This structure makes
it easy to generate a variety of benchmark instances ranging in the size,
branching factor and generally analysis complexity. We provide a flexible
benchmark generator for this class of benchmarks and a sample bench-
mark suite built by the generator. Finally, we use the Hyst model trans-
formation framework to convert the original model in a format compatible
with several reachability tools.
Category: academic Difficulty: high

1 Context and Origins

The area of hybrid automata [9] has undergone a rapid development in the
last decade. In particular, several extensible frameworks [6, 3] for the analysis
of hybrid automata are now available. Such frameworks provide an excellent
environment to develop new analysis algorithms in a timely manner. However,
an extensive testing suite is necessary to ensure the correctness of the developed
algorithms and furthermore evaluate their performance against other available
algorithms and tools. Unfortunately, only a few benchmark suites are publicly
available [5]. Furthermore, the available benchmark instances are hard-coded
and cannot be easily adjusted. In this paper, we suggest a new extensible class
of benchmarks inspired by the work of Frehse et al. [7].

∗Air Force Research Laboratory, Rome, NY, USA stanleybak@gmail.com
†IST Austria sergiy.bogomolov@ist.ac.at
‡University of Freiburg, Germany greitsch@informatik.uni-freiburg.de
§University of Texas at Arlington, USA taylor.johnson@gmail.com
¶DISTRIBUTION A. Approved for public release; Distribution unlimited. (Approval

AFRL PA #88ABW-2015-0432, 06 FEB 2015)

1

In addition, we provide a benchmark generator that automatically builds
SpaceEx [6] models based on the provided benchmark instance description and
a sample benchmark suite built by the generator1. This benchmark class is
of particular interest because of its scalability: benchmark instances can be
scaled both in discrete and continuous dimensions. We can generate controllers
that exhibit multiple branching points and several types of continuous dynam-
ics. Therefore, by increasing the branching factor and varying the continuous
dynamics of the controller we can easily adjust the complexity of benchmark
instances.

Finally, we leverage the Hyst model transformation tool [2] in order to con-
vert the generated model into a number of formats compatible of recent hybrid
systems reachability tools. This gives tool developers the option of extend-
ing Hyst to support their tool, rather than manually converting each specific
benchmark to their tool’s format. Furthermore, Hyst features like automatic au-
tomaton flattening can be automatically leveraged in order to ease benchmark
conversion.

We base our work on the switched buffer network benchmark [7]. In order
to provide benchmark instances that scale both in discrete and continuous di-
mensions, we consider controllers that exhibit multiple branching points and
several types of continuous dynamics. Therefore, by increasing the branching
factor and varying the continuous dynamics of the controller we can easily ad-
just the complexity of benchmark instances. We provide a benchmark suite
in the SpaceEx [6] format, and through Hyst, also analyze the benchmark in
Flow* [3], HyCreate2 [1], and dReach [8]. Of these, each of Flow*, dReach, and
HyCreate2 have challenges when analyzing this benchmark class.

2 Benchmark Description

Our system consists of a network of tanks connected by channels. The liquid
flows into the network through the initial tank. The controller adjusts the
throughput rates of the channels in order to ensure the liquid delivery to the
sink tank. We consider properties that reason over the fill level of the sink tank.
The system can be seen as a composition of a plant (consisting of a number of
components modeling tanks and channels) and a controller which governs the
liquid flow throughout the network.

In the following, we describe the way the tanks and channels are modeled.
The rate of change of the fill level fT of a tank T , depends on the rates of inflow
vin i and the rates of outflow vout j of the liquid, where vin i is the velocity at
which the liquid flows into the tank of the i-th input channel, and vout j is the
velocity at which the liquid flows out of the tank for the j-th output channel.
Thus, the evolution of the fill level of the tank T is described by the differential
equation ˙fT =

∑
i vin i −

∑
j vout j , where i and j range over incoming and

outgoing channels of T , respectively.

1The benchmark generator and suite can be downloaded from http://swt.informatik.

uni-freiburg.de/tool/spaceex/benchgen.

2

http://swt.informatik.uni-freiburg.de/tool/spaceex/benchgen
http://swt.informatik.uni-freiburg.de/tool/spaceex/benchgen

Open . . .

Open1,1 . . . Openn,1

.

Open1,m . . . Openn,m

End
t := 0

o(c1)

o(c2) o(cn)

[t = tmax1
]

...

...

...

...
o(c1)

o(c2) o(cn)

[t = tmaxm]

Close Close1 . . . Closen End

t := 0

c(c1) c(c2) c(cn)

[t = tmaxc
]

. . . t := 0

Figure 1: Controller consisting of “open” and “close” phases. The “open” phase
has m options. Every option refers to n channels. The controller and the plant
communicate through the shared labels o(ci) and c(ci) which correspond to
opening and closing channel ci, respectively. The “close” phase always have at
most one option. Variable t measures the time spent in a phase.

Here, we mainly focus on the controller structure. In particular, we con-
sider a class of stratified, i.e., layered, controllers. In this setting, the controller
iterates over a number of phases. The controller can open, close or generally
modify the throughput values of network channels in every phase. Every phase
has a particular duration. Furthermore, a phase can contain a number of op-
tions which allow for the fine-granular throughput adjustment in every phase.
All the options in one phase agree on the channel throughput they modify, i.e.,
if a particular channel is to be opened in one option, this will also be the case in
all other options. However, the resulting throughput velocity may vary among
the options. In other words, the throughput adjustments in every phase are
organized in strata. Those ideas are illustrated in Fig. 1.

The system behavior crucially depends on the way the controller adjusts the
channel throughput. We distinguish three modes:

1. No dynamics: As soon as the channel is opened, its throughput v is given
by the inequality vmin ≤ v ≤ vmax.

2. Constant dynamics: The throughput is governed by the differential equa-
tion v̇ = c for some constant c.

3. Affine dynamics: The channel opens gradually with the opening speed de-
caying towards the target velocity vtarget , where the throughput evolution
is provided by the differential equation v̇ = c(vtarget − v) for a constant c.

3

. . .

Openn,i

c1min = α1min

∧ c1max = α1max

...
∧ cnmin

= αnmin

∧ cnmax
= αnmax

∧ t ≤ tmax i

ṫ = 1

. . .
o(cn−1) [t ≤ tmaxi

]

Figure 2: Location Openn,i of the controller in the mode “No dynamics”. This
location finalizes the impact of the option i. In particular, the values of shared
variables cjmin

and cjmax
are updated with the constant values αjmin

and αjmax
,

respectively. We enforce this update by encoding it as a part of the location
invariant. This in turn impacts the channels which also refer to cjmin and cjmax .
Variable t measures the time spent in the phase which is reflected by the differ-
ential equation ṫ = 1.

Note that in case of “No dynamics” the throughput is changed instanta-
neously when the channel is opened, whereas the channel is opened gradually
in the other cases. In Fig. 2, we explain the structure of the controller with
no dynamics in more detail. The modes with constant and affine dynamics are
built similarly by incorporating the differential equations reflecting the appro-
priate throughput dynamics. The treatment of continuous dynamics poses a
major challenge for hybrid model checkers. By introducing those three modes,
we provide benchmark instances with gradually increasing continuous dynamics
complexity which in turn leads to the increased verification efforts.

Fig. 3 exemplifies the behavior of a sample tank network consisting of four
tanks with linear topology, i.e., initial tank, sink tank and two further tanks in
between assuming a controller with no dynamics.

3 Conversion

In order to make use of the proposed benchmark it is essential to be able to create
a working model in the tool of choice. Since tools have different input formats,
we extend and make use of the Hyst [2] tool. Hyst is a model transformation
and translation tool, which takes input in the SpaceEx format and generates
models in the formats of Flow* [3], HyCreate2 [1], and dReach [8]. For this
work, the tool was extended by adding support for automaton flattening, as
well as nondeterministic flows and guards, and urgent transitions (which are all
used in the benchmark).

Additionally, in order to validate model import, we create a printer back to
the SpaceEx format so the flattened and modified automaton could be re-run
with SpaceEx to validate that the reachable set of states was unchanged during
flattening. Using the sample network system previously used is given in Figure 3,
the reachable set of states was confirmed to match, increasing confidence in the
correctness of the flattening process. The file size during this process grew from

4

0 100 200 300 400 500
0

20

40

60

80

100

TANKS:
d e f i n e tank ”MainTank” capac i ty=10
d e f i n e tank ”SubTank1” capac i ty=10
d e f i n e tank ”LastTank” capac i ty =100 s ink=”true ” output =0.5

CHANNELS:
d e f i n e channel ”RootChannel” root=”true ” gen f low=2
d e f i n e channel ” channel1 ”
d e f i n e channel ” channel2 ”

CONNECTIONS:
d e f i n e connect ion ”RootChannel” t a r g e t=”MainTank”
d e f i n e connect ion ” channel1 ” source=”MainTank” t a r g e t=”SubTank1”
d e f i n e connect ion ” channel2 ” source=”SubTank1” t a r g e t=”LastTank”

PHASES:
d e f i n e phase ” openphase ”
d e f i n e opt ion ” opt ion1 ” durat ion=40
d e f i n e opt ion ” opt ion1 ” ”RootChannel” ac t i on=”open”
d e f i n e opt ion ” opt ion1 ” ” channel1 ” ac t i on=”open”

lowest throughput=1 highes t throughput=1
d e f i n e opt ion ” opt ion1 ” ” channel2 ” ac t i on=”open”

lowest throughput=1 highes t throughput=1

d e f i n e opt ion ” opt ion2 ” durat ion=40
d e f i n e opt ion ” opt ion2 ” ”RootChannel” ac t i on=”open”
d e f i n e opt ion ” opt ion2 ” ” channel1 ” ac t i on=”open”

lowest throughput =0.9 h ighes t throughput =0.9
d e f i n e opt ion ” opt ion2 ” ” channel2 ” ac t i on=”open”

lowest throughput =0.9 h ighes t throughput =0.9

d e f i n e phase ” c l o s e ”
d e f i n e opt ion ” opt ion1 ” durat ion=20
d e f i n e opt ion ” opt ion1 ” ”RootChannel” ac t i on=”c l o s e ”
d e f i n e opt ion ” opt ion1 ” ” channel1 ” ac t i on=”c l o s e ”
d e f i n e opt ion ” opt ion1 ” ” channel2 ” ac t i on=”c l o s e ”

Figure 3: Fill level evolution of the sink tank for the network consisting of four
tanks with linear topology, i.e., initial tank, sink tank and two further tanks in
between vs. time on the left hand side. On the right hand side, the definition
file used by the generator to produce a SpaceEx model for this model is shown.
The controller works in a cyclic manner, i.e., it proceeds with the “open” phase
as soon as the “close” phase is over.

29 kB (original) to 445 kB (flattened).
Computing reachability for this benchmark is particularly hard for the other

tools to which Hyst can convert, as will be elaborated on shortly. To get some
output, a minimal version of the benchmark was generated (2 tanks) and the
reach set was computed in SpaceEx. The model was then flattened and con-
verted to the format of Flow*, and the number of discrete transitions was re-
stricted to 20. The resultant output with SpaceEx and Flow* is shown in
Figure 4, and appears to overlap for both tools.

The generated benchmarks stress the supported tools in several ways. The
largest issue with most of the tools was a lack of fixpoint detection when process-
ing discrete transitions. In the benchmark, there is a large number of urgent
modes in the flattened automaton which describe the discrete logic. These
urgent modes contain cycles which lead to infinite discrete-jump loops (Zeno
behavior) for tools which do not support fixpoint detection. In the HyCreate2
simulator, these loops would be entered and then never exit until the discrete
jump limit was reached, all before any time elapsed in the simulation. This
was also the reason why we needed to restrict the number of discrete jumps to
get an output from Flow* in Figure 4. Using a larger jump bound in Flow*
caused the number of possible paths to be so large that the computation ran
into memory issues before an output was produced. Several regularization [10]
model transformation passes were added to Hyst which attempted to eliminate
this problem. One of passes would enforce a maximum number of jumps per

5

0 200 400 600 800 1000
0

20

40

60

80

100

Figure 4: The reachable set of states for the minimal model in SpaceEx (left),
and Flow* (right) appears similar, increasing confidence in the translation pro-
cess. Notice that the Flow* result is over a significantly shorter time period,
due to the explosion in runtime due to lack of fixpoint detection.

time interval. This did not solve the problem, as if the number of jumps was too
low, then a time-progressing state would never be reached, and if the number
was too high, the number of paths would remain intractable. Enforcing dwell
times in non-urgent modes did not solve the problem, since it is the networks of
urgent modes which caused problems. Enforcing dwell times on urgent modes
changes the semantics, which led to models where all executions would end.

Another limitation discovered in the tools was that, since the generated mode
names are created from a concatenation of the mode names in the subsystems,
the names of the modes in the flattened automaton could get quite long. In
Flow*, mode names longer than 100 characters were not accounted for, which
required recompilation of the tool from source to fix. In HyCreate2, each mode
and transition has a file generated which is compiled within the reachability
engine. The filenames were too long for the filesystem, causing the OS to raise
an error. A model transformation pass was added to Hyst which shortened
mode names to overcome these limitations.

Since the number of variables (dimensions) was quite large, this led to poor
performance for the mixed-face lifting approach employed by HyCreate2. In
dReach, the number of discrete jumps must be specified exactly when checking
for property violations. This is problematic because the model contains many
urgent modes where no time elapses, although a discrete jump occurs. After
flattening, it is difficult to manually reason about the exact number of jumps
which should be considered. Finally, even the original model in SpaceEx needs
to work around limitations of the SpaceEx input format. Specifically, the format
only supports a single synchronization label per transition (which mandates us-
ing multiple successive urgent transitions if multiple labels are desired, leading
to the networks of urgent modes). Additionally, nondeterministic assignments
were needed in the model in order to account for the way in which potential
successor states are trimmed in SpaceEx based on the invariants of successor
modes (which does not the reset assignment into account). All of these limi-
tations can be recast as desired enhancements to the corresponding tools, and
their improvement can be demonstrated with the proposed benchmark.

The benchmark also led to enhancements in the Hyst model transformation

6

tool. Enhancements were made to the tool to permit automated flattening of
models, which was necessary since SpaceEx was the only tool that supported a
networked automaton input format. Flattening has the effect of quickly grow-
ing the state space of the system, so model transformation passes were added
to Hyst in order to trim the number of states generated. Two model transfor-
mation passes were added to eliminate unreachable modes. First, a pass was
added which, based on the discrete transitions and initial set of states, would
remove any states that are discretely unreachable. Second, a model transforma-
tion pass was added in Hyst which removes modes and associated transitions
where the invariants are clearly unsatisfiable. This would come up in cases in
the tank system, for example, where a tank was in the starved state (which
means the tank is empty and its input flow is less than its maximum output
flow), whereas the previous tank had an output flow that was greater than the
first tank’s maximum output flow. The composed invariant for such cases would
have constraints like x ∈ [0, 3] && x = 5, where x is the output of the tank,
3 is its maximum output rate, and 5 is the input rate from the previous tank.
Such invariants can never be true, and these modes would be removed from the
model. Further passes could be imagined which make use of a more powerful
procedure to check if invariants are satisfiable, such as an SMT solver [4]. Ad-
ditional features were added to Hyst to support nondeterministic flows, reset
assignments, and the detection and conversion of urgent transitions, which are
all present even in the simplest tank benchmark system. Passes were also cre-
ated to perform regularization in order to try to overcome the problems with
Zeno behaviors, which may be reused on other models in the future.

Even with the enhancements, the larger tank benchmarks stress the reach-
ability tools and further improvements may be required before they can suc-
cessfully be used to compute reachability for longer time periods. The flattened
models contained thousands of states and transitions. Users of verification tools
who wanted to evaluate the benchmark would be unlikely to accurately perform
such a conversion by hand.

4 Outlook

We have presented a challenging benchmark study and a generation tool to
create instances of the benchmark with different structure. We have also pro-
vided a conversion tool which can take the benchmark, flatten it, and convert
it to the input format of various tools for analysis. Key challenges with running
the different tools on the converted benchmark were then provided, providing
direction for potential tool enhancements.

Our benchmark suite can be used to test hybrid model checking algorithms
with respect to multiple criteria:

(1) Accuracy - generally, it is more challenging to treat affine dynamics
compared to piece-wise constant ones. By integrating both options in our bench-
mark suite we enable the user to test and compare the algorithms in different
settings;

7

(2) Termination of a reachability algorithm - if no global time horizon
is provided in the controller, the fix-point cannot clearly be reached. However,
in our setting, we assume a given upper-bound on the time which leads to the
fix-point existence. Therefore, the benchmarks provide an excellent setup to
check the algorithm’s convergence;

(3) Guidance sensitivity - the rich discrete structure makes our benchmark
suite particularly appropriate to test algorithms for the search guidance in the
system state space;

(4) Scalability - the benchmark structure can easily be adjusted to the
needed structural complexity by introducing additional phases/options and vary-
ing controller dynamics.

References

[1] S. Bak. HyCreate: A tool for overapproximating reachability of hybrid
automata. In http://stanleybak.com/projects/hycreate/hycreate.html.

[2] S. Bak, S. Bogomolov, and T. T. Johnson. Hyst: A source transformation
and translation tool for hybrid automaton models (tool paper). In Hybrid
Systems: Computation and Control (HSCC), 2015.

[3] X. Chen, E. Abraham, and S. Sankaranarayanan. Flow*: An analyzer for
non-linear hybrid systems. In Computer Aided Verification, 2013.

[4] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. of 14th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS ’08/ETAPS ’08, pages 337–340. Springer-
Verlag, 2008.

[5] A. Fehnker and F. Ivančić. Benchmarks for hybrid systems verification. In
Hybrid Systems: Computation and Control, pages 381–397, 2004.

[6] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ri-
pado, A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable verification of
hybrid systems. In Computer Aided Verification, pages 379–395, 2011.

[7] G. Frehse and O. Maler. Reachability analysis of a switched buffer net-
work. In Hybrid Systems: Computation and Control (HSCC), pages 698–
701, 2007.

[8] S. Gao, S. Kong, W. Chen, and E. M. Clarke. Delta-complete analysis for
bounded reachability of hybrid systems. CoRR, abs/1404.7171, 2014.

[9] T. A. Henzinger. The theory of hybrid automata. In Logic in Computer
Science, pages 278–292, 1996.

[10] K. H. Johansson, M. Egerstedt, J. Lygeros, and S. Sastry. On the regular-
ization of zeno hybrid automata. Systems & Control Letters, 38(3):141–150,
1999.

8

	Context and Origins
	Benchmark Description
	Conversion
	Outlook

